Ardupilot2/libraries/AP_Networking/lwip_hal/arch/sys_arch.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

539 lines
12 KiB
C++
Raw Normal View History

/*
port of lwip to ArduPilot AP_HAL
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/Semaphores.h>
#include <AP_Math/AP_Math.h>
#include <string.h>
#include <sys/time.h>
#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <errno.h>
#include <lwipopts.h>
extern "C" {
#include "lwip/debug.h"
#include "lwip/def.h"
#include "lwip/sys.h"
#include "lwip/opt.h"
#include "lwip/stats.h"
#include "lwip/tcpip.h"
}
2023-12-25 22:41:28 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include <semaphore.h>
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
#include "hal.h"
#include "../../../libraries/AP_HAL_ChibiOS/hwdef/common/stm32_util.h"
#endif
extern const AP_HAL::HAL &hal;
unsigned int
lwip_port_rand(void)
{
return (u32_t)rand();
}
static HAL_Semaphore lwprot_mutex;
static HAL_Semaphore tcpip_mutex;
struct sys_mbox_msg {
struct sys_mbox_msg *next;
void *msg;
};
#define SYS_MBOX_SIZE 128
struct sys_mbox {
int first, last;
void *msgs[SYS_MBOX_SIZE];
struct sys_sem *not_empty;
struct sys_sem *not_full;
struct sys_sem *mutex;
int wait_send;
};
struct sys_sem {
2023-12-25 22:41:28 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX
sem_t sem;
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
semaphore_t sem;
#else
#error "Need sys_sem implementation"
#endif
};
static struct sys_sem *sys_sem_new_internal(u8_t count);
static void sys_sem_free_internal(struct sys_sem *sem);
/* Threads */
struct thread_wrapper_data {
lwip_thread_fn function;
void *arg;
};
2023-12-25 22:41:28 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX
static void *
thread_wrapper(void *arg)
{
auto *thread_data = (struct thread_wrapper_data *)arg;
thread_data->function(thread_data->arg);
return NULL;
}
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
static void
thread_wrapper(void *arg)
{
auto *thread_data = (struct thread_wrapper_data *)arg;
thread_data->function(thread_data->arg);
}
#endif
sys_thread_t
sys_thread_new(const char *name, lwip_thread_fn function, void *arg, int stacksize, int prio)
{
sys_thread_t ret = nullptr;
struct thread_wrapper_data *thread_data;
thread_data = new thread_wrapper_data;
thread_data->arg = arg;
thread_data->function = function;
2023-12-25 22:41:28 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX
pthread_t t;
if (pthread_create(&t, NULL, thread_wrapper, thread_data) == 0) {
pthread_setname_np(t, name);
ret = (void*)t;
}
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
ret = thread_create_alloc(THD_WORKING_AREA_SIZE(stacksize+1024),
name,
prio+60, // need to use HAL thread call
thread_wrapper,
thread_data);
#endif
if (ret == nullptr) {
AP_HAL::panic("Failed to create thread %s", name);
}
return ret;
}
void sys_lock_tcpip_core(void)
{
if (hal.scheduler != nullptr) {
tcpip_mutex.take_blocking();
}
}
void sys_unlock_tcpip_core(void)
{
if (hal.scheduler != nullptr) {
tcpip_mutex.give();
}
}
void sys_mark_tcpip_thread(void)
{
}
void sys_check_core_locking(void)
{
/* Embedded systems should check we are NOT in an interrupt
* context here */
}
/*-----------------------------------------------------------------------------------*/
/* Mailbox */
err_t
sys_mbox_new(struct sys_mbox **mb, int size)
{
struct sys_mbox *mbox;
LWIP_UNUSED_ARG(size);
mbox = new sys_mbox;
if (mbox == NULL) {
return ERR_MEM;
}
mbox->first = mbox->last = 0;
mbox->not_empty = sys_sem_new_internal(0);
mbox->not_full = sys_sem_new_internal(0);
mbox->mutex = sys_sem_new_internal(1);
mbox->wait_send = 0;
*mb = mbox;
return ERR_OK;
}
void
sys_mbox_free(struct sys_mbox **mb)
{
if ((mb != NULL) && (*mb != SYS_MBOX_NULL)) {
struct sys_mbox *mbox = *mb;
sys_arch_sem_wait(&mbox->mutex, 0);
sys_sem_free_internal(mbox->not_empty);
sys_sem_free_internal(mbox->not_full);
sys_sem_free_internal(mbox->mutex);
mbox->not_empty = mbox->not_full = mbox->mutex = NULL;
/* LWIP_DEBUGF("sys_mbox_free: mbox 0x%lx\n", mbox); */
delete mbox;
}
}
err_t
sys_mbox_trypost(struct sys_mbox **mb, void *msg)
{
u8_t first;
struct sys_mbox *mbox;
LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL));
mbox = *mb;
sys_arch_sem_wait(&mbox->mutex, 0);
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_trypost: mbox %p msg %p\n",
(void *)mbox, (void *)msg));
if ((mbox->last + 1) >= (mbox->first + SYS_MBOX_SIZE)) {
sys_sem_signal(&mbox->mutex);
return ERR_MEM;
}
mbox->msgs[mbox->last % SYS_MBOX_SIZE] = msg;
if (mbox->last == mbox->first) {
first = 1;
} else {
first = 0;
}
mbox->last++;
if (first) {
sys_sem_signal(&mbox->not_empty);
}
sys_sem_signal(&mbox->mutex);
return ERR_OK;
}
void
sys_mbox_post(struct sys_mbox **mb, void *msg)
{
u8_t first;
struct sys_mbox *mbox;
LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL));
mbox = *mb;
sys_arch_sem_wait(&mbox->mutex, 0);
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_post: mbox %p msg %p\n", (void *)mbox, (void *)msg));
while ((mbox->last + 1) >= (mbox->first + SYS_MBOX_SIZE)) {
mbox->wait_send++;
sys_sem_signal(&mbox->mutex);
sys_arch_sem_wait(&mbox->not_full, 0);
sys_arch_sem_wait(&mbox->mutex, 0);
mbox->wait_send--;
}
mbox->msgs[mbox->last % SYS_MBOX_SIZE] = msg;
if (mbox->last == mbox->first) {
first = 1;
} else {
first = 0;
}
mbox->last++;
if (first) {
sys_sem_signal(&mbox->not_empty);
}
sys_sem_signal(&mbox->mutex);
}
u32_t
sys_arch_mbox_tryfetch(struct sys_mbox **mb, void **msg)
{
struct sys_mbox *mbox = *mb;
sys_arch_sem_wait(&mbox->mutex, 0);
if (mbox->first == mbox->last) {
sys_sem_signal(&mbox->mutex);
return SYS_MBOX_EMPTY;
}
if (msg != NULL) {
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_tryfetch: mbox %p msg %p\n", (void *)mbox, *msg));
*msg = mbox->msgs[mbox->first % SYS_MBOX_SIZE];
} else {
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_tryfetch: mbox %p, null msg\n", (void *)mbox));
}
mbox->first++;
if (mbox->wait_send) {
sys_sem_signal(&mbox->not_full);
}
sys_sem_signal(&mbox->mutex);
return 0;
}
u32_t
sys_arch_mbox_fetch(struct sys_mbox **mb, void **msg, u32_t timeout)
{
struct sys_mbox *mbox;
LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL));
mbox = *mb;
/* The mutex lock is quick so we don't bother with the timeout
stuff here. */
sys_arch_sem_wait(&mbox->mutex, 0);
while (mbox->first == mbox->last) {
sys_sem_signal(&mbox->mutex);
/* We block while waiting for a mail to arrive in the mailbox. We
must be prepared to timeout. */
if (timeout != 0) {
u32_t time_needed = sys_arch_sem_wait(&mbox->not_empty, timeout);
if (time_needed == SYS_ARCH_TIMEOUT) {
return SYS_ARCH_TIMEOUT;
}
} else {
sys_arch_sem_wait(&mbox->not_empty, 0);
}
sys_arch_sem_wait(&mbox->mutex, 0);
}
if (msg != NULL) {
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_fetch: mbox %p msg %p\n", (void *)mbox, *msg));
*msg = mbox->msgs[mbox->first % SYS_MBOX_SIZE];
} else {
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_fetch: mbox %p, null msg\n", (void *)mbox));
}
mbox->first++;
if (mbox->wait_send) {
sys_sem_signal(&mbox->not_full);
}
sys_sem_signal(&mbox->mutex);
return 0;
}
/*-----------------------------------------------------------------------------------*/
/* Semaphore */
static struct sys_sem *
sys_sem_new_internal(u8_t count)
{
auto *ret = new sys_sem;
if (ret != nullptr) {
2023-12-25 22:41:28 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX
sem_init(&ret->sem, 0, count);
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
chSemObjectInit(&ret->sem, (cnt_t)count);
#endif
}
return ret;
}
err_t
sys_sem_new(struct sys_sem **sem, u8_t count)
{
*sem = sys_sem_new_internal(count);
if (*sem == NULL) {
return ERR_MEM;
}
return ERR_OK;
}
u32_t
sys_arch_sem_wait(struct sys_sem **s, u32_t timeout_ms)
{
struct sys_sem *sem = *s;
2023-12-25 22:41:28 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX
if (timeout_ms == 0) {
sem_wait(&sem->sem);
return 0;
}
struct timespec ts;
if (clock_gettime(CLOCK_REALTIME, &ts) != 0) {
return SYS_ARCH_TIMEOUT;
}
ts.tv_sec += timeout_ms/1000UL;
ts.tv_nsec += (timeout_ms % 1000U) * 1000000UL;
if (ts.tv_nsec >= 1000000000L) {
ts.tv_sec++;
ts.tv_nsec -= 1000000000L;
}
auto ret = sem_timedwait(&sem->sem, &ts);
if (ret != 0) {
return SYS_ARCH_TIMEOUT;
}
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
chSysLock();
sysinterval_t tmo = timeout_ms > 0 ? MIN(TIME_MAX_INTERVAL, TIME_MS2I((time_msecs_t)timeout_ms)) : TIME_INFINITE;
if (chSemWaitTimeoutS(&sem->sem, tmo) != MSG_OK) {
chSysUnlock();
return SYS_ARCH_TIMEOUT;
}
chSysUnlock();
#endif
return 0;
}
void
sys_sem_signal(struct sys_sem **s)
{
struct sys_sem *sem = *s;
2023-12-25 22:41:28 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX
sem_post(&sem->sem);
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
chSemSignal(&sem->sem);
#endif
}
static void
sys_sem_free_internal(struct sys_sem *sem)
{
delete sem;
}
void
sys_sem_free(struct sys_sem **sem)
{
if ((sem != NULL) && (*sem != SYS_SEM_NULL)) {
sys_sem_free_internal(*sem);
}
}
/*-----------------------------------------------------------------------------------*/
/* Mutex */
/** Create a new mutex
* @param mutex pointer to the mutex to create
* @return a new mutex */
err_t
sys_mutex_new(struct sys_mutex **mutex)
{
auto *sem = new HAL_Semaphore;
if (sem == nullptr) {
return ERR_MEM;
}
*mutex = (struct sys_mutex *)sem;
return ERR_OK;
}
/** Lock a mutex
* @param mutex the mutex to lock */
void
sys_mutex_lock(struct sys_mutex **mutex)
{
auto *sem = (HAL_Semaphore *)*mutex;
if (hal.scheduler != nullptr) {
sem->take_blocking();
}
}
/** Unlock a mutex
* @param mutex the mutex to unlock */
void
sys_mutex_unlock(struct sys_mutex **mutex)
{
auto *sem = (HAL_Semaphore *)*mutex;
if (hal.scheduler != nullptr) {
sem->give();
}
}
/** Delete a mutex
* @param mutex the mutex to delete */
void
sys_mutex_free(struct sys_mutex **mutex)
{
auto *sem = (HAL_Semaphore *)*mutex;
delete sem;
}
/*-----------------------------------------------------------------------------------*/
/* Time */
u32_t
sys_now(void)
{
return AP_HAL::millis();
}
u32_t
sys_jiffies(void)
{
return AP_HAL::micros();
}
/*-----------------------------------------------------------------------------------*/
/* Init */
void
sys_init(void)
{
}
/*-----------------------------------------------------------------------------------*/
/* Critical section */
/** sys_prot_t sys_arch_protect(void)
This optional function does a "fast" critical region protection and returns
the previous protection level. This function is only called during very short
critical regions. An embedded system which supports ISR-based drivers might
want to implement this function by disabling interrupts. Task-based systems
might want to implement this by using a mutex or disabling tasking. This
function should support recursive calls from the same task or interrupt. In
other words, sys_arch_protect() could be called while already protected. In
that case the return value indicates that it is already protected.
sys_arch_protect() is only required if your port is supporting an operating
system.
*/
sys_prot_t
sys_arch_protect(void)
{
if (hal.scheduler != nullptr) {
lwprot_mutex.take_blocking();
}
return 0;
}
/** void sys_arch_unprotect(sys_prot_t pval)
This optional function does a "fast" set of critical region protection to the
value specified by pval. See the documentation for sys_arch_protect() for
more information. This function is only required if your port is supporting
an operating system.
*/
void
sys_arch_unprotect(sys_prot_t pval)
{
LWIP_UNUSED_ARG(pval);
if (hal.scheduler != nullptr) {
lwprot_mutex.give();
}
}