Ardupilot2/libraries/AP_Param/AP_Param.h

1006 lines
35 KiB
C
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2012-02-11 07:51:35 -04:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//
2012-02-11 07:51:35 -04:00
/// @file AP_Param.h
/// @brief A system for managing and storing variables that are of
/// general interest to the system.
2015-12-23 13:25:02 -04:00
#pragma once
2012-02-11 07:51:35 -04:00
#include <stddef.h>
#include <string.h>
#include <stdint.h>
#include <cmath>
2012-02-11 07:51:35 -04:00
2015-12-23 13:25:02 -04:00
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/utility/RingBuffer.h>
#include <StorageManager/StorageManager.h>
2012-02-11 07:51:35 -04:00
2015-12-23 13:25:02 -04:00
#include "float.h"
#define AP_MAX_NAME_SIZE 16
// optionally enable debug code for dumping keys
#define AP_PARAM_KEY_DUMP 0
/*
maximum size of embedded parameter file
*/
#ifndef AP_PARAM_MAX_EMBEDDED_PARAM
#if BOARD_FLASH_SIZE <= 1024
# define AP_PARAM_MAX_EMBEDDED_PARAM 1024
#else
# define AP_PARAM_MAX_EMBEDDED_PARAM 8192
#endif
#endif
/*
flags for variables in var_info and group tables
*/
// a nested offset is for subgroups that are not subclasses
#define AP_PARAM_FLAG_NESTED_OFFSET (1<<0)
// a pointer variable is for dynamically allocated objects
#define AP_PARAM_FLAG_POINTER (1<<1)
2012-02-11 07:51:35 -04:00
// an enable variable allows a whole subtree of variables to be made
// invisible
#define AP_PARAM_FLAG_ENABLE (1<<2)
// don't shift index 0 to index 63. Use this when you know there will be
// no conflict with the parent
#define AP_PARAM_NO_SHIFT (1<<3)
// the var_info is a pointer, allowing for dynamic definition of the var_info tree
#define AP_PARAM_FLAG_INFO_POINTER (1<<4)
// this parameter is visible to GCS via mavlink but should never be
// set by anything other than the ArduPilot code responsible for its
// use.
#define AP_PARAM_FLAG_INTERNAL_USE_ONLY (1<<5)
// keep all flags before the FRAME tags
// vehicle and frame type flags, used to hide parameters when not
// relevent to a vehicle type. Use AP_Param::set_frame_type_flags() to
// enable parameters flagged in this way. frame type flags are stored
// in flags field, shifted by AP_PARAM_FRAME_TYPE_SHIFT.
#define AP_PARAM_FRAME_TYPE_SHIFT 6
// supported frame types for parameters
#define AP_PARAM_FRAME_COPTER (1<<0)
#define AP_PARAM_FRAME_ROVER (1<<1)
#define AP_PARAM_FRAME_PLANE (1<<2)
#define AP_PARAM_FRAME_SUB (1<<3)
#define AP_PARAM_FRAME_TRICOPTER (1<<4)
#define AP_PARAM_FRAME_HELI (1<<5)
2012-03-11 17:30:09 -03:00
// a variant of offsetof() to work around C++ restrictions.
2012-02-11 07:51:35 -04:00
// this can only be used when the offset of a variable in a object
// is constant and known at compile time
#define AP_VAROFFSET(type, element) (((ptrdiff_t)(&((const type *)1)->element))-1)
// find the type of a variable given the class and element
#define AP_CLASSTYPE(clazz, element) ((uint8_t)(((const clazz *) 1)->element.vtype))
// declare a group var_info line
#define AP_GROUPINFO_FLAGS(name, idx, clazz, element, def, flags) { AP_CLASSTYPE(clazz, element), idx, name, AP_VAROFFSET(clazz, element), {def_value : def}, flags }
// declare a group var_info line with a frame type mask
#define AP_GROUPINFO_FRAME(name, idx, clazz, element, def, frame_flags) AP_GROUPINFO_FLAGS(name, idx, clazz, element, def, (frame_flags)<<AP_PARAM_FRAME_TYPE_SHIFT )
// declare a group var_info line with both flags and frame type mask
#define AP_GROUPINFO_FLAGS_FRAME(name, idx, clazz, element, def, flags, frame_flags) AP_GROUPINFO_FLAGS(name, idx, clazz, element, def, flags|((frame_flags)<<AP_PARAM_FRAME_TYPE_SHIFT) )
// declare a group var_info line
#define AP_GROUPINFO(name, idx, clazz, element, def) AP_GROUPINFO_FLAGS(name, idx, clazz, element, def, 0)
// declare a nested group entry in a group var_info
#define AP_NESTEDGROUPINFO(clazz, idx) { AP_PARAM_GROUP, idx, "", 0, { group_info : clazz::var_info }, 0 }
// declare a subgroup entry in a group var_info. This is for having another arbitrary object as a member of the parameter list of
// an object
#define AP_SUBGROUPINFO(element, name, idx, thisclazz, elclazz) { AP_PARAM_GROUP, idx, name, AP_VAROFFSET(thisclazz, element), { group_info : elclazz::var_info }, AP_PARAM_FLAG_NESTED_OFFSET }
// declare a second parameter table for the same object
#define AP_SUBGROUPEXTENSION(name, idx, clazz, vinfo) { AP_PARAM_GROUP, idx, name, 0, { group_info : clazz::vinfo }, AP_PARAM_FLAG_NESTED_OFFSET }
// declare a pointer subgroup entry in a group var_info
#define AP_SUBGROUPPTR(element, name, idx, thisclazz, elclazz) { AP_PARAM_GROUP, idx, name, AP_VAROFFSET(thisclazz, element), { group_info : elclazz::var_info }, AP_PARAM_FLAG_POINTER }
// declare a pointer subgroup entry in a group var_info with a pointer var_info
#define AP_SUBGROUPVARPTR(element, name, idx, thisclazz, var_info) { AP_PARAM_GROUP, idx, name, AP_VAROFFSET(thisclazz, element), { group_info_ptr : &var_info }, AP_PARAM_FLAG_POINTER | AP_PARAM_FLAG_INFO_POINTER }
#define AP_GROUPEND { AP_PARAM_NONE, 0xFF, "", 0, { group_info : nullptr } }
#define AP_VAREND { AP_PARAM_NONE, "", 0, nullptr, { group_info : nullptr } }
2012-02-11 07:51:35 -04:00
enum ap_var_type {
AP_PARAM_NONE = 0,
AP_PARAM_INT8,
AP_PARAM_INT16,
AP_PARAM_INT32,
AP_PARAM_FLOAT,
AP_PARAM_VECTOR3F,
AP_PARAM_GROUP
};
2012-02-11 07:51:35 -04:00
/// Base class for variables.
///
/// Provides naming and lookup services for variables.
///
class AP_Param
{
public:
// the Info and GroupInfo structures are passed by the main
// program in setup() to give information on how variables are
// named and their location in memory
struct GroupInfo {
uint8_t type; // AP_PARAM_*
uint8_t idx; // identifier within the group
const char *name;
ptrdiff_t offset; // offset within the object
union {
const struct GroupInfo *group_info;
const struct GroupInfo **group_info_ptr; // when AP_PARAM_FLAG_INFO_POINTER is set in flags
const float def_value;
};
uint16_t flags;
2012-02-11 07:51:35 -04:00
};
struct Info {
uint8_t type; // AP_PARAM_*
const char *name;
uint16_t key; // k_param_*
2015-05-13 07:04:19 -03:00
const void *ptr; // pointer to the variable in memory
union {
const struct GroupInfo *group_info;
const struct GroupInfo **group_info_ptr; // when AP_PARAM_FLAG_INFO_POINTER is set in flags
const float def_value;
};
uint16_t flags;
2012-02-11 07:51:35 -04:00
};
struct ConversionInfo {
uint16_t old_key; // k_param_*
2017-01-10 02:48:36 -04:00
uint32_t old_group_element; // index in old object
enum ap_var_type type; // AP_PARAM_*
const char *new_name;
};
2012-02-11 07:51:35 -04:00
2018-11-28 20:54:15 -04:00
// param default table element
struct defaults_table_struct {
const char *name; // parameter name
float value; // parameter value
};
2012-02-11 07:51:35 -04:00
// called once at startup to setup the _var_info[] table. This
// will also check the EEPROM header and re-initialise it if the
// wrong version is found
static bool setup();
// constructor with var_info
AP_Param(const struct Info *info)
{
_var_info = info;
uint16_t i;
for (i=0; info[i].type != AP_PARAM_NONE; i++) ;
_num_vars = i;
2019-11-25 12:21:31 -04:00
if (_singleton != nullptr) {
AP_HAL::panic("AP_Param must be singleton");
}
_singleton = this;
}
// empty constructor
AP_Param() {}
// a token used for first()/next() state
typedef struct {
uint32_t key : 9;
uint32_t idx : 5; // offset into array types
uint32_t group_element : 18;
} ParamToken;
2012-02-11 07:51:35 -04:00
2018-11-28 20:54:32 -04:00
// nesting structure for recursive call states
struct GroupNesting {
static const uint8_t numlevels = 2;
uint8_t level;
const struct GroupInfo *group_ret[numlevels];
};
2018-11-28 20:54:32 -04:00
// return true if AP_Param has been initialised via setup()
static bool initialised(void);
// the 'group_id' of a element of a group is the 18 bit identifier
// used to distinguish between this element of the group and other
// elements of the same group. It is calculated using a bit shift per
// level of nesting, so the first level of nesting gets 6 bits the 2nd
// level gets the next 6 bits, and the 3rd level gets the last 6
// bits. This limits groups to having at most 64 elements.
static uint32_t group_id(const struct GroupInfo *grpinfo, uint32_t base, uint8_t i, uint8_t shift);
2018-11-28 20:54:32 -04:00
/// Copy the variable's name, prefixed by any containing group name, to a
/// buffer.
2012-02-11 07:51:35 -04:00
///
/// If the variable has no name, the buffer will contain an empty string.
///
/// Note that if the combination of names is larger than the buffer, the
/// result in the buffer will be truncated.
///
/// @param token token giving current variable
2012-02-11 07:51:35 -04:00
/// @param buffer The destination buffer
/// @param bufferSize Total size of the destination buffer.
///
void copy_name_info(const struct AP_Param::Info *info,
const struct GroupInfo *ginfo,
const struct GroupNesting &group_nesting,
uint8_t idx, char *buffer, size_t bufferSize, bool force_scalar=false) const;
2018-11-28 20:54:32 -04:00
/// Copy the variable's name, prefixed by any containing group name, to a
/// buffer.
///
/// Uses token to look up AP_Param::Info for the variable
void copy_name_token(const ParamToken &token, char *buffer, size_t bufferSize, bool force_scalar=false) const;
2012-02-11 07:51:35 -04:00
/// Find a variable by name.
///
/// If the variable has no name, it cannot be found by this interface.
///
/// @param name The full name of the variable to be found.
/// @param flags If non-null will be filled with parameter flags
/// @return A pointer to the variable, or nullptr if
2012-02-11 07:51:35 -04:00
/// it does not exist.
///
static AP_Param * find(const char *name, enum ap_var_type *ptype, uint16_t *flags = nullptr);
2012-02-11 07:51:35 -04:00
2016-04-01 02:39:51 -03:00
/// set a default value by name
///
/// @param name The full name of the variable to be found.
/// @param value The default value
/// @return true if the variable is found
static bool set_default_by_name(const char *name, float value);
2018-11-28 20:54:15 -04:00
/// set parameter defaults from a defaults_table_struct
///
/// @param table pointer to array of defaults_table_struct structures
/// @param count number of elements in table array
static void set_defaults_from_table(const struct defaults_table_struct *table, uint8_t count);
/// set a value by name
///
/// @param name The full name of the variable to be found.
/// @param value The new value
/// @return true if the variable is found
static bool set_by_name(const char *name, float value);
2019-11-25 12:21:57 -04:00
// name helper for scripting
static bool set(const char *name, float value) { return set_by_name(name, value); };
/// gat a value by name, used by scripting
///
/// @param name The full name of the variable to be found.
2020-08-10 01:48:03 -03:00
/// @param value A reference to the variable
2019-11-25 12:21:57 -04:00
/// @return true if the variable is found
static bool get(const char *name, float &value);
/// set and save a value by name
///
/// @param name The full name of the variable to be found.
/// @param value The new value
/// @return true if the variable is found
static bool set_and_save_by_name(const char *name, float value);
2019-11-25 12:21:57 -04:00
// name helper for scripting
static bool set_and_save(const char *name, float value) { return set_and_save_by_name(name, value); };
2012-09-19 18:42:35 -03:00
/// Find a variable by index.
///
///
/// @param idx The index of the variable
/// @return A pointer to the variable, or nullptr if
2012-09-19 18:42:35 -03:00
/// it does not exist.
///
static AP_Param * find_by_index(uint16_t idx, enum ap_var_type *ptype, ParamToken *token);
2012-09-19 18:42:35 -03:00
// by-name equivalent of find_by_index()
static AP_Param* find_by_name(const char* name, enum ap_var_type *ptype, ParamToken *token);
/// Find a variable by pointer
///
///
/// @param p Pointer to variable
/// @return key for variable
static bool find_key_by_pointer_group(const void *ptr, uint16_t vindex, const struct GroupInfo *group_info,
ptrdiff_t offset, uint16_t &key);
static bool find_key_by_pointer(const void *ptr, uint16_t &key);
2018-11-28 20:54:32 -04:00
/// Find key of top level group variable by pointer
///
///
/// @param p Pointer to variable
/// @return key for variable
static bool find_top_level_key_by_pointer(const void *ptr, uint16_t &key);
/// Find a object in the top level var_info table
///
/// If the variable has no name, it cannot be found by this interface.
///
/// @param name The full name of the variable to be found.
///
static AP_Param * find_object(const char *name);
/// Notify GCS of current parameter value
///
void notify() const;
2018-11-28 20:54:32 -04:00
/// Save the current value of the variable to storage, synchronous API
2012-02-11 07:51:35 -04:00
///
/// @param force_save If true then force save even if default
///
2012-02-11 07:51:35 -04:00
/// @return True if the variable was saved successfully.
///
void save_sync(bool force_save=false);
2012-02-11 07:51:35 -04:00
/// flush all pending parameter saves
/// used on reboot
static void flush(void);
2018-11-28 20:54:32 -04:00
/// Save the current value of the variable to storage, async interface
///
/// @param force_save If true then force save even if default
///
void save(bool force_save=false);
2018-11-28 20:54:32 -04:00
2012-02-11 07:51:35 -04:00
/// Load the variable from EEPROM.
///
/// @return True if the variable was loaded successfully.
///
bool load(void);
/// Load all variables from EEPROM
///
/// This function performs a best-efforts attempt to load all
/// of the variables from EEPROM. If some fail to load, their
/// values will remain as they are.
///
/// @return False if any variable failed to load
///
static bool load_all();
2012-02-11 07:51:35 -04:00
// returns storage space used:
static uint16_t storage_used() { return sentinal_offset; }
// returns storage space :
static uint16_t storage_size() { return _storage.size(); }
/// reoad the hal.util defaults file. Called after pointer parameters have been allocated
///
static void reload_defaults_file(bool last_pass);
2018-11-28 20:54:32 -04:00
static void load_object_from_eeprom(const void *object_pointer, const struct GroupInfo *group_info);
2018-11-28 20:54:32 -04:00
// set a AP_Param variable to a specified value
static void set_value(enum ap_var_type type, void *ptr, float def_value);
/*
set a parameter to a float
*/
void set_float(float value, enum ap_var_type var_type);
// load default values for scalars in a group
static void setup_object_defaults(const void *object_pointer, const struct GroupInfo *group_info);
// set a value directly in an object.
// return true if the name was found and set, else false.
// This should only be used by example code, not by mainline vehicle code
static bool set_object_value(const void *object_pointer,
const struct GroupInfo *group_info,
const char *name, float value);
// load default values for all scalars in the main sketch. This
// does not recurse into the sub-objects
static void setup_sketch_defaults(void);
// find an old parameter and return it.
static bool find_old_parameter(const struct ConversionInfo *info, AP_Param *value);
2018-11-28 20:54:32 -04:00
// convert old vehicle parameters to new object parameters
static void convert_old_parameters(const struct ConversionInfo *conversion_table, uint8_t table_size, uint8_t flags=0);
/*
convert width of a parameter, allowing update to wider scalar
values without changing the parameter indexes. This will return
true if the parameter was converted from an old parameter value
*/
bool convert_parameter_width(ap_var_type old_ptype);
// convert a single parameter with scaling
enum {
CONVERT_FLAG_REVERSE=1, // handle _REV -> _REVERSED conversion
CONVERT_FLAG_FORCE=2 // store new value even if configured in eeprom already
};
static void convert_old_parameter(const struct ConversionInfo *info, float scaler, uint8_t flags=0);
2017-01-10 02:48:36 -04:00
// move old class variables for a class that was sub-classed to one that isn't
static void convert_parent_class(uint8_t param_key, void *object_pointer,
const struct AP_Param::GroupInfo *group_info);
2018-11-28 20:54:32 -04:00
2012-02-11 07:51:35 -04:00
/// Erase all variables in EEPROM.
///
static void erase_all(void);
2012-02-11 07:51:35 -04:00
/// Returns the first variable
///
/// @return The first variable in _var_info, or nullptr if
/// there are none.
///
static AP_Param * first(ParamToken *token, enum ap_var_type *ptype);
/// Returns the next variable in _var_info, recursing into groups
/// as needed
static AP_Param * next(ParamToken *token, enum ap_var_type *ptype);
/// Returns the next scalar variable in _var_info, recursing into groups
/// as needed
static AP_Param * next_scalar(ParamToken *token, enum ap_var_type *ptype);
2012-02-11 07:51:35 -04:00
2020-03-21 02:08:21 -03:00
/// get the size of a type in bytes
static uint8_t type_size(enum ap_var_type type);
2012-02-12 04:18:58 -04:00
/// cast a variable to a float given its type
float cast_to_float(enum ap_var_type type) const;
2012-02-12 04:18:58 -04:00
// check var table for consistency
static bool check_var_info(void);
2015-10-21 23:57:05 -03:00
// return true if the parameter is configured in the defaults file
bool configured_in_defaults_file(bool &read_only) const;
2015-10-21 23:57:05 -03:00
// return true if the parameter is configured in EEPROM/FRAM
2017-01-19 22:29:17 -04:00
bool configured_in_storage(void) const;
2015-10-21 23:57:05 -03:00
// return true if the parameter is configured
bool configured(void) const;
2015-10-21 23:57:05 -03:00
// return true if the parameter is read-only
bool is_read_only(void) const;
// return the persistent top level key for the ParamToken key
static uint16_t get_persistent_key(uint16_t key) { return _var_info[key].key; }
// count of parameters in tree
static uint16_t count_parameters(void);
// invalidate parameter count
static void invalidate_count(void);
static void set_hide_disabled_groups(bool value) { _hide_disabled_groups = value; }
// set frame type flags. Used to unhide frame specific parameters
static void set_frame_type_flags(uint16_t flags_to_set) {
invalidate_count();
_frame_type_flags |= flags_to_set;
}
// check if a given frame type should be included
static bool check_frame_type(uint16_t flags);
#if AP_PARAM_KEY_DUMP
/// print the value of all variables
static void show_all(AP_HAL::BetterStream *port, bool showKeyValues=false);
/// print the value of one variable
static void show(const AP_Param *param,
const char *name,
enum ap_var_type ptype,
AP_HAL::BetterStream *port);
/// print the value of one variable
static void show(const AP_Param *param,
const ParamToken &token,
enum ap_var_type ptype,
AP_HAL::BetterStream *port);
#endif // AP_PARAM_KEY_DUMP
2018-11-28 20:54:32 -04:00
2019-11-25 12:21:31 -04:00
static AP_Param *get_singleton() { return _singleton; }
2012-02-11 07:51:35 -04:00
private:
2019-11-25 12:21:31 -04:00
static AP_Param *_singleton;
/// EEPROM header
///
/// This structure is placed at the head of the EEPROM to indicate
/// that the ROM is formatted for AP_Param.
///
struct EEPROM_header {
uint8_t magic[2];
uint8_t revision;
uint8_t spare;
};
static_assert(sizeof(struct EEPROM_header) == 4, "Bad EEPROM_header size!");
static uint16_t sentinal_offset;
/* This header is prepended to a variable stored in EEPROM.
* The meaning is as follows:
*
* - key: the k_param enum value from Parameter.h in the sketch
*
* - group_element: This is zero for top level parameters. For
* parameters stored within an object this is divided
* into 3 lots of 6 bits, allowing for three levels
* of object to be stored in the eeprom
*
* - type: the ap_var_type value for the variable
*/
struct Param_header {
// to get 9 bits for key we needed to split it into two parts to keep binary compatibility
uint32_t key_low : 8;
uint32_t type : 5;
uint32_t key_high : 1;
uint32_t group_element : 18;
};
static_assert(sizeof(struct Param_header) == 4, "Bad Param_header size!");
// number of bits in each level of nesting of groups
static const uint8_t _group_level_shift = 6;
static const uint8_t _group_bits = 18;
static const uint16_t _sentinal_key = 0x1FF;
static const uint8_t _sentinal_type = 0x1F;
static const uint8_t _sentinal_group = 0xFF;
static uint16_t _frame_type_flags;
/*
structure for built-in defaults file that can be modified using apj_tool.py
*/
#if AP_PARAM_MAX_EMBEDDED_PARAM > 0
struct PACKED param_defaults_struct {
char magic_str[8];
uint8_t param_magic[8];
uint16_t max_length;
volatile uint16_t length;
volatile char data[AP_PARAM_MAX_EMBEDDED_PARAM];
};
static const param_defaults_struct param_defaults_data;
#endif
2018-11-28 20:54:32 -04:00
static bool check_group_info(const struct GroupInfo *group_info, uint16_t *total_size,
uint8_t max_bits, uint8_t prefix_length);
static bool duplicate_key(uint16_t vindex, uint16_t key);
static bool adjust_group_offset(uint16_t vindex, const struct GroupInfo &group_info, ptrdiff_t &new_offset);
static bool get_base(const struct Info &info, ptrdiff_t &base);
/// get group_info pointer based on flags
static const struct GroupInfo *get_group_info(const struct GroupInfo &ginfo);
/// get group_info pointer based on flags
static const struct GroupInfo *get_group_info(const struct Info &ginfo);
2018-11-28 20:54:32 -04:00
const struct Info * find_var_info_group(
const struct GroupInfo * group_info,
uint16_t vindex,
uint32_t group_base,
uint8_t group_shift,
ptrdiff_t group_offset,
uint32_t * group_element,
const struct GroupInfo * &group_ret,
struct GroupNesting &group_nesting,
uint8_t * idx) const;
const struct Info * find_var_info(
uint32_t * group_element,
const struct GroupInfo * &group_ret,
struct GroupNesting &group_nesting,
uint8_t * idx) const;
const struct Info * find_var_info_token(const ParamToken &token,
uint32_t * group_element,
const struct GroupInfo * &group_ret,
struct GroupNesting &group_nesting,
uint8_t * idx) const;
static const struct Info * find_by_header_group(
struct Param_header phdr, void **ptr,
uint16_t vindex,
const struct GroupInfo *group_info,
uint32_t group_base,
uint8_t group_shift,
ptrdiff_t group_offset);
static const struct Info * find_by_header(
struct Param_header phdr,
void **ptr);
void add_vector3f_suffix(
char *buffer,
size_t buffer_size,
uint8_t idx) const;
static AP_Param * find_group(
const char *name,
uint16_t vindex,
ptrdiff_t group_offset,
const struct GroupInfo *group_info,
enum ap_var_type *ptype);
static void write_sentinal(uint16_t ofs);
static uint16_t get_key(const Param_header &phdr);
static void set_key(Param_header &phdr, uint16_t key);
static bool is_sentinal(const Param_header &phrd);
static bool scan(
const struct Param_header *phdr,
uint16_t *pofs);
static void eeprom_write_check(
const void *ptr,
uint16_t ofs,
uint8_t size);
static AP_Param * next_group(
uint16_t vindex,
const struct GroupInfo *group_info,
bool *found_current,
uint32_t group_base,
uint8_t group_shift,
ptrdiff_t group_offset,
ParamToken *token,
enum ap_var_type *ptype);
// find a default value given a pointer to a default value in flash
static float get_default_value(const AP_Param *object_ptr, const float *def_value_ptr);
static bool parse_param_line(char *line, char **vname, float &value, bool &read_only);
2018-11-28 20:54:32 -04:00
#if HAL_OS_POSIX_IO == 1
/*
load a parameter defaults file. This happens as part of load_all()
*/
static bool count_defaults_in_file(const char *filename, uint16_t &num_defaults);
static bool read_param_defaults_file(const char *filename, bool last_pass);
static bool load_defaults_file(const char *filename, bool last_pass);
#endif
/*
load defaults from embedded parameters
*/
static bool count_embedded_param_defaults(uint16_t &count);
static void load_embedded_param_defaults(bool last_pass);
2018-11-28 20:54:32 -04:00
// send a parameter to all GCS instances
void send_parameter(const char *name, enum ap_var_type param_header_type, uint8_t idx) const;
2018-11-28 20:54:32 -04:00
static StorageAccess _storage;
static uint16_t _num_vars;
static uint16_t _parameter_count;
static uint16_t _count_marker;
static uint16_t _count_marker_done;
static HAL_Semaphore _count_sem;
static const struct Info * _var_info;
2012-02-11 07:51:35 -04:00
/*
list of overridden values from load_defaults_file()
*/
struct param_override {
const AP_Param *object_ptr;
float value;
bool read_only; // param is marked @READONLY
};
static struct param_override *param_overrides;
static uint16_t num_param_overrides;
static uint16_t num_read_only;
2012-02-11 07:51:35 -04:00
// values filled into the EEPROM header
static const uint8_t k_EEPROM_magic0 = 0x50;
static const uint8_t k_EEPROM_magic1 = 0x41; ///< "AP"
static const uint8_t k_EEPROM_revision = 6; ///< current format revision
static bool _hide_disabled_groups;
// support for background saving of parameters. We pack it to reduce memory for the
// queue
struct PACKED param_save {
AP_Param *param;
bool force_save;
};
static ObjectBuffer_TS<struct param_save> save_queue;
static bool registered_save_handler;
// background function for saving parameters
void save_io_handler(void);
2012-02-11 07:51:35 -04:00
};
2019-11-25 12:21:31 -04:00
namespace AP {
AP_Param *param();
};
2012-02-11 07:51:35 -04:00
/// Template class for scalar variables.
///
/// Objects of this type have a value, and can be treated in many ways as though they
/// were the value.
///
/// @tparam T The scalar type of the variable
/// @tparam PT The AP_PARAM_* type
///
template<typename T, ap_var_type PT>
class AP_ParamT : public AP_Param
{
public:
static const ap_var_type vtype = PT;
2012-02-11 07:51:35 -04:00
/// Value getter
///
const T &get(void) const {
2012-02-11 07:51:35 -04:00
return _value;
}
/// Value setter
///
void set(const T &v) {
2012-02-11 07:51:35 -04:00
_value = v;
}
2015-10-21 23:57:05 -03:00
// set a parameter that is an ENABLE param
void set_enable(const T &v) {
if (v != _value) {
invalidate_count();
}
_value = v;
}
2015-10-21 23:57:05 -03:00
/// Sets if the parameter is unconfigured
///
void set_default(const T &v) {
if (!configured()) {
set(v);
}
}
/// Value setter - set value, tell GCS
///
void set_and_notify(const T &v) {
// We do want to compare each value, even floats, since it being the same here
// is the result of previously setting it.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
if (v != _value) {
#pragma GCC diagnostic pop
set(v);
notify();
}
}
2012-02-11 07:51:35 -04:00
/// Combined set and save
///
void set_and_save(const T &v) {
bool force = fabsf((float)(_value - v)) < FLT_EPSILON;
2012-02-11 07:51:35 -04:00
set(v);
save(force);
}
/// Combined set and save, but only does the save if the value if
/// different from the current ram value, thus saving us a
/// scan(). This should only be used where we have not set() the
/// value separately, as otherwise the value in EEPROM won't be
/// updated correctly.
void set_and_save_ifchanged(const T &v) {
2020-04-23 23:06:07 -03:00
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
if (v == _value) {
2020-04-23 23:06:07 -03:00
#pragma GCC diagnostic pop
return;
}
set(v);
save(true);
2012-02-11 07:51:35 -04:00
}
/// Conversion to T returns a reference to the value.
///
/// This allows the class to be used in many situations where the value would be legal.
///
operator const T &() const {
2012-02-11 07:51:35 -04:00
return _value;
}
/// Copy assignment from T is equivalent to ::set.
///
AP_ParamT<T,PT>& operator= (const T &v) {
2012-02-11 07:51:35 -04:00
_value = v;
return *this;
}
/// bit ops on parameters
///
AP_ParamT<T,PT>& operator |=(const T &v) {
_value |= v;
return *this;
}
AP_ParamT<T,PT>& operator &=(const T &v) {
_value &= v;
return *this;
}
AP_ParamT<T,PT>& operator +=(const T &v) {
_value += v;
return *this;
}
AP_ParamT<T,PT>& operator -=(const T &v) {
_value -= v;
return *this;
}
2012-02-11 07:51:35 -04:00
/// AP_ParamT types can implement AP_Param::cast_to_float
///
float cast_to_float(void) const {
2012-02-11 07:51:35 -04:00
return (float)_value;
}
protected:
T _value;
};
/// Template class for non-scalar variables.
///
/// Objects of this type have a value, and can be treated in many ways as though they
/// were the value.
///
/// @tparam T The scalar type of the variable
/// @tparam PT AP_PARAM_* type
///
template<typename T, ap_var_type PT>
class AP_ParamV : public AP_Param
{
public:
static const ap_var_type vtype = PT;
2012-02-11 07:51:35 -04:00
/// Value getter
///
const T &get(void) const {
2012-02-11 07:51:35 -04:00
return _value;
}
/// Value setter
///
void set(const T &v) {
2012-02-11 07:51:35 -04:00
_value = v;
}
/// Value setter - set value, tell GCS
///
void set_and_notify(const T &v) {
if (v != _value) {
set(v);
notify();
}
}
2012-02-11 07:51:35 -04:00
/// Combined set and save
///
void set_and_save(const T &v) {
bool force = (_value != v);
2012-02-11 07:51:35 -04:00
set(v);
save(force);
2012-02-11 07:51:35 -04:00
}
/// Combined set and save, but only does the save if the value is
/// different from the current ram value, thus saving us a
/// scan(). This should only be used where we have not set() the
/// value separately, as otherwise the value in EEPROM won't be
/// updated correctly.
void set_and_save_ifchanged(const T &v) {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
if (_value == v) {
#pragma GCC diagnostic pop
return;
}
set(v);
save(true);
}
2012-02-11 07:51:35 -04:00
/// Conversion to T returns a reference to the value.
///
/// This allows the class to be used in many situations where the value would be legal.
///
operator const T &() const {
2012-02-11 07:51:35 -04:00
return _value;
}
/// Copy assignment from T is equivalent to ::set.
///
AP_ParamV<T,PT>& operator=(const T &v) {
2012-02-11 07:51:35 -04:00
_value = v;
return *this;
}
protected:
T _value;
2012-02-11 07:51:35 -04:00
};
/// Template class for array variables.
///
/// Objects created using this template behave like arrays of the type T,
/// but are stored like single variables.
///
/// @tparam T The scalar type of the variable
/// @tparam N number of elements
/// @tparam PT the AP_PARAM_* type
///
template<typename T, uint8_t N, ap_var_type PT>
class AP_ParamA : public AP_Param
{
public:
2012-02-11 07:51:35 -04:00
static const ap_var_type vtype = PT;
/// Array operator accesses members.
///
/// @note It would be nice to range-check i here, but then what would we return?
///
const T & operator[](uint8_t i) {
2012-02-11 07:51:35 -04:00
return _value[i];
}
const T & operator[](int8_t i) {
2013-01-01 22:54:03 -04:00
return _value[(uint8_t)i];
}
2012-02-11 07:51:35 -04:00
/// Value getter
///
/// @note Returns zero for index values out of range.
///
T get(uint8_t i) const {
if (i < N) {
return _value[i];
} else {
return (T)0;
}
}
/// Value setter
///
/// @note Attempts to set an index out of range are discarded.
///
void set(uint8_t i, const T &v) {
2012-02-11 07:51:35 -04:00
if (i < N) {
_value[i] = v;
}
}
protected:
T _value[N];
};
/// Convenience macro for defining instances of the AP_ParamT template.
///
// declare a scalar type
// _t is the base type
// _suffix is the suffix on the AP_* type name
// _pt is the enum ap_var_type type
#define AP_PARAMDEF(_t, _suffix, _pt) typedef AP_ParamT<_t, _pt> AP_ ## _suffix;
2012-02-11 07:51:35 -04:00
AP_PARAMDEF(float, Float, AP_PARAM_FLOAT); // defines AP_Float
AP_PARAMDEF(int8_t, Int8, AP_PARAM_INT8); // defines AP_Int8
AP_PARAMDEF(int16_t, Int16, AP_PARAM_INT16); // defines AP_Int16
AP_PARAMDEF(int32_t, Int32, AP_PARAM_INT32); // defines AP_Int32
// declare a non-scalar type
// this is used in AP_Math.h
// _t is the base type
// _suffix is the suffix on the AP_* type name
// _pt is the enum ap_var_type type
#define AP_PARAMDEFV(_t, _suffix, _pt) typedef AP_ParamV<_t, _pt> AP_ ## _suffix;