Ardupilot2/libraries/AP_PiccoloCAN/AP_PiccoloCAN.cpp

1223 lines
37 KiB
C++
Raw Normal View History

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Author: Oliver Walters / Currawong Engineering Pty Ltd
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_AHRS/AP_AHRS.h>
#include "AP_PiccoloCAN.h"
#if HAL_PICCOLO_CAN_ENABLE
#include <AP_Param/AP_Param.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_CANManager/AP_CANManager.h>
#include <AP_Common/AP_Common.h>
#include <AP_Scheduler/AP_Scheduler.h>
#include <AP_HAL/utility/sparse-endian.h>
#include <SRV_Channel/SRV_Channel.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_EFI/AP_EFI_Currawong_ECU.h>
#include <stdio.h>
// Protocol files for the Velocity ESC
#include <AP_PiccoloCAN/piccolo_protocol/ESCVelocityProtocol.h>
#include <AP_PiccoloCAN/piccolo_protocol/ESCPackets.h>
// Protocol files for the CBS servo
#include <AP_PiccoloCAN/piccolo_protocol/ServoProtocol.h>
#include <AP_PiccoloCAN/piccolo_protocol/ServoPackets.h>
// Protocol files for the ECU
#include <AP_PiccoloCAN/piccolo_protocol/ECUProtocol.h>
#include <AP_PiccoloCAN/piccolo_protocol/ECUPackets.h>
extern const AP_HAL::HAL& hal;
#if HAL_CANMANAGER_ENABLED
#define debug_can(level_debug, fmt, args...) do { AP::can().log_text(level_debug, "PiccoloCAN", fmt, ##args); } while (0)
#else
#define debug_can(level_debug, fmt, args...)
#endif
// table of user-configurable Piccolo CAN bus parameters
const AP_Param::GroupInfo AP_PiccoloCAN::var_info[] = {
// @Param: ESC_BM
// @DisplayName: ESC channels
// @Description: Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN
2021-01-11 21:44:42 -04:00
// @Bitmask: 0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16, 16: ESC 17, 17: ESC 18, 18: ESC 19, 19: ESC 20, 20: ESC 21, 21: ESC 22, 22: ESC 23, 23: ESC 24, 24: ESC 25, 25: ESC 26, 26: ESC 27, 27: ESC 28, 28: ESC 29, 29: ESC 30, 30: ESC 31, 31: ESC 32
// @User: Advanced
AP_GROUPINFO("ESC_BM", 1, AP_PiccoloCAN, _esc_bm, 0xFFFF),
// @Param: ESC_RT
// @DisplayName: ESC output rate
// @Description: Output rate of ESC command messages
// @Units: Hz
// @User: Advanced
// @Range: 1 500
AP_GROUPINFO("ESC_RT", 2, AP_PiccoloCAN, _esc_hz, PICCOLO_MSG_RATE_HZ_DEFAULT),
// @Param: SRV_BM
// @DisplayName: Servo channels
// @Description: Bitmask defining which servo channels are to be transmitted over Piccolo CAN
// @Bitmask: 0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16
// @User: Advanced
AP_GROUPINFO("SRV_BM", 3, AP_PiccoloCAN, _srv_bm, 0xFFFF),
// @Param: SRV_RT
// @DisplayName: Servo command output rate
// @Description: Output rate of servo command messages
// @Units: Hz
// @User: Advanced
// @Range: 1 500
AP_GROUPINFO("SRV_RT", 4, AP_PiccoloCAN, _srv_hz, PICCOLO_MSG_RATE_HZ_DEFAULT),
2023-03-15 20:05:59 -03:00
#if AP_EFI_CURRAWONG_ECU_ENABLED
// @Param: ECU_ID
// @DisplayName: ECU Node ID
// @Description: Node ID to send ECU throttle messages to. Set to zero to disable ECU throttle messages. Set to 255 to broadcast to all ECUs.
// @Range: 0 255
// @User: Advanced
AP_GROUPINFO("ECU_ID", 5, AP_PiccoloCAN, _ecu_id, PICCOLO_CAN_ECU_ID_DEFAULT),
// @Param: ECU_RT
// @DisplayName: ECU command output rate
// @Description: Output rate of ECU command messages
// @Units: Hz
// @User: Advanced
// @Range: 1 500
AP_GROUPINFO("ECU_RT", 6, AP_PiccoloCAN, _ecu_hz, PICCOLO_MSG_RATE_HZ_DEFAULT),
#endif
AP_GROUPEND
};
AP_PiccoloCAN::AP_PiccoloCAN()
{
AP_Param::setup_object_defaults(this, var_info);
debug_can(AP_CANManager::LOG_INFO, "PiccoloCAN: constructed\n\r");
}
AP_PiccoloCAN *AP_PiccoloCAN::get_pcan(uint8_t driver_index)
{
if (driver_index >= AP::can().get_num_drivers() ||
AP::can().get_driver_type(driver_index) != AP_CAN::Protocol::PiccoloCAN) {
return nullptr;
}
return static_cast<AP_PiccoloCAN*>(AP::can().get_driver(driver_index));
}
bool AP_PiccoloCAN::add_interface(AP_HAL::CANIface* can_iface) {
if (_can_iface != nullptr) {
debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: Multiple Interface not supported\n\r");
return false;
}
_can_iface = can_iface;
if (_can_iface == nullptr) {
debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: CAN driver not found\n\r");
return false;
}
if (!_can_iface->is_initialized()) {
debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: Driver not initialized\n\r");
return false;
}
if (!_can_iface->set_event_handle(&_event_handle)) {
debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: Cannot add event handle\n\r");
return false;
}
return true;
}
// initialize PiccoloCAN bus
void AP_PiccoloCAN::init(uint8_t driver_index, bool enable_filters)
{
_driver_index = driver_index;
debug_can(AP_CANManager::LOG_DEBUG, "PiccoloCAN: starting init\n\r");
if (_initialized) {
debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: already initialized\n\r");
return;
}
// start calls to loop in separate thread
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_PiccoloCAN::loop, void), _thread_name, 4096, AP_HAL::Scheduler::PRIORITY_MAIN, 1)) {
debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: couldn't create thread\n\r");
return;
}
_initialized = true;
snprintf(_thread_name, sizeof(_thread_name), "PiccoloCAN_%u", driver_index);
debug_can(AP_CANManager::LOG_DEBUG, "PiccoloCAN: init done\n\r");
}
// loop to send output to CAN devices in background thread
void AP_PiccoloCAN::loop()
{
AP_HAL::CANFrame txFrame {};
AP_HAL::CANFrame rxFrame {};
uint16_t esc_tx_counter = 0;
uint16_t servo_tx_counter = 0;
2023-03-15 20:05:59 -03:00
#if AP_EFI_CURRAWONG_ECU_ENABLED
uint16_t ecu_tx_counter = 0;
#endif
// CAN Frame ID components
uint8_t frame_id_group; // Piccolo message group
uint16_t frame_id_device; // Device identifier
while (true) {
if (!_initialized) {
debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: not initialized\n\r");
hal.scheduler->delay_microseconds(10000);
continue;
}
// Calculate the output rate for ESC commands
_esc_hz.set(constrain_int16(_esc_hz, PICCOLO_MSG_RATE_HZ_MIN, PICCOLO_MSG_RATE_HZ_MAX));
uint16_t escCmdRateMs = 1000 / _esc_hz;
// Calculate the output rate for servo commands
_srv_hz.set(constrain_int16(_srv_hz, PICCOLO_MSG_RATE_HZ_MIN, PICCOLO_MSG_RATE_HZ_MAX));
uint16_t servoCmdRateMs = 1000 / _srv_hz;
2023-03-15 20:05:59 -03:00
#if AP_EFI_CURRAWONG_ECU_ENABLED
2022-09-19 20:32:35 -03:00
_ecu_hz.set(constrain_int16(_ecu_hz, PICCOLO_MSG_RATE_HZ_MIN, PICCOLO_MSG_RATE_HZ_MAX));
uint16_t ecuCmdRateMs = 1000 / _ecu_hz;
#endif
uint64_t timeout = AP_HAL::micros64() + 250ULL;
// 1ms loop delay
hal.scheduler->delay_microseconds(1000);
// Transmit ESC commands at regular intervals
if (esc_tx_counter++ > escCmdRateMs) {
esc_tx_counter = 0;
send_esc_messages();
}
// Transmit servo commands at regular intervals
if (servo_tx_counter++ > servoCmdRateMs) {
servo_tx_counter = 0;
send_servo_messages();
}
2023-03-15 20:05:59 -03:00
#if AP_EFI_CURRAWONG_ECU_ENABLED
// Transmit ecu throttle commands at regular intervals
if (ecu_tx_counter++ > ecuCmdRateMs) {
ecu_tx_counter = 0;
send_ecu_messages();
}
#endif
// Look for any message responses on the CAN bus
while (read_frame(rxFrame, timeout)) {
// Extract group and device ID values from the frame identifier
frame_id_group = (rxFrame.id >> 24) & 0x1F;
frame_id_device = (rxFrame.id >> 8) & 0xFF;
// Only accept extended messages
if ((rxFrame.id & AP_HAL::CANFrame::FlagEFF) == 0) {
continue;
}
switch (MessageGroup(frame_id_group)) {
// ESC messages exist in the ACTUATOR group
case MessageGroup::ACTUATOR:
switch (ActuatorType(frame_id_device)) {
case ActuatorType::SERVO:
if (handle_servo_message(rxFrame)) {
// Returns true if the message was successfully decoded
}
break;
case ActuatorType::ESC:
if (handle_esc_message(rxFrame)) {
// Returns true if the message was successfully decoded
}
break;
default:
// Unknown actuator type
break;
}
break;
case MessageGroup::ECU_OUT:
2023-03-15 20:05:59 -03:00
#if AP_EFI_CURRAWONG_ECU_ENABLED
if (handle_ecu_message(rxFrame)) {
// Returns true if the message was successfully decoded
}
#endif
break;
default:
break;
}
}
}
}
// write frame on CAN bus, returns true on success
bool AP_PiccoloCAN::write_frame(AP_HAL::CANFrame &out_frame, uint64_t timeout)
{
if (!_initialized) {
debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: Driver not initialized for write_frame\n\r");
return false;
}
bool read_select = false;
bool write_select = true;
bool ret = _can_iface->select(read_select, write_select, &out_frame, timeout);
if (!ret || !write_select) {
return false;
}
return (_can_iface->send(out_frame, timeout, AP_HAL::CANIface::AbortOnError) == 1);
}
// read frame on CAN bus, returns true on succses
bool AP_PiccoloCAN::read_frame(AP_HAL::CANFrame &recv_frame, uint64_t timeout)
{
if (!_initialized) {
debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: Driver not initialized for read_frame\n\r");
return false;
}
bool read_select = true;
bool write_select = false;
bool ret = _can_iface->select(read_select, write_select, nullptr, timeout);
if (!ret || !read_select) {
// No frame available
return false;
}
uint64_t time;
AP_HAL::CANIface::CanIOFlags flags {};
return (_can_iface->receive(recv_frame, time, flags) == 1);
}
// called from SRV_Channels
void AP_PiccoloCAN::update()
{
uint64_t timestamp = AP_HAL::micros64();
/* Read out the servo commands from the channel mixer */
for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_SERVO; ii++) {
if (is_servo_channel_active(ii)) {
uint16_t output = 0;
SRV_Channel::Aux_servo_function_t function = SRV_Channels::channel_function(ii);
if (SRV_Channels::get_output_pwm(function, output)) {
_servo_info[ii].command = output;
_servo_info[ii].newCommand = true;
}
}
}
/* Read out the ESC commands from the channel mixer */
for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_ESC; ii++) {
if (is_esc_channel_active(ii)) {
uint16_t output = 0;
SRV_Channel::Aux_servo_function_t motor_function = SRV_Channels::get_motor_function(ii);
if (SRV_Channels::get_output_pwm(motor_function, output)) {
_esc_info[ii].command = output;
_esc_info[ii].newCommand = true;
}
}
}
2023-03-15 20:05:59 -03:00
#if AP_EFI_CURRAWONG_ECU_ENABLED
if (_ecu_id != 0) {
_ecu_info.command = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
_ecu_info.newCommand = true;
}
2023-03-15 20:05:59 -03:00
#endif // AP_EFI_CURRAWONG_ECU_ENABLED
AP_Logger *logger = AP_Logger::get_singleton();
// Push received telemetry data into the logging system
if (logger && logger->logging_enabled()) {
WITH_SEMAPHORE(_telem_sem);
for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_SERVO; ii++) {
CBSServo_Info_t &servo = _servo_info[ii];
if (servo.newTelemetry) {
union {
Servo_ErrorBits_t ebits;
uint8_t errors;
} err;
err.ebits = servo.statusA.errors;
logger->Write_ServoStatus(
timestamp,
ii,
(float) servo.statusA.position, // Servo position (represented in microsecond units)
(float) servo.statusB.current * 0.01f, // Servo force (actually servo current, 0.01A per bit)
(float) servo.statusB.speed, // Servo speed (degrees per second)
(uint8_t) abs(servo.statusB.dutyCycle), // Servo duty cycle (absolute value as it can be +/- 100%)
servo.statusA.command,
servo.statusB.voltage*0.01,
servo.statusB.current*0.01,
servo.statusB.temperature,
servo.statusB.temperature,
err.errors
);
servo.newTelemetry = false;
}
}
}
}
// send ESC telemetry messages over MAVLink
void AP_PiccoloCAN::send_esc_telemetry_mavlink(uint8_t mav_chan)
{
// Arrays to store ESC telemetry data
uint8_t temperature[4] {};
uint16_t voltage[4] {};
uint16_t rpm[4] {};
uint16_t count[4] {};
uint16_t current[4] {};
uint16_t totalcurrent[4] {};
bool dataAvailable = false;
uint8_t idx = 0;
WITH_SEMAPHORE(_telem_sem);
for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_ESC; ii++) {
// Calculate index within storage array
idx = (ii % 4);
VelocityESC_Info_t &esc = _esc_info[idx];
// Has the ESC been heard from recently?
if (is_esc_present(ii)) {
dataAvailable = true;
// Provide the maximum ESC temperature in the telemetry stream
temperature[idx] = MAX(esc.fetTemperature, esc.escTemperature);
voltage[idx] = esc.voltage;
current[idx] = esc.current;
totalcurrent[idx] = 0;
rpm[idx] = esc.rpm;
count[idx] = 0;
} else {
temperature[idx] = 0;
voltage[idx] = 0;
current[idx] = 0;
totalcurrent[idx] = 0;
rpm[idx] = 0;
count[idx] = 0;
}
// Send ESC telemetry in groups of 4
if ((ii % 4) == 3) {
if (dataAvailable) {
if (!HAVE_PAYLOAD_SPACE((mavlink_channel_t) mav_chan, ESC_TELEMETRY_1_TO_4)) {
continue;
}
switch (ii) {
case 3:
mavlink_msg_esc_telemetry_1_to_4_send((mavlink_channel_t) mav_chan, temperature, voltage, current, totalcurrent, rpm, count);
break;
case 7:
mavlink_msg_esc_telemetry_5_to_8_send((mavlink_channel_t) mav_chan, temperature, voltage, current, totalcurrent, rpm, count);
break;
case 11:
mavlink_msg_esc_telemetry_9_to_12_send((mavlink_channel_t) mav_chan, temperature, voltage, current, totalcurrent, rpm, count);
break;
default:
break;
}
}
dataAvailable = false;
}
}
}
// send servo messages over CAN
void AP_PiccoloCAN::send_servo_messages(void)
{
AP_HAL::CANFrame txFrame {};
uint64_t timeout = AP_HAL::micros64() + 1000ULL;
// No servos are selected? Don't send anything!
if (_srv_bm == 0x00) {
return;
}
bool send_cmd = false;
int16_t cmd[4] {};
uint8_t idx;
// Transmit bulk command packets to 4x servos simultaneously
for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_GROUP_SERVO; ii++) {
send_cmd = false;
for (uint8_t jj = 0; jj < 4; jj++) {
idx = (ii * 4) + jj;
// Set default command value if an output field is unused
cmd[jj] = 0x7FFF;
// Skip servo if the output is not enabled
if (!is_servo_channel_active(idx)) {
continue;
}
/* Check if the servo is enabled.
* If it is not enabled, send an enable message.
*/
if (!is_servo_present(idx) || !is_servo_enabled(idx)) {
// Servo is not enabled
encodeServo_EnablePacket(&txFrame);
txFrame.id |= (idx + 1);
write_frame(txFrame, timeout);
} else if (_servo_info[idx].newCommand) {
// A new command is provided
send_cmd = true;
cmd[jj] = _servo_info[idx].command;
_servo_info[idx].newCommand = false;
}
}
if (send_cmd) {
encodeServo_MultiPositionCommandPacket(
&txFrame,
cmd[0],
cmd[1],
cmd[2],
cmd[3],
(PKT_SERVO_MULTI_COMMAND_1 + ii)
);
// Broadcast the command to all servos
txFrame.id |= 0xFF;
write_frame(txFrame, timeout);
}
}
}
// send ESC messages over CAN
void AP_PiccoloCAN::send_esc_messages(void)
{
AP_HAL::CANFrame txFrame {};
uint64_t timeout = AP_HAL::micros64() + 1000ULL;
// No ESCs are selected? Don't send anything
if (_esc_bm == 0x00) {
return;
}
// System is armed - send out ESC commands
if (hal.util->get_soft_armed()) {
bool send_cmd = false;
int16_t cmd[4] {};
uint8_t idx;
// Transmit bulk command packets to 4x ESC simultaneously
for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_GROUP_ESC; ii++) {
send_cmd = false;
for (uint8_t jj = 0; jj < 4; jj++) {
idx = (ii * 4) + jj;
// Set default command value if an output field is unused
cmd[jj] = 0x7FFF;
// Skip an ESC if the motor channel is not enabled
if (!is_esc_channel_active(idx)) {
continue;
}
/* Check if the ESC is software-inhibited.
* If so, send a message to enable it.
*/
if (is_esc_present(idx) && !is_esc_enabled(idx)) {
encodeESC_EnablePacket(&txFrame);
txFrame.id |= (idx + 1);
write_frame(txFrame, timeout);
}
else if (_esc_info[idx].newCommand) {
send_cmd = true;
cmd[jj] = _esc_info[idx].command;
_esc_info[idx].newCommand = false;
} else {
// A command of 0x7FFF is 'out of range' and will be ignored by the corresponding ESC
cmd[jj] = 0x7FFF;
}
}
if (send_cmd) {
encodeESC_CommandMultipleESCsPacket(
&txFrame,
cmd[0],
cmd[1],
cmd[2],
cmd[3],
(PKT_ESC_SETPOINT_1 + ii)
);
// Broadcast the command to all ESCs
txFrame.id |= 0xFF;
write_frame(txFrame, timeout);
}
}
} else {
// System is NOT armed - send a "disable" message to all ESCs on the bus
// Command all ESC into software disable mode
encodeESC_DisablePacket(&txFrame);
// Set the ESC address to the broadcast ID (0xFF)
txFrame.id |= 0xFF;
write_frame(txFrame, timeout);
}
}
// interpret a servo message received over CAN
bool AP_PiccoloCAN::handle_servo_message(AP_HAL::CANFrame &frame)
{
uint64_t timestamp = AP_HAL::micros64();
// The servo address is the lower byte of the frame ID
uint8_t addr = frame.id & 0xFF;
// Ignore servo with an invalid node ID
if (addr == 0x00) {
return false;
}
// Subtract to get the address in memory
addr -= 1;
// Maximum number of servos allowed
if (addr >= PICCOLO_CAN_MAX_NUM_SERVO) {
return false;
}
CBSServo_Info_t &servo = _servo_info[addr];
bool result = true;
// Throw the incoming packet against each decoding routine
if (decodeServo_StatusAPacketStructure(&frame, &servo.statusA)) {
servo.newTelemetry = true;
} else if (decodeServo_StatusBPacketStructure(&frame, &servo.statusB)) {
servo.newTelemetry = true;
} else if (decodeServo_FirmwarePacketStructure(&frame, &servo.firmware)) {
// TODO
} else if (decodeServo_AddressPacketStructure(&frame, &servo.address)) {
// TODO
} else if (decodeServo_SettingsInfoPacketStructure(&frame, &servo.settings)) {
// TODO
} else if (decodeServo_TelemetryConfigPacketStructure(&frame, &servo.telemetry)) {
} else {
// Incoming frame did not match any of the packet decoding routines
result = false;
}
if (result) {
// Reset the rx timestamp
servo.last_rx_msg_timestamp = timestamp;
}
return result;
}
// interpret an ESC message received over CAN
bool AP_PiccoloCAN::handle_esc_message(AP_HAL::CANFrame &frame)
{
bool result = true;
#if HAL_WITH_ESC_TELEM
uint64_t timestamp = AP_HAL::micros64();
// The ESC address is the lower byte of the frame ID
uint8_t addr = frame.id & 0xFF;
// Ignore any ESC with node ID of zero
if (addr == 0x00) {
return false;
}
// Subtract to get the address in memory
addr -= 1;
// Maximum number of ESCs allowed
if (addr >= PICCOLO_CAN_MAX_NUM_ESC) {
return false;
}
VelocityESC_Info_t &esc = _esc_info[addr];
/*
* The STATUS_A packet has slight variations between Gen-1 and Gen-2 ESCs.
* We can differentiate between the different versions,
* and coerce the "legacy" values into the modern values
* Legacy STATUS_A packet variables
*/
ESC_LegacyStatusBits_t legacyStatus;
ESC_LegacyWarningBits_t legacyWarnings;
ESC_LegacyErrorBits_t legacyErrors;
// Throw the packet against each decoding routine
if (decodeESC_StatusAPacket(&frame, &esc.mode, &esc.status, &esc.setpoint, &esc.rpm)) {
esc.newTelemetry = true;
update_rpm(addr, esc.rpm);
} else if (decodeESC_LegacyStatusAPacket(&frame, &esc.mode, &legacyStatus, &legacyWarnings, &legacyErrors, &esc.setpoint, &esc.rpm)) {
// The status / warning / error bits need to be converted to modern values
// Note: Not *all* of the modern status bits are available in the Gen-1 packet
esc.status.hwInhibit = legacyStatus.hwInhibit;
esc.status.swInhibit = legacyStatus.swInhibit;
esc.status.afwEnabled = legacyStatus.afwEnabled;
esc.status.direction = legacyStatus.timeout;
esc.status.timeout = legacyStatus.timeout;
esc.status.starting = legacyStatus.starting;
esc.status.commandSource = legacyStatus.commandSource;
esc.status.running = legacyStatus.running;
// Copy the legacy warning information across
esc.warnings.overspeed = legacyWarnings.overspeed;
esc.warnings.overcurrent = legacyWarnings.overcurrent;
esc.warnings.escTemperature = legacyWarnings.escTemperature;
esc.warnings.motorTemperature = legacyWarnings.motorTemperature;
esc.warnings.undervoltage = legacyWarnings.undervoltage;
esc.warnings.overvoltage = legacyWarnings.overvoltage;
esc.warnings.invalidPWMsignal = legacyWarnings.invalidPWMsignal;
esc.warnings.settingsChecksum = legacyErrors.settingsChecksum;
// There are no common error bits between the Gen-1 and Gen-2 ICD
} else if (decodeESC_StatusBPacket(&frame, &esc.voltage, &esc.current, &esc.dutyCycle, &esc.escTemperature, &esc.motorTemperature)) {
AP_ESC_Telem_Backend::TelemetryData telem {};
telem.voltage = float(esc.voltage) * 0.1f;
telem.current = float(esc.current) * 0.1f;
telem.motor_temp_cdeg = int16_t(esc.motorTemperature * 100);
update_telem_data(addr, telem,
AP_ESC_Telem_Backend::TelemetryType::CURRENT
| AP_ESC_Telem_Backend::TelemetryType::VOLTAGE
| AP_ESC_Telem_Backend::TelemetryType::MOTOR_TEMPERATURE);
esc.newTelemetry = true;
} else if (decodeESC_StatusCPacket(&frame, &esc.fetTemperature, &esc.pwmFrequency, &esc.timingAdvance)) {
// Use the higher reported value of 'escTemperature' and 'fetTemperature'
const int16_t escTemp = MAX(esc.fetTemperature, esc.escTemperature);
AP_ESC_Telem_Backend::TelemetryData telem {};
telem.temperature_cdeg = int16_t(escTemp * 100);
update_telem_data(addr, telem, AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE);
esc.newTelemetry = true;
} else if (decodeESC_WarningErrorStatusPacket(&frame, &esc.warnings, &esc.errors)) {
esc.newTelemetry = true;
} else if (decodeESC_FirmwarePacketStructure(&frame, &esc.firmware)) {
// TODO
} else if (decodeESC_AddressPacketStructure(&frame, &esc.address)) {
// TODO
} else if (decodeESC_EEPROMSettingsPacketStructure(&frame, &esc.eeprom)) {
// TODO
} else {
result = false;
}
if (result) {
// Reset the Rx timestamp
esc.last_rx_msg_timestamp = timestamp;
}
#endif // HAL_WITH_ESC_TELEM
return result;
}
2023-03-15 20:05:59 -03:00
#if AP_EFI_CURRAWONG_ECU_ENABLED
void AP_PiccoloCAN::send_ecu_messages(void)
{
AP_HAL::CANFrame txFrame {};
const uint64_t timeout = AP_HAL::micros64() + 1000ULL;
// No ECU node id set, don't send anything
if (_ecu_id == 0) {
return;
}
if (_ecu_info.newCommand) {
encodeECU_ThrottleCommandPacket(&txFrame, _ecu_info.command);
txFrame.id |= (uint8_t) _ecu_id;
_ecu_info.newCommand = false;
write_frame(txFrame, timeout);
}
}
bool AP_PiccoloCAN::handle_ecu_message(AP_HAL::CANFrame &frame)
{
// Get the ecu instance
AP_EFI_Currawong_ECU* ecu = AP_EFI_Currawong_ECU::get_instance();
if (ecu != nullptr) {
return ecu->handle_message(frame);
}
return false;
}
2023-03-15 20:05:59 -03:00
#endif // AP_EFI_CURRAWONG_ECU_ENABLED
/**
* Check if a given servo channel is "active" (has been configured for Piccolo control output)
*/
bool AP_PiccoloCAN::is_servo_channel_active(uint8_t chan)
{
// First check if the particular servo channel is enabled in the channel mask
if (((_srv_bm >> chan) & 0x01) == 0x00) {
return false;
}
SRV_Channel::Aux_servo_function_t function = SRV_Channels::channel_function(chan);
// Ignore if the servo channel does not have a function assigned
if (function <= SRV_Channel::k_none) {
return false;
}
// Ignore if the assigned function is a motor function
if (SRV_Channel::is_motor(function)) {
return false;
}
// We can safely say that the particular servo channel is active
return true;
}
/**
* Check if a given ESC channel is "active" (has been configured for Piccolo control output)
*/
bool AP_PiccoloCAN::is_esc_channel_active(uint8_t chan)
{
// First check if the particular ESC channel is enabled in the channel mask
if (((_esc_bm >> chan) & 0x01) == 0x00) {
return false;
}
// Check if a motor function is assigned for this motor channel
SRV_Channel::Aux_servo_function_t motor_function = SRV_Channels::get_motor_function(chan);
if (SRV_Channels::function_assigned(motor_function)) {
return true;
}
return false;
}
/**
* Determine if a servo is present on the CAN bus (has telemetry data been received)
*/
bool AP_PiccoloCAN::is_servo_present(uint8_t chan, uint64_t timeout_ms)
{
if (chan >= PICCOLO_CAN_MAX_NUM_SERVO) {
return false;
}
CBSServo_Info_t &servo = _servo_info[chan];
// No messages received from this servo
if (servo.last_rx_msg_timestamp == 0) {
return false;
}
uint64_t now = AP_HAL::micros64();
uint64_t timeout_us = timeout_ms * 1000ULL;
if (now > (servo.last_rx_msg_timestamp + timeout_us)) {
return false;
}
return true;
}
/**
* Determine if an ESC is present on the CAN bus (has telemetry data been received)
*/
bool AP_PiccoloCAN::is_esc_present(uint8_t chan, uint64_t timeout_ms)
{
if (chan >= PICCOLO_CAN_MAX_NUM_ESC) {
return false;
}
VelocityESC_Info_t &esc = _esc_info[chan];
// No messages received from this ESC
if (esc.last_rx_msg_timestamp == 0) {
return false;
}
uint64_t now = AP_HAL::micros64();
uint64_t timeout_us = timeout_ms * 1000ULL;
if (now > (esc.last_rx_msg_timestamp + timeout_us)) {
return false;
}
return true;
}
/**
* Check if a given servo is enabled
*/
bool AP_PiccoloCAN::is_servo_enabled(uint8_t chan)
{
if (chan >= PICCOLO_CAN_MAX_NUM_SERVO) {
return false;
}
// If the servo is not present, we cannot determine if it is enabled or not
if (!is_servo_present(chan)) {
return false;
}
CBSServo_Info_t &servo = _servo_info[chan];
return servo.statusA.status.enabled;
}
/**
* Check if a given ESC is enabled (both hardware and software enable flags)
*/
bool AP_PiccoloCAN::is_esc_enabled(uint8_t chan)
{
if (chan >= PICCOLO_CAN_MAX_NUM_ESC) {
return false;
}
// If the ESC is not present, we cannot determine if it is enabled or not
if (!is_esc_present(chan)) {
return false;
}
VelocityESC_Info_t &esc = _esc_info[chan];
if (esc.status.hwInhibit || esc.status.swInhibit) {
return false;
}
// ESC is present, and enabled
return true;
}
bool AP_PiccoloCAN::pre_arm_check(char* reason, uint8_t reason_len)
{
// Check that each required servo is present on the bus
for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_SERVO; ii++) {
if (is_servo_channel_active(ii)) {
if (!is_servo_present(ii)) {
snprintf(reason, reason_len, "Servo %u not detected", ii + 1);
return false;
}
}
}
// Check that each required ESC is present on the bus
for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_ESC; ii++) {
// Skip any ESC channels where the motor channel is not enabled
if (is_esc_channel_active(ii)) {
if (!is_esc_present(ii)) {
snprintf(reason, reason_len, "ESC %u not detected", ii + 1);
return false;
}
VelocityESC_Info_t &esc = _esc_info[ii];
if (esc.status.hwInhibit) {
snprintf(reason, reason_len, "ESC %u is hardware inhibited", (ii + 1));
return false;
}
}
}
return true;
}
/* Piccolo Glue Logic
* The following functions are required by the auto-generated protogen code.
*/
//! \return the packet data pointer from the packet
uint8_t* getESCVelocityPacketData(void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
return (uint8_t*) frame->data;
}
//! \return the packet data pointer from the packet, const
const uint8_t* getESCVelocityPacketDataConst(const void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
return (const uint8_t*) frame->data;
}
//! Complete a packet after the data have been encoded
void finishESCVelocityPacket(void* pkt, int size, uint32_t packetID)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
if (size > AP_HAL::CANFrame::MaxDataLen) {
size = AP_HAL::CANFrame::MaxDataLen;
}
frame->dlc = size;
/* Encode the CAN ID
* 0x07mm20dd
* - 07 = ACTUATOR group ID
* - mm = Message ID
* - 20 = ESC actuator type
* - dd = Device ID
*
* Note: The Device ID (lower 8 bits of the frame ID) will have to be inserted later
*/
uint32_t id = (((uint8_t) AP_PiccoloCAN::MessageGroup::ACTUATOR) << 24) | // CAN Group ID
((packetID & 0xFF) << 16) | // Message ID
(((uint8_t) AP_PiccoloCAN::ActuatorType::ESC) << 8); // Actuator type
// Extended frame format
id |= AP_HAL::CANFrame::FlagEFF;
frame->id = id;
}
//! \return the size of a packet from the packet header
int getESCVelocityPacketSize(const void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
return (int) frame->dlc;
}
//! \return the ID of a packet from the packet header
uint32_t getESCVelocityPacketID(const void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
// Extract the message ID field from the 29-bit ID
return (uint32_t) ((frame->id >> 16) & 0xFF);
}
/* Piccolo Glue Logic
* The following functions are required by the auto-generated protogen code.
*/
//! \return the packet data pointer from the packet
uint8_t* getServoPacketData(void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
return (uint8_t*) frame->data;
}
//! \return the packet data pointer from the packet, const
const uint8_t* getServoPacketDataConst(const void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
return (const uint8_t*) frame->data;
}
//! Complete a packet after the data have been encoded
void finishServoPacket(void* pkt, int size, uint32_t packetID)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
if (size > AP_HAL::CANFrame::MaxDataLen) {
size = AP_HAL::CANFrame::MaxDataLen;
}
frame->dlc = size;
/* Encode the CAN ID
* 0x07mm20dd
* - 07 = ACTUATOR group ID
* - mm = Message ID
* - 00 = Servo actuator type
* - dd = Device ID
*
* Note: The Device ID (lower 8 bits of the frame ID) will have to be inserted later
*/
uint32_t id = (((uint8_t) AP_PiccoloCAN::MessageGroup::ACTUATOR) << 24) | // CAN Group ID
((packetID & 0xFF) << 16) | // Message ID
(((uint8_t) AP_PiccoloCAN::ActuatorType::SERVO) << 8); // Actuator type
// Extended frame format
id |= AP_HAL::CANFrame::FlagEFF;
frame->id = id;
}
//! \return the size of a packet from the packet header
int getServoPacketSize(const void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
return (int) frame->dlc;
}
//! \return the ID of a packet from the packet header
uint32_t getServoPacketID(const void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
// Extract the message ID field from the 29-bit ID
return (uint32_t) ((frame->id >> 16) & 0xFF);
}
/* Piccolo Glue Logic
* The following functions are required by the auto-generated protogen code.
*/
//! \return the packet data pointer from the packet
uint8_t* getECUPacketData(void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
return (uint8_t*) frame->data;
}
//! \return the packet data pointer from the packet, const
const uint8_t* getECUPacketDataConst(const void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
return (const uint8_t*) frame->data;
}
//! Complete a packet after the data have been encoded
void finishECUPacket(void* pkt, int size, uint32_t packetID)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
if (size > AP_HAL::CANFrame::MaxDataLen) {
size = AP_HAL::CANFrame::MaxDataLen;
}
frame->dlc = size;
/* Encode the CAN ID
* 0x09mmdddd
* - 07 = ECU_IN (to and ECU) group ID
* - mm = Message ID
* - dd = Device ID
*
* Note: The Device ID (lower 16 bits of the frame ID) will have to be inserted later
*/
uint32_t id = (((uint8_t) AP_PiccoloCAN::MessageGroup::ECU_IN) << 24) | // CAN Group ID
((packetID & 0xFF) << 16); // Message ID
// Extended frame format
id |= AP_HAL::CANFrame::FlagEFF;
frame->id = id;
}
//! \return the size of a packet from the packet header
int getECUPacketSize(const void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
return (int) frame->dlc;
}
//! \return the ID of a packet from the packet header
uint32_t getECUPacketID(const void* pkt)
{
AP_HAL::CANFrame* frame = (AP_HAL::CANFrame*) pkt;
// Extract the message ID field from the 29-bit ID
return (uint32_t) ((frame->id >> 16) & 0xFF);
}
#endif // HAL_PICCOLO_CAN_ENABLE