Ardupilot2/libraries/AP_Motors/AP_MotorsHeli.cpp

322 lines
10 KiB
C++
Raw Normal View History

2013-05-29 20:51:34 -03:00
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsHeli.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
2012-10-26 20:59:07 -03:00
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_MotorsHeli.h"
2012-10-26 20:59:07 -03:00
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Param: ROL_MAX
// @DisplayName: Swash Roll Angle Max
// @Description: Maximum roll angle of the swash plate
// @Range: 0 18000
// @Units: Centi-Degrees
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("ROL_MAX", 1, AP_MotorsHeli, _roll_max, AP_MOTORS_HELI_SWASH_ROLL_MAX),
// @Param: PIT_MAX
// @DisplayName: Swash Pitch Angle Max
// @Description: Maximum pitch angle of the swash plate
// @Range: 0 18000
// @Units: Centi-Degrees
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("PIT_MAX", 2, AP_MotorsHeli, _pitch_max, AP_MOTORS_HELI_SWASH_PITCH_MAX),
// @Param: COL_MIN
// @DisplayName: Collective Pitch Minimum
// @Description: Lowest possible servo position for the swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MIN", 3, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
// @Param: COL_MAX
// @DisplayName: Collective Pitch Maximum
// @Description: Highest possible servo position for the swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MAX", 4, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
// @Param: COL_MID
// @DisplayName: Collective Pitch Mid-Point
// @Description: Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MID", 5, AP_MotorsHeli, _collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID),
// @Param: SV_MAN
// @DisplayName: Manual Servo Mode
// @Description: Pass radio inputs directly to servos for set-up. Do not set this manually!
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("SV_MAN", 7, AP_MotorsHeli, _servo_manual, 0),
// @Param: GOV_SETPOINT
// @DisplayName: External Motor Governor Setpoint
// @Description: PWM passed to the external motor governor when external governor is enabled
// @Range: 0 1000
// @Units: PWM
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_SETPOINT", 8, AP_MotorsHeli, _rsc_setpoint, AP_MOTORS_HELI_RSC_SETPOINT),
// @Param: RSC_MODE
// @DisplayName: Rotor Speed Control Mode
// @Description: Controls the source of the desired rotor speed, either ch8 or RSC_SETPOINT
// @Values: 0:None, 1:Ch8 Input, 2:SetPoint
// @User: Standard
AP_GROUPINFO("RSC_MODE", 9, AP_MotorsHeli, _rsc_mode, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH),
2013-11-06 08:39:10 -04:00
// @Param: LAND_COL_MIN
// @DisplayName: Landing Collective Minimum
// @Description: Minimum collective position while landed or landing
// @Range: 0 500
// @Units: pwm
// @Increment: 1
// @User: Standard
AP_GROUPINFO("LAND_COL_MIN", 10, AP_MotorsHeli, _land_collective_min, AP_MOTORS_HELI_LAND_COLLECTIVE_MIN),
2013-11-06 08:39:10 -04:00
// @Param: RSC_RAMP_TIME
// @DisplayName: RSC Ramp Time
// @Description: Time in seconds for the output to the main rotor's ESC to reach full speed
// @Range: 0 60
// @Units: Seconds
// @User: Standard
AP_GROUPINFO("RSC_RAMP_TIME", 11, AP_MotorsHeli, _rsc_ramp_time, AP_MOTORS_HELI_RSC_RAMP_TIME),
// @Param: RSC_RUNUP_TIME
// @DisplayName: RSC Runup Time
// @Description: Time in seconds for the main rotor to reach full speed. Must be longer than RSC_RAMP_TIME
// @Range: 0 60
// @Units: Seconds
// @User: Standard
AP_GROUPINFO("RSC_RUNUP_TIME", 12, AP_MotorsHeli, _rsc_runup_time, AP_MOTORS_HELI_RSC_RUNUP_TIME),
// @Param: RSC_CRITICAL
// @DisplayName: Critical Rotor Speed
// @Description: Rotor speed below which flight is not possible
// @Range: 0 0-1000
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_CRITICAL", 13, AP_MotorsHeli, _rsc_critical, AP_MOTORS_HELI_RSC_CRITICAL),
// parameters 1 ~ 29 reserved for tradheli
// parameters 30 ~ 39 reserved for tricopter
// parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files)
AP_GROUPEND
};
//
// public methods
//
// init
void AP_MotorsHeli::Init()
{
// set update rate
set_update_rate(_speed_hz);
// ensure inputs are not passed through to servos
_servo_manual = 0;
// initialise some scalers
recalc_scalers();
// initialise swash plate
init_swash();
}
// output - sends commands to the servos
void AP_MotorsHeli::output()
{
// update throttle filter
update_throttle_filter();
if (_flags.armed) {
if (!_flags.interlock) {
output_armed_zero_throttle();
} else if (_flags.stabilizing) {
output_armed_stabilizing();
} else {
output_armed_not_stabilizing();
}
} else {
output_disarmed();
}
};
// output_min - sets servos to neutral point
void AP_MotorsHeli::output_min()
{
// move swash to mid
move_swash(0,0,500,0);
2013-11-06 08:39:10 -04:00
// override limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = false;
}
// parameter_check - check if helicopter specific parameters are sensible
bool AP_MotorsHeli::parameter_check() const
{
// returns false if _rsc_setpoint is not higher than _rsc_critical as this would not allow rotor_runup_complete to ever return true
if (_rsc_critical >= _rsc_setpoint) {
return false;
}
// all other cases parameters are OK
return true;
}
// return true if the main rotor is up to speed
bool AP_MotorsHeli::rotor_runup_complete() const
{
return _heliflags.rotor_runup_complete;
2013-11-06 08:39:10 -04:00
}
void AP_MotorsHeli::output_armed_not_stabilizing()
{
// stabilizing servos always operate for helicopters
output_armed_stabilizing();
}
// output_armed_zero_throttle - sends commands to the motors
void AP_MotorsHeli::output_armed_zero_throttle()
{
// stabilizing servos always operate for helicopters
// ToDo: Bring RSC Master On/Off into this function
output_armed_stabilizing();
}
// reset_swash - free up swash for maximum movements. Used for set-up
void AP_MotorsHeli::reset_swash()
{
// free up servo ranges
reset_servos();
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// set roll, pitch and throttle scaling
_roll_scaler = 1.0f;
_pitch_scaler = 1.0f;
_collective_scalar = ((float)(_throttle_radio_max - _throttle_radio_min))/1000.0f;
2015-06-16 08:56:00 -03:00
_collective_scalar_manual = 1.0f;
// we must be in set-up mode so mark swash as uninitialised
_heliflags.swash_initialised = false;
}
// reset_swash_servo
void AP_MotorsHeli::reset_swash_servo(RC_Channel& servo)
{
servo.radio_min = 1000;
servo.radio_max = 2000;
}
// init_swash - initialise the swash plate
void AP_MotorsHeli::init_swash()
{
// swash servo initialisation
init_servos();
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min = 1000;
_collective_max = 2000;
}
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
// calculate collective mid point as a number from 0 to 1000
_collective_mid_pwm = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min))*1000.0f;
2012-10-26 20:59:07 -03:00
// determine roll, pitch and collective input scaling
_roll_scaler = (float)_roll_max/4500.0f;
_pitch_scaler = (float)_pitch_max/4500.0f;
_collective_scalar = ((float)(_collective_max-_collective_min))/1000.0f;
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// mark swash as initialised
_heliflags.swash_initialised = true;
}
// init_swash_servo
void AP_MotorsHeli::init_swash_servo(RC_Channel& servo)
{
servo.set_range(0, 1000);
servo.radio_min = 1000;
servo.radio_max = 2000;
}
// set_delta_phase_angle for setting variable phase angle compensation and force
// recalculation of collective factors
void AP_MotorsHeli::set_delta_phase_angle(int16_t angle)
{
angle = constrain_int16(angle, -90, 90);
_delta_phase_angle = angle;
calculate_roll_pitch_collective_factors();
2014-07-26 04:29:12 -03:00
}
// update the throttle input filter
void AP_MotorsHeli::update_throttle_filter()
{
_throttle_filter.apply(_throttle_in, 1.0f/_loop_rate);
// constrain throttle signal to 0-1000
_throttle_control_input = constrain_float(_throttle_filter.get(),0.0f,1000.0f);
}
// set_radio_passthrough used to pass radio inputs directly to outputs
void AP_MotorsHeli::set_radio_passthrough(int16_t radio_roll_input, int16_t radio_pitch_input, int16_t radio_throttle_input, int16_t radio_yaw_input)
{
_roll_radio_passthrough = radio_roll_input;
_pitch_radio_passthrough = radio_pitch_input;
_throttle_radio_passthrough = radio_throttle_input;
_yaw_radio_passthrough = radio_yaw_input;
}
// reset_radio_passthrough used to reset all radio inputs to center
void AP_MotorsHeli::reset_radio_passthrough()
{
_roll_radio_passthrough = 0;
_pitch_radio_passthrough = 0;
_throttle_radio_passthrough = 500;
_yaw_radio_passthrough = 0;
}