Ardupilot2/libraries/AP_HAL_SITL/sitl_ins.cpp

140 lines
4.4 KiB
C++
Raw Normal View History

/*
SITL handling
This emulates the ADS7844 ADC
Andrew Tridgell November 2011
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include "AP_HAL_SITL.h"
#include "AP_HAL_SITL_Namespace.h"
#include "HAL_SITL_Class.h"
#include <AP_Math/AP_Math.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_Declination/AP_Declination.h>
#include <AP_RangeFinder/AP_RangeFinder.h>
#include <SITL/SITL.h>
#include "Scheduler.h"
#include <AP_Math/AP_Math.h>
#include <AP_ADC/AP_ADC.h>
#include "SITL_State.h"
#include <fenv.h>
extern const AP_HAL::HAL& hal;
using namespace HALSITL;
/*
convert airspeed in m/s to an airspeed sensor value
*/
uint16_t SITL_State::_airspeed_sensor(float airspeed)
{
const float airspeed_ratio = 1.9936f;
const float airspeed_offset = 2013;
float airspeed_pressure, airspeed_raw;
airspeed_pressure = (airspeed*airspeed) / airspeed_ratio;
airspeed_raw = airspeed_pressure + airspeed_offset;
if (airspeed_raw/4 > 0xFFFF) {
return 0xFFFF;
}
// add delay
uint32_t now = AP_HAL::millis();
uint32_t best_time_delta_wind = 200; // initialise large time representing buffer entry closest to current time - delay.
uint8_t best_index_wind = 0; // initialise number representing the index of the entry in buffer closest to delay.
// storing data from sensor to buffer
if (now - last_store_time_wind >= 10) { // store data every 10 ms.
last_store_time_wind = now;
if (store_index_wind > wind_buffer_length-1) { // reset buffer index if index greater than size of buffer
store_index_wind = 0;
}
buffer_wind[store_index_wind].data = airspeed_raw; // add data to current index
buffer_wind[store_index_wind].time = last_store_time_wind; // add time to current index
store_index_wind = store_index_wind + 1; // increment index
}
// return delayed measurement
delayed_time_wind = now - _sitl->wind_delay; // get time corresponding to delay
// find data corresponding to delayed time in buffer
for (uint8_t i=0; i<=wind_buffer_length-1; i++) {
// find difference between delayed time and time stamp in buffer
time_delta_wind = abs(
(int32_t)(delayed_time_wind - buffer_wind[i].time));
// if this difference is smaller than last delta, store this time
if (time_delta_wind < best_time_delta_wind) {
best_index_wind = i;
best_time_delta_wind = time_delta_wind;
}
}
if (best_time_delta_wind < 200) { // only output stored state if < 200 msec retrieval error
airspeed_raw = buffer_wind[best_index_wind].data;
}
return airspeed_raw/4;
}
/*
emulate an analog rangefinder
*/
uint16_t SITL_State::_ground_sonar(void)
{
float altitude = _sitl->height_agl;
// sensor position offset in body frame
Vector3f relPosSensorBF = _sitl->rngfnd_pos_offset;
// adjust altitude for position of the sensor on the vehicle if position offset is non-zero
if (!relPosSensorBF.is_zero()) {
// get a rotation matrix following DCM conventions (body to earth)
Matrix3f rotmat;
_sitl->state.quaternion.rotation_matrix(rotmat);
// rotate the offset into earth frame
Vector3f relPosSensorEF = rotmat * relPosSensorBF;
// correct the altitude at the sensor
altitude -= relPosSensorEF.z;
}
float voltage = 5.0f;
2016-10-19 22:02:35 -03:00
if (fabs(_sitl->state.rollDeg) < 90 &&
fabs(_sitl->state.pitchDeg) < 90) {
// adjust for apparent altitude with roll
altitude /= cosf(radians(_sitl->state.rollDeg)) * cosf(radians(_sitl->state.pitchDeg));
altitude += _sitl->sonar_noise * _rand_float();
// Altitude in in m, scaler in meters/volt
voltage = altitude / _sitl->sonar_scale;
voltage = constrain_float(voltage, 0, 5.0f);
if (_sitl->sonar_glitch >= (_rand_float() + 1.0f)/2.0f) {
voltage = 5.0f;
}
}
return 1023*(voltage / 5.0f);
}
/*
setup the INS input channels with new input
*/
void SITL_State::_update_ins(float airspeed)
{
if (_ins == nullptr) {
// no inertial sensor in this sketch
return;
}
sonar_pin_value = _ground_sonar();
float airspeed_simulated = (fabsf(_sitl->arspd_fail) > 1.0e-6f) ? _sitl->arspd_fail : airspeed;
airspeed_pin_value = _airspeed_sensor(airspeed_simulated + (_sitl->arspd_noise * _rand_float()));
}
#endif