Ardupilot2/ArduCopter/mode_rtl.cpp

580 lines
21 KiB
C++
Raw Normal View History

#include "Copter.h"
#if MODE_RTL_ENABLED == ENABLED
/*
* Init and run calls for RTL flight mode
2014-01-25 04:24:43 -04:00
*
* There are two parts to RTL, the high level decision making which controls which state we are in
* and the lower implementation of the waypoint or landing controllers within those states
*/
// rtl_init - initialise rtl controller
bool ModeRTL::init(bool ignore_checks)
{
if (!ignore_checks) {
if (!AP::ahrs().home_is_set()) {
return false;
}
}
// initialise waypoint and spline controller
wp_nav->wp_and_spline_init(g.rtl_speed_cms);
2021-04-13 12:22:04 -03:00
_state = SubMode::STARTING;
_state_complete = true; // see run() method below
terrain_following_allowed = !copter.failsafe.terrain;
return true;
}
// re-start RTL with terrain following disabled
void ModeRTL::restart_without_terrain()
{
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::RESTARTED_RTL);
terrain_following_allowed = false;
2021-04-13 12:22:04 -03:00
_state = SubMode::STARTING;
_state_complete = true;
gcs().send_text(MAV_SEVERITY_CRITICAL,"Restarting RTL - Terrain data missing");
}
ModeRTL::RTLAltType ModeRTL::get_alt_type() const
{
// sanity check parameter
if (g.rtl_alt_type < 0 || g.rtl_alt_type > (int)RTLAltType::RTL_ALTTYPE_TERRAIN) {
return RTLAltType::RTL_ALTTYPE_RELATIVE;
}
return (RTLAltType)g.rtl_alt_type.get();
}
// rtl_run - runs the return-to-launch controller
// should be called at 100hz or more
void ModeRTL::run(bool disarm_on_land)
{
if (!motors->armed()) {
return;
}
2014-01-25 04:24:43 -04:00
// check if we need to move to next state
if (_state_complete) {
switch (_state) {
2021-04-13 12:22:04 -03:00
case SubMode::STARTING:
build_path();
climb_start();
break;
2021-04-13 12:22:04 -03:00
case SubMode::INITIAL_CLIMB:
return_start();
2014-01-25 04:24:43 -04:00
break;
2021-04-13 12:22:04 -03:00
case SubMode::RETURN_HOME:
loiterathome_start();
2014-01-25 04:24:43 -04:00
break;
2021-04-13 12:22:04 -03:00
case SubMode::LOITER_AT_HOME:
if (rtl_path.land || copter.failsafe.radio) {
land_start();
}else{
descent_start();
2014-01-25 04:24:43 -04:00
}
break;
2021-04-13 12:22:04 -03:00
case SubMode::FINAL_DESCENT:
2014-01-25 04:24:43 -04:00
// do nothing
break;
2021-04-13 12:22:04 -03:00
case SubMode::LAND:
// do nothing - rtl_land_run will take care of disarming motors
2014-01-25 04:24:43 -04:00
break;
}
}
// call the correct run function
switch (_state) {
2014-01-25 04:24:43 -04:00
2021-04-13 12:22:04 -03:00
case SubMode::STARTING:
// should not be reached:
2021-04-13 12:22:04 -03:00
_state = SubMode::INITIAL_CLIMB;
FALLTHROUGH;
2021-04-13 12:22:04 -03:00
case SubMode::INITIAL_CLIMB:
climb_return_run();
2014-01-25 04:24:43 -04:00
break;
2021-04-13 12:22:04 -03:00
case SubMode::RETURN_HOME:
climb_return_run();
2014-01-25 04:24:43 -04:00
break;
2021-04-13 12:22:04 -03:00
case SubMode::LOITER_AT_HOME:
loiterathome_run();
2014-01-25 04:24:43 -04:00
break;
2021-04-13 12:22:04 -03:00
case SubMode::FINAL_DESCENT:
descent_run();
2014-01-25 04:24:43 -04:00
break;
2021-04-13 12:22:04 -03:00
case SubMode::LAND:
land_run(disarm_on_land);
2014-01-25 04:24:43 -04:00
break;
}
}
// rtl_climb_start - initialise climb to RTL altitude
void ModeRTL::climb_start()
2014-01-25 04:24:43 -04:00
{
2021-04-13 12:22:04 -03:00
_state = SubMode::INITIAL_CLIMB;
_state_complete = false;
2014-01-25 04:24:43 -04:00
2014-05-07 03:03:00 -03:00
// set the destination
if (!wp_nav->set_wp_destination_loc(rtl_path.climb_target) || !wp_nav->set_wp_destination_next_loc(rtl_path.return_target)) {
// this should not happen because rtl_build_path will have checked terrain data was available
gcs().send_text(MAV_SEVERITY_CRITICAL,"RTL: unexpected error setting climb target");
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_TO_SET_DESTINATION);
copter.set_mode(Mode::Number::LAND, ModeReason::TERRAIN_FAILSAFE);
return;
2016-03-18 07:44:09 -03:00
}
2014-01-25 04:24:43 -04:00
// hold current yaw during initial climb
auto_yaw.set_mode(AUTO_YAW_HOLD);
2014-01-25 04:24:43 -04:00
}
// rtl_return_start - initialise return to home
void ModeRTL::return_start()
2014-01-25 04:24:43 -04:00
{
2021-04-13 12:22:04 -03:00
_state = SubMode::RETURN_HOME;
_state_complete = false;
2014-01-25 04:24:43 -04:00
if (!wp_nav->set_wp_destination_loc(rtl_path.return_target)) {
// failure must be caused by missing terrain data, restart RTL
restart_without_terrain();
2016-03-18 07:44:09 -03:00
}
2014-01-25 04:24:43 -04:00
// initialise yaw to point home (maybe)
auto_yaw.set_mode_to_default(true);
2014-01-25 04:24:43 -04:00
}
// rtl_climb_return_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
2014-01-25 04:24:43 -04:00
// called by rtl_run at 100hz or more
void ModeRTL::climb_return_run()
2014-01-25 04:24:43 -04:00
{
// if not armed set throttle to zero and exit immediately
2019-04-08 05:15:57 -03:00
if (is_disarmed_or_landed()) {
make_safe_spool_down();
2014-01-25 04:24:43 -04:00
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio && use_pilot_yaw()) {
2014-01-25 04:24:43 -04:00
// get pilot's desired yaw rate
ArduCopter: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:46:59 -03:00
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
2015-05-04 23:34:21 -03:00
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
2014-01-25 04:24:43 -04:00
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
2014-01-25 04:24:43 -04:00
// run waypoint controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
2014-01-25 04:24:43 -04:00
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
2014-01-25 04:24:43 -04:00
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
2014-01-25 04:24:43 -04:00
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(wp_nav->get_thrust_vector(), target_yaw_rate);
2014-01-25 04:24:43 -04:00
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_thrust_vector_heading(wp_nav->get_thrust_vector(), auto_yaw.yaw());
2014-01-25 04:24:43 -04:00
}
// check if we've completed this stage of RTL
_state_complete = wp_nav->reached_wp_destination();
2014-01-25 04:24:43 -04:00
}
2021-01-26 07:10:11 -04:00
// loiterathome_start - initialise return to home
void ModeRTL::loiterathome_start()
2014-01-25 04:24:43 -04:00
{
2021-04-13 12:22:04 -03:00
_state = SubMode::LOITER_AT_HOME;
_state_complete = false;
_loiter_start_time = millis();
2014-01-25 04:24:43 -04:00
// yaw back to initial take-off heading yaw unless pilot has already overridden yaw
if(auto_yaw.default_mode(true) != AUTO_YAW_HOLD) {
auto_yaw.set_mode(AUTO_YAW_RESETTOARMEDYAW);
2014-01-25 04:24:43 -04:00
} else {
auto_yaw.set_mode(AUTO_YAW_HOLD);
2014-01-25 04:24:43 -04:00
}
}
// rtl_climb_return_descent_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
// called by rtl_run at 100hz or more
void ModeRTL::loiterathome_run()
2014-01-25 04:24:43 -04:00
{
// if not armed set throttle to zero and exit immediately
2019-04-08 05:15:57 -03:00
if (is_disarmed_or_landed()) {
make_safe_spool_down();
2014-01-25 04:24:43 -04:00
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio && use_pilot_yaw()) {
2014-01-25 04:24:43 -04:00
// get pilot's desired yaw rate
ArduCopter: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:46:59 -03:00
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
2015-05-04 23:34:21 -03:00
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
2014-01-25 04:24:43 -04:00
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
2014-01-25 04:24:43 -04:00
// run waypoint controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
2014-01-25 04:24:43 -04:00
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
2014-01-25 04:24:43 -04:00
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
2014-01-25 04:24:43 -04:00
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(wp_nav->get_thrust_vector(), target_yaw_rate);
2014-01-25 04:24:43 -04:00
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_thrust_vector_heading(wp_nav->get_thrust_vector(), auto_yaw.yaw());
2014-01-25 04:24:43 -04:00
}
// check if we've completed this stage of RTL
if ((millis() - _loiter_start_time) >= (uint32_t)g.rtl_loiter_time.get()) {
if (auto_yaw.mode() == AUTO_YAW_RESETTOARMEDYAW) {
// check if heading is within 2 degrees of heading when vehicle was armed
if (abs(wrap_180_cd(ahrs.yaw_sensor-copter.initial_armed_bearing)) <= 200) {
_state_complete = true;
}
} else {
// we have loitered long enough
_state_complete = true;
}
}
2014-01-25 04:24:43 -04:00
}
// rtl_descent_start - initialise descent to final alt
void ModeRTL::descent_start()
{
2021-04-13 12:22:04 -03:00
_state = SubMode::FINAL_DESCENT;
_state_complete = false;
// Set wp navigation target to above home
loiter_nav->init_target(wp_nav->get_wp_destination());
// initialise altitude target to stopping point
pos_control->set_target_to_stopping_point_z();
// initialise yaw
auto_yaw.set_mode(AUTO_YAW_HOLD);
#if LANDING_GEAR_ENABLED == ENABLED
// optionally deploy landing gear
copter.landinggear.deploy_for_landing();
#endif
#if AC_FENCE == ENABLED
// disable the fence on landing
copter.fence.auto_disable_fence_for_landing();
#endif
}
// rtl_descent_run - implements the final descent to the RTL_ALT
// called by rtl_run at 100hz or more
void ModeRTL::descent_run()
{
float target_roll = 0.0f;
float target_pitch = 0.0f;
float target_yaw_rate = 0.0f;
// if not armed set throttle to zero and exit immediately
2019-04-08 05:15:57 -03:00
if (is_disarmed_or_landed()) {
make_safe_spool_down();
return;
}
// process pilot's input
if (!copter.failsafe.radio) {
if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && copter.rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
AP::logger().Write_Event(LogEvent::LAND_CANCELLED_BY_PILOT);
// exit land if throttle is high
if (!copter.set_mode(Mode::Number::LOITER, ModeReason::THROTTLE_LAND_ESCAPE)) {
copter.set_mode(Mode::Number::ALT_HOLD, ModeReason::THROTTLE_LAND_ESCAPE);
}
}
if (g.land_repositioning) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());
// record if pilot has overridden roll or pitch
if (!is_zero(target_roll) || !is_zero(target_pitch)) {
if (!copter.ap.land_repo_active) {
AP::logger().Write_Event(LogEvent::LAND_REPO_ACTIVE);
}
copter.ap.land_repo_active = true;
}
}
if (g.land_repositioning || use_pilot_yaw()) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// process roll, pitch inputs
loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt);
// run loiter controller
loiter_nav->update();
// call z-axis position controller
pos_control->set_alt_target_with_slew(rtl_path.descent_target.alt, G_Dt);
pos_control->update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(loiter_nav->get_thrust_vector(), target_yaw_rate);
// check if we've reached within 20cm of final altitude
_state_complete = labs(rtl_path.descent_target.alt - copter.current_loc.alt) < 20;
}
2021-01-26 07:10:11 -04:00
// land_start - initialise controllers to loiter over home
void ModeRTL::land_start()
2014-01-25 04:24:43 -04:00
{
2021-04-13 12:22:04 -03:00
_state = SubMode::LAND;
_state_complete = false;
2014-01-25 04:24:43 -04:00
// Set wp navigation target to above home
loiter_nav->init_target(wp_nav->get_wp_destination());
2014-01-25 04:24:43 -04:00
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target_to_current_alt();
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
2014-01-25 04:24:43 -04:00
// initialise yaw
auto_yaw.set_mode(AUTO_YAW_HOLD);
#if LANDING_GEAR_ENABLED == ENABLED
// optionally deploy landing gear
copter.landinggear.deploy_for_landing();
#endif
#if AC_FENCE == ENABLED
// disable the fence on landing
copter.fence.auto_disable_fence_for_landing();
#endif
2014-01-25 04:24:43 -04:00
}
bool ModeRTL::is_landing() const
{
2021-04-13 12:22:04 -03:00
return _state == SubMode::LAND;
}
2021-01-26 07:10:11 -04:00
// land_run - run the landing controllers to put the aircraft on the ground
// called by rtl_run at 100hz or more
void ModeRTL::land_run(bool disarm_on_land)
2014-01-25 04:24:43 -04:00
{
// check if we've completed this stage of RTL
_state_complete = copter.ap.land_complete;
// disarm when the landing detector says we've landed
if (disarm_on_land && copter.ap.land_complete && motors->get_spool_state() == AP_Motors::SpoolState::GROUND_IDLE) {
2020-02-21 09:09:57 -04:00
copter.arming.disarm(AP_Arming::Method::LANDED);
}
// if not armed set throttle to zero and exit immediately
2019-04-08 05:15:57 -03:00
if (is_disarmed_or_landed()) {
make_safe_spool_down();
loiter_nav->clear_pilot_desired_acceleration();
loiter_nav->init_target();
2014-01-25 04:24:43 -04:00
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
land_run_horizontal_control();
land_run_vertical_control();
}
void ModeRTL::build_path()
{
// origin point is our stopping point
2016-03-18 07:44:09 -03:00
Vector3f stopping_point;
pos_control->get_stopping_point_xy(stopping_point);
pos_control->get_stopping_point_z(stopping_point);
rtl_path.origin_point = Location(stopping_point, Location::AltFrame::ABOVE_ORIGIN);
rtl_path.origin_point.change_alt_frame(Location::AltFrame::ABOVE_HOME);
// compute return target
compute_return_target();
// climb target is above our origin point at the return altitude
rtl_path.climb_target = Location(rtl_path.origin_point.lat, rtl_path.origin_point.lng, rtl_path.return_target.alt, rtl_path.return_target.get_alt_frame());
// descent target is below return target at rtl_alt_final
rtl_path.descent_target = Location(rtl_path.return_target.lat, rtl_path.return_target.lng, g.rtl_alt_final, Location::AltFrame::ABOVE_HOME);
// set land flag
rtl_path.land = g.rtl_alt_final <= 0;
}
// compute the return target - home or rally point
// return target's altitude is updated to a higher altitude that the vehicle can safely return at (frame may also be set)
void ModeRTL::compute_return_target()
{
// set return target to nearest rally point or home position (Note: alt is absolute)
#if AC_RALLY == ENABLED
rtl_path.return_target = copter.rally.calc_best_rally_or_home_location(copter.current_loc, ahrs.get_home().alt);
#else
rtl_path.return_target = ahrs.get_home();
#endif
2016-03-18 07:44:09 -03:00
// curr_alt is current altitude above home or above terrain depending upon use_terrain
int32_t curr_alt = copter.current_loc.alt;
2016-03-18 07:44:09 -03:00
// determine altitude type of return journey (alt-above-home, alt-above-terrain using range finder or alt-above-terrain using terrain database)
ReturnTargetAltType alt_type = ReturnTargetAltType::RELATIVE;
if (terrain_following_allowed && (get_alt_type() == RTLAltType::RTL_ALTTYPE_TERRAIN)) {
// convert RTL_ALT_TYPE and WPNAV_RFNG_USE parameters to ReturnTargetAltType
switch (wp_nav->get_terrain_source()) {
case AC_WPNav::TerrainSource::TERRAIN_UNAVAILABLE:
alt_type = ReturnTargetAltType::RELATIVE;
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::RTL_MISSING_RNGFND);
gcs().send_text(MAV_SEVERITY_CRITICAL, "RTL: no terrain data, using alt-above-home");
break;
case AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER:
alt_type = ReturnTargetAltType::RANGEFINDER;
break;
case AC_WPNav::TerrainSource::TERRAIN_FROM_TERRAINDATABASE:
alt_type = ReturnTargetAltType::TERRAINDATABASE;
break;
}
}
// set curr_alt and return_target.alt from range finder
if (alt_type == ReturnTargetAltType::RANGEFINDER) {
if (copter.get_rangefinder_height_interpolated_cm(curr_alt)) {
// set return_target.alt
rtl_path.return_target.set_alt_cm(MAX(curr_alt + MAX(0, g.rtl_climb_min), MAX(g.rtl_altitude, RTL_ALT_MIN)), Location::AltFrame::ABOVE_TERRAIN);
} else {
// fallback to relative alt and warn user
alt_type = ReturnTargetAltType::RELATIVE;
gcs().send_text(MAV_SEVERITY_CRITICAL, "RTL: rangefinder unhealthy, using alt-above-home");
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::RTL_MISSING_RNGFND);
}
}
// set curr_alt and return_target.alt from terrain database
if (alt_type == ReturnTargetAltType::TERRAINDATABASE) {
// set curr_alt to current altitude above terrain
// convert return_target.alt from an abs (above MSL) to altitude above terrain
// Note: the return_target may be a rally point with the alt set above the terrain alt (like the top of a building)
int32_t curr_terr_alt;
if (copter.current_loc.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, curr_terr_alt) &&
rtl_path.return_target.change_alt_frame(Location::AltFrame::ABOVE_TERRAIN)) {
curr_alt = curr_terr_alt;
} else {
// fallback to relative alt and warn user
alt_type = ReturnTargetAltType::RELATIVE;
AP::logger().Write_Error(LogErrorSubsystem::TERRAIN, LogErrorCode::MISSING_TERRAIN_DATA);
gcs().send_text(MAV_SEVERITY_CRITICAL, "RTL: no terrain data, using alt-above-home");
2016-03-18 07:44:09 -03:00
}
}
// for the default case we must convert return-target alt (which is an absolute alt) to alt-above-home
if (alt_type == ReturnTargetAltType::RELATIVE) {
if (!rtl_path.return_target.change_alt_frame(Location::AltFrame::ABOVE_HOME)) {
// this should never happen but just in case
rtl_path.return_target.set_alt_cm(0, Location::AltFrame::ABOVE_HOME);
gcs().send_text(MAV_SEVERITY_WARNING, "RTL: unexpected error calculating target alt");
}
}
// set new target altitude to return target altitude
// Note: this is alt-above-home or terrain-alt depending upon rtl_alt_type
// Note: ignore negative altitudes which could happen if user enters negative altitude for rally point or terrain is higher at rally point compared to home
int32_t target_alt = MAX(rtl_path.return_target.alt, 0);
// increase target to maximum of current altitude + climb_min and rtl altitude
target_alt = MAX(target_alt, curr_alt + MAX(0, g.rtl_climb_min));
target_alt = MAX(target_alt, MAX(g.rtl_altitude, RTL_ALT_MIN));
// reduce climb if close to return target
float rtl_return_dist_cm = rtl_path.return_target.get_distance(rtl_path.origin_point) * 100.0f;
2016-03-18 07:44:09 -03:00
// don't allow really shallow slopes
if (g.rtl_cone_slope >= RTL_MIN_CONE_SLOPE) {
target_alt = MAX(curr_alt, MIN(target_alt, MAX(rtl_return_dist_cm*g.rtl_cone_slope, curr_alt+RTL_ABS_MIN_CLIMB)));
2016-01-06 03:00:29 -04:00
}
// set returned target alt to new target_alt (don't change altitude type)
rtl_path.return_target.set_alt_cm(target_alt, (alt_type == ReturnTargetAltType::RELATIVE) ? Location::AltFrame::ABOVE_HOME : Location::AltFrame::ABOVE_TERRAIN);
#if AC_FENCE == ENABLED
// ensure not above fence altitude if alt fence is enabled
// Note: because the rtl_path.climb_target's altitude is simply copied from the return_target's altitude,
// if terrain altitudes are being used, the code below which reduces the return_target's altitude can lead to
// the vehicle not climbing at all as RTL begins. This can be overly conservative and it might be better
// to apply the fence alt limit independently on the origin_point and return_target
if ((copter.fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) {
// get return target as alt-above-home so it can be compared to fence's alt
if (rtl_path.return_target.get_alt_cm(Location::AltFrame::ABOVE_HOME, target_alt)) {
float fence_alt = copter.fence.get_safe_alt_max()*100.0f;
if (target_alt > fence_alt) {
// reduce target alt to the fence alt
rtl_path.return_target.alt -= (target_alt - fence_alt);
}
}
}
#endif
2016-03-18 07:44:09 -03:00
// ensure we do not descend
rtl_path.return_target.alt = MAX(rtl_path.return_target.alt, curr_alt);
}
2019-06-05 07:47:32 -03:00
bool ModeRTL::get_wp(Location& destination)
{
// provide target in states which use wp_nav
switch (_state) {
2021-04-13 12:22:04 -03:00
case SubMode::STARTING:
case SubMode::INITIAL_CLIMB:
case SubMode::RETURN_HOME:
case SubMode::LOITER_AT_HOME:
case SubMode::FINAL_DESCENT:
2019-06-05 07:47:32 -03:00
return wp_nav->get_oa_wp_destination(destination);
2021-04-13 12:22:04 -03:00
case SubMode::LAND:
2019-06-05 07:47:32 -03:00
return false;
}
// we should never get here but just in case
return false;
}
uint32_t ModeRTL::wp_distance() const
{
return wp_nav->get_wp_distance_to_destination();
}
int32_t ModeRTL::wp_bearing() const
{
return wp_nav->get_wp_bearing_to_destination();
}
// returns true if pilot's yaw input should be used to adjust vehicle's heading
bool ModeRTL::use_pilot_yaw(void) const
{
return (copter.g2.rtl_options.get() & uint32_t(Options::IgnorePilotYaw)) == 0;
}
#endif