Ardupilot2/libraries/AC_Fence/AC_PolyFence_loader.cpp

111 lines
3.7 KiB
C++
Raw Normal View History

#include "AC_PolyFence_loader.h"
extern const AP_HAL::HAL& hal;
static const StorageAccess fence_storage(StorageManager::StorageFence);
/*
maximum number of fencepoints
*/
uint8_t AC_PolyFence_loader::max_points() const
{
return MIN(255U, fence_storage.size() / sizeof(Vector2l));
}
// create buffer to hold copy of eeprom points in RAM
// returns nullptr if not enough memory can be allocated
void* AC_PolyFence_loader::create_point_array(uint8_t element_size)
{
uint32_t array_size = max_points() * element_size;
if (hal.util->available_memory() < 100U + array_size) {
// too risky to enable as we could run out of stack
return nullptr;
}
return calloc(1, array_size);
}
// load boundary point from eeprom, returns true on successful load
bool AC_PolyFence_loader::load_point_from_eeprom(uint16_t i, Vector2l& point)
{
// sanity check index
if (i >= max_points()) {
return false;
}
// read fence point
point.x = fence_storage.read_uint32(i * sizeof(Vector2l));
point.y = fence_storage.read_uint32(i * sizeof(Vector2l) + sizeof(uint32_t));
return true;
}
// save a fence point to eeprom, returns true on successful save
bool AC_PolyFence_loader::save_point_to_eeprom(uint16_t i, const Vector2l& point)
{
// sanity check index
if (i >= max_points()) {
return false;
}
// write point to eeprom
fence_storage.write_uint32(i * sizeof(Vector2l), point.x);
fence_storage.write_uint32(i * sizeof(Vector2l)+sizeof(uint32_t), point.y);
return true;
}
// validate array of boundary points (expressed as either floats or long ints)
// returns true if boundary is valid
template <typename T>
bool AC_PolyFence_loader::boundary_valid(uint16_t num_points, const Vector2<T>* points) const
{
// exit immediate if no points
if (points == nullptr) {
return false;
}
// start from 2nd point as boundary contains return point (as first point)
uint8_t start_num = 1;
// a boundary requires at least 4 point (a triangle and last point equals first)
if (num_points < start_num + 4) {
return false;
}
// point 1 and last point must be the same. Note: 0th point is reserved as the return point
if (!Polygon_complete(&points[start_num], num_points-start_num)) {
return false;
}
// check return point is within the fence
if (Polygon_outside(points[0], &points[1], num_points-start_num)) {
return false;
}
return true;
}
// check if a location (expressed as either floats or long ints) is within the boundary
// returns true if location is outside the boundary
template <typename T>
bool AC_PolyFence_loader::boundary_breached(const Vector2<T>& location, uint16_t num_points, const Vector2<T>* points) const
{
// exit immediate if no points
if (points == nullptr) {
return false;
}
// start from 2nd point as boundary contains return point (as first point)
uint8_t start_num = 1;
// check location is within the fence
return Polygon_outside(location, &points[start_num], num_points-start_num);
}
// declare type specific methods
template bool AC_PolyFence_loader::boundary_valid<int32_t>(uint16_t num_points, const Vector2l* points) const;
template bool AC_PolyFence_loader::boundary_valid<float>(uint16_t num_points, const Vector2f* points) const;
template bool AC_PolyFence_loader::boundary_breached<int32_t>(const Vector2l& location, uint16_t num_points,
const Vector2l* points) const;
template bool AC_PolyFence_loader::boundary_breached<float>(const Vector2f& location, uint16_t num_points,
const Vector2f* points) const;