Ardupilot2/libraries/APM_Control/AP_RollController.cpp

442 lines
17 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
2018-12-20 19:39:38 -04:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2018-12-20 19:39:38 -04:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Code by Jon Challinger
APM_Control: ROLL and PITCH controllers These changes reduce height variation in turns and improve robustness. the specific changes are: 1) Linked roll and pitch integrator protection to the final output value so that if final output is on upper limit, the integrator is prevented from increasing and vice-versa. This improves wind-up protection. 2) Modified rate feedback in roll and pitch controllers to use body rates rather than Euler or earth rates. 3) Changed the roll to pitch compensation to use measured roll angle and estimated airspeed to calculate the component of turn rate (assuming a level coordinated turn) around the pitch axis. This a mathematically correct calculation and will work over a range of bank angles and aircraft with minimal (if any) tuning required. 4) The integrator in the roll and pitch loop is clamped when the estimated speed is below the minimum FBW speed 5) The noise filter in the pitch and roll loop has been changed to use a FOH discretisation. This gives improved noise rejection and less phase loss when compared to the previous filter that used a ZOH or equivalent discretisation. This has been flown on the rascal in the SITL and on a X-8 with limited flight testing. Initial results have been encouraging with reduced height variation in turns. Compare to standard PIDS, the revised pitch and roll controllers allow the use of rate feedback (effectively the same as the old D term) without beating the servos to death. The bank angle compensation in the pitch loop works effectively over a much larger range of bank angles and requires minimal tuning compared to the old calculation. YAW CONTROLLER Currently testing the a 3-loop acceleration autopilot topology for the yaw loop with feed forward yaw rate for turn compensation. This 3-loop topology is commonly used in tactical skid to to turn missiles and is easy to tune. The following block diagram shows the general signal flow Note that the acceleration measurement has to pass through an integrator before it gets to the actuator. This is a important feature as it eliminates problems of high frequency noise and potential coupling with structural modes associated with direct feedback of measured acceleration to actuator. The high pass filter has been inserted to compensate for airspeed and bank angle measurement errors which will cause steady state errors in the calculation of the turn yaw rate. The yaw controller flies SITL well, but hasn't been flight tested yet. It can be configured either as a simple yaw damper, or the acceleration and integral term can be turned on to allow feedback control of lateral acceleration/sideslip. TO DO: Need to reduce number of tuning parameters and provide consistent naming Need to provide guidance on tuning these loops with definitions for all the gain terms. Need to check signs and units into and out of lateral loops. DESIGN DECISIONS PENDING: 1) Can we remove the noise filters? Provided the mpu6k noise filter is running they are of limited benefit given the 25Hz Nyquist frequency 2) If we do remove them and rely on the mpu6k noise filter, what is the apprporiate default cutoff frequency for plane use. 20Hz is probably OK for most setups, but some noisy/high vibration setups would require as low as 10Hz 3) The inverted flight logic looks like a crash waiting to happen. It's problematic to test and even if implemented correctly would still crash a plane with poor inverted flight capability. We should either implement it properly and fully tested or delete it.
2013-04-23 08:02:18 -03:00
// Modified by Paul Riseborough
//
#include <AP_HAL/AP_HAL.h>
#include "AP_RollController.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_RollController::var_info[] = {
// @Param: 2SRV_TCONST
// @DisplayName: Roll Time Constant
2018-12-20 19:39:38 -04:00
// @Description: Time constant in seconds from demanded to achieved roll angle. Most models respond well to 0.5. May be reduced for faster responses, but setting lower than a model can achieve will not help.
// @Range: 0.4 1.0
// @Units: s
// @Increment: 0.1
// @User: Advanced
AP_GROUPINFO("2SRV_TCONST", 0, AP_RollController, gains.tau, 0.5f),
// @Param: 2SRV_P
// @DisplayName: Proportional Gain
2018-12-20 19:39:38 -04:00
// @Description: Proportional gain from roll angle demands to ailerons. Higher values allow more servo response but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode.
// @Range: 0.1 4.0
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("2SRV_P", 1, AP_RollController, gains.P, 1.0f),
// @Param: 2SRV_D
// @DisplayName: Damping Gain
2018-12-20 19:39:38 -04:00
// @Description: Damping gain from roll acceleration to ailerons. Higher values reduce rolling in turbulence, but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode.
// @Range: 0 0.2
// @Increment: 0.01
// @User: Standard
AP_GROUPINFO("2SRV_D", 2, AP_RollController, gains.D, 0.08f),
// @Param: 2SRV_I
// @DisplayName: Integrator Gain
2018-12-20 19:39:38 -04:00
// @Description: Integrator gain from long-term roll angle offsets to ailerons. Higher values "trim" out offsets faster but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode.
// @Range: 0 1.0
// @Increment: 0.05
// @User: Standard
AP_GROUPINFO("2SRV_I", 3, AP_RollController, gains.I, 0.3f),
// @Param: 2SRV_RMAX
// @DisplayName: Maximum Roll Rate
2018-12-20 19:39:38 -04:00
// @Description: Maximum roll rate that the roll controller demands (degrees/sec) in ACRO mode.
// @Range: 0 180
// @Units: deg/s
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("2SRV_RMAX", 4, AP_RollController, gains.rmax, 0),
// @Param: 2SRV_IMAX
// @DisplayName: Integrator limit
2018-12-20 19:39:38 -04:00
// @Description: Limit of roll integrator gain in centi-degrees of servo travel. Servos are assumed to have +/- 4500 centi-degrees of travel, so a value of 3000 allows trim of up to 2/3 of servo travel range.
// @Range: 0 4500
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("2SRV_IMAX", 5, AP_RollController, gains.imax, 3000),
// @Param: 2SRV_FF
// @DisplayName: Feed forward Gain
2018-12-20 19:39:38 -04:00
// @Description: Gain from demanded rate to aileron output.
// @Range: 0.1 4.0
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("2SRV_FF", 6, AP_RollController, gains.FF, 0.0f),
// @Param: 2SRV_SRMAX
// @DisplayName: Servo slew rate limit
// @Description: Sets an upper limit on the servo slew rate produced by the D-gain (roll rate feedback). If the amplitude of the control action produced by the roll rate feedback exceeds this value, then the D-gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive D-gain. The parameter should be set to no more than 25% of the servo's specified slew rate to allow for inertia and aerodynamic load effects. Note: The D-gain will not be reduced to less than 10% of the nominal value. A valule of zero will disable this feature.
// @Units: deg/s
// @Range: 0 500
// @Increment: 10.0
// @User: Advanced
AP_GROUPINFO("2SRV_SRMAX", 7, AP_RollController, _slew_rate_max, 150.0f),
// @Param: 2SRV_SRTAU
// @DisplayName: Servo slew rate decay time constant
// @Description: This sets the time constant used to recover the D-gain after it has been reduced due to excessive servo slew rate.
// @Units: s
// @Range: 0.5 5.0
// @Increment: 0.1
// @User: Advanced
AP_GROUPINFO("2SRV_SRTAU", 8, AP_RollController, _slew_rate_tau, 1.0f),
// @Param: _RATE_P
// @DisplayName: Roll axis rate controller P gain
// @Description: Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output
// @Range: 0.08 0.35
// @Increment: 0.005
// @User: Standard
// @Param: _RATE_I
// @DisplayName: Roll axis rate controller I gain
// @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate
// @Range: 0.01 0.6
// @Increment: 0.01
// @User: Standard
// @Param: _RATE_IMAX
// @DisplayName: Roll axis rate controller I gain maximum
// @Description: Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output
// @Range: 0 1
// @Increment: 0.01
// @User: Standard
// @Param: _RATE_D
// @DisplayName: Roll axis rate controller D gain
// @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate
// @Range: 0.001 0.03
// @Increment: 0.001
// @User: Standard
// @Param: _RATE_FF
// @DisplayName: Roll axis rate controller feed forward
// @Description: Roll axis rate controller feed forward
// @Range: 0 3.0
// @Increment: 0.001
// @User: Standard
// @Param: _RATE_FLTT
// @DisplayName: Roll axis rate controller target frequency in Hz
// @Description: Roll axis rate controller target frequency in Hz
// @Range: 2 50
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: _RATE_FLTE
// @DisplayName: Roll axis rate controller error frequency in Hz
// @Description: Roll axis rate controller error frequency in Hz
// @Range: 2 50
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: _RATE_FLTD
// @DisplayName: Roll axis rate controller derivative frequency in Hz
// @Description: Roll axis rate controller derivative frequency in Hz
// @Range: 0 50
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: _RATE_SMAX
// @DisplayName: Roll slew rate limit
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
// @Range: 0 200
// @Increment: 0.5
// @User: Advanced
// @Param: _RATE_STAU
// @DisplayName: Roll slew rate decay time constant
// @Description: This sets the time constant used to recover the P+D gain after it has been reduced due to excessive slew rate.
// @Units: s
// @Range: 0.5 5.0
// @Increment: 0.1
// @User: Advanced
AP_SUBGROUPINFO(rate_pid, "_RATE_", 9, AP_RollController, AC_PID),
AP_GROUPEND
};
/*
internal rate controller, called by attitude and rate controller
public functions
*/
int32_t AP_RollController::_get_rate_out_old(float desired_rate, float scaler, bool disable_integrator)
{
uint32_t tnow = AP_HAL::millis();
uint32_t dt = tnow - _last_t;
if (_last_t == 0 || dt > 1000) {
dt = 0;
}
_last_t = tnow;
// Calculate equivalent gains so that values for K_P and K_I can be taken across from the old PID law
// No conversion is required for K_D
float ki_rate = gains.I * gains.tau;
float eas2tas = _ahrs.get_EAS2TAS();
float kp_ff = MAX((gains.P - gains.I * gains.tau) * gains.tau - gains.D , 0) / eas2tas;
float k_ff = gains.FF / eas2tas;
float delta_time = (float)dt * 0.001f;
// Get body rate vector (radians/sec)
float omega_x = _ahrs.get_gyro().x;
// Calculate the roll rate error (deg/sec) and apply gain scaler
float achieved_rate = ToDeg(omega_x);
_pid_info.error = desired_rate - achieved_rate;
float rate_error = _pid_info.error * scaler;
_pid_info.target = desired_rate;
_pid_info.actual = achieved_rate;
APM_Control: ROLL and PITCH controllers These changes reduce height variation in turns and improve robustness. the specific changes are: 1) Linked roll and pitch integrator protection to the final output value so that if final output is on upper limit, the integrator is prevented from increasing and vice-versa. This improves wind-up protection. 2) Modified rate feedback in roll and pitch controllers to use body rates rather than Euler or earth rates. 3) Changed the roll to pitch compensation to use measured roll angle and estimated airspeed to calculate the component of turn rate (assuming a level coordinated turn) around the pitch axis. This a mathematically correct calculation and will work over a range of bank angles and aircraft with minimal (if any) tuning required. 4) The integrator in the roll and pitch loop is clamped when the estimated speed is below the minimum FBW speed 5) The noise filter in the pitch and roll loop has been changed to use a FOH discretisation. This gives improved noise rejection and less phase loss when compared to the previous filter that used a ZOH or equivalent discretisation. This has been flown on the rascal in the SITL and on a X-8 with limited flight testing. Initial results have been encouraging with reduced height variation in turns. Compare to standard PIDS, the revised pitch and roll controllers allow the use of rate feedback (effectively the same as the old D term) without beating the servos to death. The bank angle compensation in the pitch loop works effectively over a much larger range of bank angles and requires minimal tuning compared to the old calculation. YAW CONTROLLER Currently testing the a 3-loop acceleration autopilot topology for the yaw loop with feed forward yaw rate for turn compensation. This 3-loop topology is commonly used in tactical skid to to turn missiles and is easy to tune. The following block diagram shows the general signal flow Note that the acceleration measurement has to pass through an integrator before it gets to the actuator. This is a important feature as it eliminates problems of high frequency noise and potential coupling with structural modes associated with direct feedback of measured acceleration to actuator. The high pass filter has been inserted to compensate for airspeed and bank angle measurement errors which will cause steady state errors in the calculation of the turn yaw rate. The yaw controller flies SITL well, but hasn't been flight tested yet. It can be configured either as a simple yaw damper, or the acceleration and integral term can be turned on to allow feedback control of lateral acceleration/sideslip. TO DO: Need to reduce number of tuning parameters and provide consistent naming Need to provide guidance on tuning these loops with definitions for all the gain terms. Need to check signs and units into and out of lateral loops. DESIGN DECISIONS PENDING: 1) Can we remove the noise filters? Provided the mpu6k noise filter is running they are of limited benefit given the 25Hz Nyquist frequency 2) If we do remove them and rely on the mpu6k noise filter, what is the apprporiate default cutoff frequency for plane use. 20Hz is probably OK for most setups, but some noisy/high vibration setups would require as low as 10Hz 3) The inverted flight logic looks like a crash waiting to happen. It's problematic to test and even if implemented correctly would still crash a plane with poor inverted flight capability. We should either implement it properly and fully tested or delete it.
2013-04-23 08:02:18 -03:00
// Get an airspeed estimate - default to zero if none available
float aspeed;
if (!_ahrs.airspeed_estimate(aspeed)) {
aspeed = 0.0f;
}
APM_Control: ROLL and PITCH controllers These changes reduce height variation in turns and improve robustness. the specific changes are: 1) Linked roll and pitch integrator protection to the final output value so that if final output is on upper limit, the integrator is prevented from increasing and vice-versa. This improves wind-up protection. 2) Modified rate feedback in roll and pitch controllers to use body rates rather than Euler or earth rates. 3) Changed the roll to pitch compensation to use measured roll angle and estimated airspeed to calculate the component of turn rate (assuming a level coordinated turn) around the pitch axis. This a mathematically correct calculation and will work over a range of bank angles and aircraft with minimal (if any) tuning required. 4) The integrator in the roll and pitch loop is clamped when the estimated speed is below the minimum FBW speed 5) The noise filter in the pitch and roll loop has been changed to use a FOH discretisation. This gives improved noise rejection and less phase loss when compared to the previous filter that used a ZOH or equivalent discretisation. This has been flown on the rascal in the SITL and on a X-8 with limited flight testing. Initial results have been encouraging with reduced height variation in turns. Compare to standard PIDS, the revised pitch and roll controllers allow the use of rate feedback (effectively the same as the old D term) without beating the servos to death. The bank angle compensation in the pitch loop works effectively over a much larger range of bank angles and requires minimal tuning compared to the old calculation. YAW CONTROLLER Currently testing the a 3-loop acceleration autopilot topology for the yaw loop with feed forward yaw rate for turn compensation. This 3-loop topology is commonly used in tactical skid to to turn missiles and is easy to tune. The following block diagram shows the general signal flow Note that the acceleration measurement has to pass through an integrator before it gets to the actuator. This is a important feature as it eliminates problems of high frequency noise and potential coupling with structural modes associated with direct feedback of measured acceleration to actuator. The high pass filter has been inserted to compensate for airspeed and bank angle measurement errors which will cause steady state errors in the calculation of the turn yaw rate. The yaw controller flies SITL well, but hasn't been flight tested yet. It can be configured either as a simple yaw damper, or the acceleration and integral term can be turned on to allow feedback control of lateral acceleration/sideslip. TO DO: Need to reduce number of tuning parameters and provide consistent naming Need to provide guidance on tuning these loops with definitions for all the gain terms. Need to check signs and units into and out of lateral loops. DESIGN DECISIONS PENDING: 1) Can we remove the noise filters? Provided the mpu6k noise filter is running they are of limited benefit given the 25Hz Nyquist frequency 2) If we do remove them and rely on the mpu6k noise filter, what is the apprporiate default cutoff frequency for plane use. 20Hz is probably OK for most setups, but some noisy/high vibration setups would require as low as 10Hz 3) The inverted flight logic looks like a crash waiting to happen. It's problematic to test and even if implemented correctly would still crash a plane with poor inverted flight capability. We should either implement it properly and fully tested or delete it.
2013-04-23 08:02:18 -03:00
// Multiply roll rate error by _ki_rate, apply scaler and integrate
// Scaler is applied before integrator so that integrator state relates directly to aileron deflection
// This means aileron trim offset doesn't change as the value of scaler changes with airspeed
APM_Control: ROLL and PITCH controllers These changes reduce height variation in turns and improve robustness. the specific changes are: 1) Linked roll and pitch integrator protection to the final output value so that if final output is on upper limit, the integrator is prevented from increasing and vice-versa. This improves wind-up protection. 2) Modified rate feedback in roll and pitch controllers to use body rates rather than Euler or earth rates. 3) Changed the roll to pitch compensation to use measured roll angle and estimated airspeed to calculate the component of turn rate (assuming a level coordinated turn) around the pitch axis. This a mathematically correct calculation and will work over a range of bank angles and aircraft with minimal (if any) tuning required. 4) The integrator in the roll and pitch loop is clamped when the estimated speed is below the minimum FBW speed 5) The noise filter in the pitch and roll loop has been changed to use a FOH discretisation. This gives improved noise rejection and less phase loss when compared to the previous filter that used a ZOH or equivalent discretisation. This has been flown on the rascal in the SITL and on a X-8 with limited flight testing. Initial results have been encouraging with reduced height variation in turns. Compare to standard PIDS, the revised pitch and roll controllers allow the use of rate feedback (effectively the same as the old D term) without beating the servos to death. The bank angle compensation in the pitch loop works effectively over a much larger range of bank angles and requires minimal tuning compared to the old calculation. YAW CONTROLLER Currently testing the a 3-loop acceleration autopilot topology for the yaw loop with feed forward yaw rate for turn compensation. This 3-loop topology is commonly used in tactical skid to to turn missiles and is easy to tune. The following block diagram shows the general signal flow Note that the acceleration measurement has to pass through an integrator before it gets to the actuator. This is a important feature as it eliminates problems of high frequency noise and potential coupling with structural modes associated with direct feedback of measured acceleration to actuator. The high pass filter has been inserted to compensate for airspeed and bank angle measurement errors which will cause steady state errors in the calculation of the turn yaw rate. The yaw controller flies SITL well, but hasn't been flight tested yet. It can be configured either as a simple yaw damper, or the acceleration and integral term can be turned on to allow feedback control of lateral acceleration/sideslip. TO DO: Need to reduce number of tuning parameters and provide consistent naming Need to provide guidance on tuning these loops with definitions for all the gain terms. Need to check signs and units into and out of lateral loops. DESIGN DECISIONS PENDING: 1) Can we remove the noise filters? Provided the mpu6k noise filter is running they are of limited benefit given the 25Hz Nyquist frequency 2) If we do remove them and rely on the mpu6k noise filter, what is the apprporiate default cutoff frequency for plane use. 20Hz is probably OK for most setups, but some noisy/high vibration setups would require as low as 10Hz 3) The inverted flight logic looks like a crash waiting to happen. It's problematic to test and even if implemented correctly would still crash a plane with poor inverted flight capability. We should either implement it properly and fully tested or delete it.
2013-04-23 08:02:18 -03:00
// Don't integrate if in stabilise mode as the integrator will wind up against the pilots inputs
if (!disable_integrator && ki_rate > 0) {
APM_Control: ROLL and PITCH controllers These changes reduce height variation in turns and improve robustness. the specific changes are: 1) Linked roll and pitch integrator protection to the final output value so that if final output is on upper limit, the integrator is prevented from increasing and vice-versa. This improves wind-up protection. 2) Modified rate feedback in roll and pitch controllers to use body rates rather than Euler or earth rates. 3) Changed the roll to pitch compensation to use measured roll angle and estimated airspeed to calculate the component of turn rate (assuming a level coordinated turn) around the pitch axis. This a mathematically correct calculation and will work over a range of bank angles and aircraft with minimal (if any) tuning required. 4) The integrator in the roll and pitch loop is clamped when the estimated speed is below the minimum FBW speed 5) The noise filter in the pitch and roll loop has been changed to use a FOH discretisation. This gives improved noise rejection and less phase loss when compared to the previous filter that used a ZOH or equivalent discretisation. This has been flown on the rascal in the SITL and on a X-8 with limited flight testing. Initial results have been encouraging with reduced height variation in turns. Compare to standard PIDS, the revised pitch and roll controllers allow the use of rate feedback (effectively the same as the old D term) without beating the servos to death. The bank angle compensation in the pitch loop works effectively over a much larger range of bank angles and requires minimal tuning compared to the old calculation. YAW CONTROLLER Currently testing the a 3-loop acceleration autopilot topology for the yaw loop with feed forward yaw rate for turn compensation. This 3-loop topology is commonly used in tactical skid to to turn missiles and is easy to tune. The following block diagram shows the general signal flow Note that the acceleration measurement has to pass through an integrator before it gets to the actuator. This is a important feature as it eliminates problems of high frequency noise and potential coupling with structural modes associated with direct feedback of measured acceleration to actuator. The high pass filter has been inserted to compensate for airspeed and bank angle measurement errors which will cause steady state errors in the calculation of the turn yaw rate. The yaw controller flies SITL well, but hasn't been flight tested yet. It can be configured either as a simple yaw damper, or the acceleration and integral term can be turned on to allow feedback control of lateral acceleration/sideslip. TO DO: Need to reduce number of tuning parameters and provide consistent naming Need to provide guidance on tuning these loops with definitions for all the gain terms. Need to check signs and units into and out of lateral loops. DESIGN DECISIONS PENDING: 1) Can we remove the noise filters? Provided the mpu6k noise filter is running they are of limited benefit given the 25Hz Nyquist frequency 2) If we do remove them and rely on the mpu6k noise filter, what is the apprporiate default cutoff frequency for plane use. 20Hz is probably OK for most setups, but some noisy/high vibration setups would require as low as 10Hz 3) The inverted flight logic looks like a crash waiting to happen. It's problematic to test and even if implemented correctly would still crash a plane with poor inverted flight capability. We should either implement it properly and fully tested or delete it.
2013-04-23 08:02:18 -03:00
//only integrate if gain and time step are positive and airspeed above min value.
if (dt > 0 && aspeed > float(aparm.airspeed_min)) {
float integrator_delta = rate_error * ki_rate * delta_time * scaler;
APM_Control: ROLL and PITCH controllers These changes reduce height variation in turns and improve robustness. the specific changes are: 1) Linked roll and pitch integrator protection to the final output value so that if final output is on upper limit, the integrator is prevented from increasing and vice-versa. This improves wind-up protection. 2) Modified rate feedback in roll and pitch controllers to use body rates rather than Euler or earth rates. 3) Changed the roll to pitch compensation to use measured roll angle and estimated airspeed to calculate the component of turn rate (assuming a level coordinated turn) around the pitch axis. This a mathematically correct calculation and will work over a range of bank angles and aircraft with minimal (if any) tuning required. 4) The integrator in the roll and pitch loop is clamped when the estimated speed is below the minimum FBW speed 5) The noise filter in the pitch and roll loop has been changed to use a FOH discretisation. This gives improved noise rejection and less phase loss when compared to the previous filter that used a ZOH or equivalent discretisation. This has been flown on the rascal in the SITL and on a X-8 with limited flight testing. Initial results have been encouraging with reduced height variation in turns. Compare to standard PIDS, the revised pitch and roll controllers allow the use of rate feedback (effectively the same as the old D term) without beating the servos to death. The bank angle compensation in the pitch loop works effectively over a much larger range of bank angles and requires minimal tuning compared to the old calculation. YAW CONTROLLER Currently testing the a 3-loop acceleration autopilot topology for the yaw loop with feed forward yaw rate for turn compensation. This 3-loop topology is commonly used in tactical skid to to turn missiles and is easy to tune. The following block diagram shows the general signal flow Note that the acceleration measurement has to pass through an integrator before it gets to the actuator. This is a important feature as it eliminates problems of high frequency noise and potential coupling with structural modes associated with direct feedback of measured acceleration to actuator. The high pass filter has been inserted to compensate for airspeed and bank angle measurement errors which will cause steady state errors in the calculation of the turn yaw rate. The yaw controller flies SITL well, but hasn't been flight tested yet. It can be configured either as a simple yaw damper, or the acceleration and integral term can be turned on to allow feedback control of lateral acceleration/sideslip. TO DO: Need to reduce number of tuning parameters and provide consistent naming Need to provide guidance on tuning these loops with definitions for all the gain terms. Need to check signs and units into and out of lateral loops. DESIGN DECISIONS PENDING: 1) Can we remove the noise filters? Provided the mpu6k noise filter is running they are of limited benefit given the 25Hz Nyquist frequency 2) If we do remove them and rely on the mpu6k noise filter, what is the apprporiate default cutoff frequency for plane use. 20Hz is probably OK for most setups, but some noisy/high vibration setups would require as low as 10Hz 3) The inverted flight logic looks like a crash waiting to happen. It's problematic to test and even if implemented correctly would still crash a plane with poor inverted flight capability. We should either implement it properly and fully tested or delete it.
2013-04-23 08:02:18 -03:00
// prevent the integrator from increasing if surface defln demand is above the upper limit
if (_last_out < -45) {
integrator_delta = MAX(integrator_delta , 0);
} else if (_last_out > 45) {
// prevent the integrator from decreasing if surface defln demand is below the lower limit
integrator_delta = MIN(integrator_delta, 0);
}
_pid_info.I += integrator_delta;
}
} else {
_pid_info.I = 0;
}
APM_Control: ROLL and PITCH controllers These changes reduce height variation in turns and improve robustness. the specific changes are: 1) Linked roll and pitch integrator protection to the final output value so that if final output is on upper limit, the integrator is prevented from increasing and vice-versa. This improves wind-up protection. 2) Modified rate feedback in roll and pitch controllers to use body rates rather than Euler or earth rates. 3) Changed the roll to pitch compensation to use measured roll angle and estimated airspeed to calculate the component of turn rate (assuming a level coordinated turn) around the pitch axis. This a mathematically correct calculation and will work over a range of bank angles and aircraft with minimal (if any) tuning required. 4) The integrator in the roll and pitch loop is clamped when the estimated speed is below the minimum FBW speed 5) The noise filter in the pitch and roll loop has been changed to use a FOH discretisation. This gives improved noise rejection and less phase loss when compared to the previous filter that used a ZOH or equivalent discretisation. This has been flown on the rascal in the SITL and on a X-8 with limited flight testing. Initial results have been encouraging with reduced height variation in turns. Compare to standard PIDS, the revised pitch and roll controllers allow the use of rate feedback (effectively the same as the old D term) without beating the servos to death. The bank angle compensation in the pitch loop works effectively over a much larger range of bank angles and requires minimal tuning compared to the old calculation. YAW CONTROLLER Currently testing the a 3-loop acceleration autopilot topology for the yaw loop with feed forward yaw rate for turn compensation. This 3-loop topology is commonly used in tactical skid to to turn missiles and is easy to tune. The following block diagram shows the general signal flow Note that the acceleration measurement has to pass through an integrator before it gets to the actuator. This is a important feature as it eliminates problems of high frequency noise and potential coupling with structural modes associated with direct feedback of measured acceleration to actuator. The high pass filter has been inserted to compensate for airspeed and bank angle measurement errors which will cause steady state errors in the calculation of the turn yaw rate. The yaw controller flies SITL well, but hasn't been flight tested yet. It can be configured either as a simple yaw damper, or the acceleration and integral term can be turned on to allow feedback control of lateral acceleration/sideslip. TO DO: Need to reduce number of tuning parameters and provide consistent naming Need to provide guidance on tuning these loops with definitions for all the gain terms. Need to check signs and units into and out of lateral loops. DESIGN DECISIONS PENDING: 1) Can we remove the noise filters? Provided the mpu6k noise filter is running they are of limited benefit given the 25Hz Nyquist frequency 2) If we do remove them and rely on the mpu6k noise filter, what is the apprporiate default cutoff frequency for plane use. 20Hz is probably OK for most setups, but some noisy/high vibration setups would require as low as 10Hz 3) The inverted flight logic looks like a crash waiting to happen. It's problematic to test and even if implemented correctly would still crash a plane with poor inverted flight capability. We should either implement it properly and fully tested or delete it.
2013-04-23 08:02:18 -03:00
// Scale the integration limit
float intLimScaled = gains.imax * 0.01f;
// Constrain the integrator state
_pid_info.I = constrain_float(_pid_info.I, -intLimScaled, intLimScaled);
APM_Control: ROLL and PITCH controllers These changes reduce height variation in turns and improve robustness. the specific changes are: 1) Linked roll and pitch integrator protection to the final output value so that if final output is on upper limit, the integrator is prevented from increasing and vice-versa. This improves wind-up protection. 2) Modified rate feedback in roll and pitch controllers to use body rates rather than Euler or earth rates. 3) Changed the roll to pitch compensation to use measured roll angle and estimated airspeed to calculate the component of turn rate (assuming a level coordinated turn) around the pitch axis. This a mathematically correct calculation and will work over a range of bank angles and aircraft with minimal (if any) tuning required. 4) The integrator in the roll and pitch loop is clamped when the estimated speed is below the minimum FBW speed 5) The noise filter in the pitch and roll loop has been changed to use a FOH discretisation. This gives improved noise rejection and less phase loss when compared to the previous filter that used a ZOH or equivalent discretisation. This has been flown on the rascal in the SITL and on a X-8 with limited flight testing. Initial results have been encouraging with reduced height variation in turns. Compare to standard PIDS, the revised pitch and roll controllers allow the use of rate feedback (effectively the same as the old D term) without beating the servos to death. The bank angle compensation in the pitch loop works effectively over a much larger range of bank angles and requires minimal tuning compared to the old calculation. YAW CONTROLLER Currently testing the a 3-loop acceleration autopilot topology for the yaw loop with feed forward yaw rate for turn compensation. This 3-loop topology is commonly used in tactical skid to to turn missiles and is easy to tune. The following block diagram shows the general signal flow Note that the acceleration measurement has to pass through an integrator before it gets to the actuator. This is a important feature as it eliminates problems of high frequency noise and potential coupling with structural modes associated with direct feedback of measured acceleration to actuator. The high pass filter has been inserted to compensate for airspeed and bank angle measurement errors which will cause steady state errors in the calculation of the turn yaw rate. The yaw controller flies SITL well, but hasn't been flight tested yet. It can be configured either as a simple yaw damper, or the acceleration and integral term can be turned on to allow feedback control of lateral acceleration/sideslip. TO DO: Need to reduce number of tuning parameters and provide consistent naming Need to provide guidance on tuning these loops with definitions for all the gain terms. Need to check signs and units into and out of lateral loops. DESIGN DECISIONS PENDING: 1) Can we remove the noise filters? Provided the mpu6k noise filter is running they are of limited benefit given the 25Hz Nyquist frequency 2) If we do remove them and rely on the mpu6k noise filter, what is the apprporiate default cutoff frequency for plane use. 20Hz is probably OK for most setups, but some noisy/high vibration setups would require as low as 10Hz 3) The inverted flight logic looks like a crash waiting to happen. It's problematic to test and even if implemented correctly would still crash a plane with poor inverted flight capability. We should either implement it properly and fully tested or delete it.
2013-04-23 08:02:18 -03:00
// Calculate the demanded control surface deflection
// Note the scaler is applied again. We want a 1/speed scaler applied to the feed-forward
// path, but want a 1/speed^2 scaler applied to the rate error path.
// This is because acceleration scales with speed^2, but rate scales with speed.
const float last_pid_info_D = _pid_info.D;
_pid_info.D = rate_error * gains.D * scaler;
_pid_info.P = desired_rate * kp_ff * scaler;
_pid_info.FF = desired_rate * k_ff * scaler;
if (dt > 0 && _slew_rate_max > 0) {
// Calculate the slew rate amplitude produced by the unmodified D term
// calculate a low pass filtered slew rate
float Dterm_slew_rate = _slew_rate_filter.apply((fabsf(_pid_info.D - last_pid_info_D)/ delta_time), delta_time);
// rectify and apply a decaying envelope filter
float alpha = 1.0f - constrain_float(delta_time/_slew_rate_tau, 0.0f , 1.0f);
_slew_rate_amplitude = fmaxf(fabsf(Dterm_slew_rate), alpha * _slew_rate_amplitude);
_slew_rate_amplitude = fminf(_slew_rate_amplitude, 10.0f*_slew_rate_max);
// Calculate and apply the D gain adjustment
_pid_info.Dmod = _slew_rate_max / fmaxf(_slew_rate_amplitude, _slew_rate_max);
_pid_info.D *= _pid_info.Dmod;
}
_last_out = _pid_info.D + _pid_info.FF + _pid_info.P;
if (autotune.running && aspeed > aparm.airspeed_min) {
// let autotune have a go at the values
// Note that we don't pass the integrator component so we get
// a better idea of how much the base PD controller
// contributed
autotune.update(desired_rate, achieved_rate, _last_out);
}
_last_out += _pid_info.I;
APM_Control: ROLL and PITCH controllers These changes reduce height variation in turns and improve robustness. the specific changes are: 1) Linked roll and pitch integrator protection to the final output value so that if final output is on upper limit, the integrator is prevented from increasing and vice-versa. This improves wind-up protection. 2) Modified rate feedback in roll and pitch controllers to use body rates rather than Euler or earth rates. 3) Changed the roll to pitch compensation to use measured roll angle and estimated airspeed to calculate the component of turn rate (assuming a level coordinated turn) around the pitch axis. This a mathematically correct calculation and will work over a range of bank angles and aircraft with minimal (if any) tuning required. 4) The integrator in the roll and pitch loop is clamped when the estimated speed is below the minimum FBW speed 5) The noise filter in the pitch and roll loop has been changed to use a FOH discretisation. This gives improved noise rejection and less phase loss when compared to the previous filter that used a ZOH or equivalent discretisation. This has been flown on the rascal in the SITL and on a X-8 with limited flight testing. Initial results have been encouraging with reduced height variation in turns. Compare to standard PIDS, the revised pitch and roll controllers allow the use of rate feedback (effectively the same as the old D term) without beating the servos to death. The bank angle compensation in the pitch loop works effectively over a much larger range of bank angles and requires minimal tuning compared to the old calculation. YAW CONTROLLER Currently testing the a 3-loop acceleration autopilot topology for the yaw loop with feed forward yaw rate for turn compensation. This 3-loop topology is commonly used in tactical skid to to turn missiles and is easy to tune. The following block diagram shows the general signal flow Note that the acceleration measurement has to pass through an integrator before it gets to the actuator. This is a important feature as it eliminates problems of high frequency noise and potential coupling with structural modes associated with direct feedback of measured acceleration to actuator. The high pass filter has been inserted to compensate for airspeed and bank angle measurement errors which will cause steady state errors in the calculation of the turn yaw rate. The yaw controller flies SITL well, but hasn't been flight tested yet. It can be configured either as a simple yaw damper, or the acceleration and integral term can be turned on to allow feedback control of lateral acceleration/sideslip. TO DO: Need to reduce number of tuning parameters and provide consistent naming Need to provide guidance on tuning these loops with definitions for all the gain terms. Need to check signs and units into and out of lateral loops. DESIGN DECISIONS PENDING: 1) Can we remove the noise filters? Provided the mpu6k noise filter is running they are of limited benefit given the 25Hz Nyquist frequency 2) If we do remove them and rely on the mpu6k noise filter, what is the apprporiate default cutoff frequency for plane use. 20Hz is probably OK for most setups, but some noisy/high vibration setups would require as low as 10Hz 3) The inverted flight logic looks like a crash waiting to happen. It's problematic to test and even if implemented correctly would still crash a plane with poor inverted flight capability. We should either implement it properly and fully tested or delete it.
2013-04-23 08:02:18 -03:00
// Convert to centi-degrees and constrain
return constrain_float(_last_out * 100, -4500, 4500);
}
/*
AC_PID based rate controller
*/
int32_t AP_RollController::_get_rate_out_ac_pid(float desired_rate, float scaler, bool disable_integrator)
{
convert_pid();
const float dt = AP::scheduler().get_loop_period_s();
const float eas2tas = _ahrs.get_EAS2TAS();
bool limit_I = fabsf(last_ac_out) >= 45;
float rate_x = _ahrs.get_gyro().x;
float aspeed;
float old_I = rate_pid.get_i();
rate_pid.set_dt(dt);
if (!_ahrs.airspeed_estimate(aspeed)) {
aspeed = 0;
}
bool underspeed = aspeed <= float(aparm.airspeed_min);
if (underspeed) {
limit_I = true;
}
// the P and I elements are scaled by sq(scaler). To use an
// unmodified AC_PID object we scale the inputs and calculate FF separately
//
// note that we run AC_PID in radians so that the normal scaling
// range for IMAX in AC_PID applies (usually an IMAX value less than 1.0)
rate_pid.update_all(radians(desired_rate) * scaler * scaler, rate_x * scaler * scaler, limit_I);
if (underspeed) {
// when underspeed we lock the integrator
rate_pid.set_integrator(old_I);
}
// FF should be scaled by scaler/eas2tas, but since we have scaled
// the AC_PID target above by scaler*scaler we need to instead
// divide by scaler*eas2tas to get the right scaling
const float ff = degrees(rate_pid.get_ff() / (scaler * eas2tas));
if (disable_integrator) {
rate_pid.reset_I();
}
// convert AC_PID info object to same scale as old controller
_pid_info_ac_pid = rate_pid.get_pid_info();
auto &pinfo = _pid_info_ac_pid;
const float deg_scale = degrees(1);
pinfo.FF = ff;
pinfo.P *= deg_scale;
pinfo.I *= deg_scale;
pinfo.D *= deg_scale;
// fix the logged target and actual values to not have the scalers applied
pinfo.target = desired_rate;
pinfo.actual = degrees(rate_x);
// sum components
float out = pinfo.FF + pinfo.P + pinfo.I + pinfo.D;
// remember the last output to trigger the I limit
last_ac_out = out;
// output is scaled to notional centidegrees of deflection
return constrain_int32(out * 100, -4500, 4500);
}
/*
rate controller selector
*/
int32_t AP_RollController::_get_rate_out(float desired_rate, float scaler, bool disable_integrator)
{
int32_t ret_ac_pid = _get_rate_out_ac_pid(desired_rate, scaler, disable_integrator);
int32_t ret_old = _get_rate_out_old(desired_rate, scaler, disable_integrator);
const auto &pinfo_ac = _pid_info_ac_pid;
const auto &pinfo_old = _pid_info;
AP::logger().Write("PIXR", "TimeUS,AC,Old,ACSum,OldSum", "Qiiff",
AP_HAL::micros64(),
ret_ac_pid,
ret_old,
pinfo_ac.FF + pinfo_ac.P + pinfo_ac.I + pinfo_ac.D,
pinfo_old.FF + pinfo_old.P + pinfo_old.I + pinfo_old.D);
return use_ac_pid ? ret_ac_pid : ret_old;
}
/*
Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500
A positive demand is up
Inputs are:
1) desired roll rate in degrees/sec
2) control gain scaler = scaling_speed / aspeed
*/
int32_t AP_RollController::get_rate_out(float desired_rate, float scaler)
{
return _get_rate_out(desired_rate, scaler, false);
}
/*
Function returns an equivalent aileron deflection in centi-degrees in the range from -4500 to 4500
A positive demand is up
Inputs are:
1) demanded bank angle in centi-degrees
2) control gain scaler = scaling_speed / aspeed
3) boolean which is true when stabilise mode is active
4) minimum FBW airspeed (metres/sec)
*/
int32_t AP_RollController::get_servo_out(int32_t angle_err, float scaler, bool disable_integrator)
{
if (gains.tau < 0.1f) {
gains.tau.set(0.1f);
}
// Calculate the desired roll rate (deg/sec) from the angle error
float desired_rate = angle_err * 0.01f / gains.tau;
// Limit the demanded roll rate
if (gains.rmax && desired_rate < -gains.rmax) {
desired_rate = - gains.rmax;
} else if (gains.rmax && desired_rate > gains.rmax) {
desired_rate = gains.rmax;
}
return _get_rate_out(desired_rate, scaler, disable_integrator);
}
void AP_RollController::reset_I()
{
_pid_info.I = 0;
rate_pid.reset_I();
}
/*
convert from old to new PIDs
this is a temporary conversion function during development
*/
void AP_RollController::convert_pid()
{
if (done_init && is_positive(rate_pid.ff())) {
return;
}
done_init = true;
AP_Float &ff = rate_pid.ff();
if (is_positive(ff) && ff.configured_in_storage()) {
return;
}
const float kp_ff = MAX((gains.P - gains.I * gains.tau) * gains.tau - gains.D, 0);
rate_pid.ff().set_and_save(gains.FF + kp_ff);
rate_pid.kI().set_and_save_ifchanged(gains.I * gains.tau);
rate_pid.kP().set_and_save_ifchanged(gains.D);
rate_pid.kD().set_and_save_ifchanged(0);
rate_pid.kIMAX().set_and_save_ifchanged(gains.imax/4500.0);
}