Ardupilot2/libraries/AP_Mount/AP_Mount_Backend.cpp

211 lines
7.9 KiB
C++
Raw Normal View History

#include "AP_Mount_Backend.h"
2019-04-04 07:50:00 -03:00
#include <AP_AHRS/AP_AHRS.h>
2015-04-17 10:59:34 -03:00
extern const AP_HAL::HAL& hal;
// set_angle_targets - sets angle targets in degrees
void AP_Mount_Backend::set_angle_targets(float roll, float tilt, float pan)
{
// set angle targets
_angle_ef_target_rad.x = radians(roll);
_angle_ef_target_rad.y = radians(tilt);
_angle_ef_target_rad.z = radians(pan);
// set the mode to mavlink targeting
_frontend.set_mode(_instance, MAV_MOUNT_MODE_MAVLINK_TARGETING);
}
// set_roi_target - sets target location that mount should attempt to point towards
void AP_Mount_Backend::set_roi_target(const struct Location &target_loc)
{
// set the target gps location
_state._roi_target = target_loc;
_state._roi_target_set = true;
2015-04-17 10:59:34 -03:00
// set the mode to GPS tracking mode
_frontend.set_mode(_instance, MAV_MOUNT_MODE_GPS_POINT);
}
2019-03-16 04:06:02 -03:00
// set_sys_target - sets system that mount should attempt to point towards
void AP_Mount_Backend::set_target_sysid(uint8_t sysid)
{
_state._target_sysid = sysid;
// set the mode to sysid tracking mode
_frontend.set_mode(_instance, MAV_MOUNT_MODE_SYSID_TARGET);
}
// process MOUNT_CONFIGURE messages received from GCS. deprecated.
void AP_Mount_Backend::handle_mount_configure(const mavlink_mount_configure_t &packet)
2015-04-17 10:59:34 -03:00
{
set_mode((MAV_MOUNT_MODE)packet.mount_mode);
_state._stab_roll = packet.stab_roll;
_state._stab_tilt = packet.stab_pitch;
_state._stab_pan = packet.stab_yaw;
2015-04-17 10:59:34 -03:00
}
// process MOUNT_CONTROL messages received from GCS. deprecated.
void AP_Mount_Backend::handle_mount_control(const mavlink_mount_control_t &packet)
2015-04-17 10:59:34 -03:00
{
control((int32_t)packet.input_a, (int32_t)packet.input_b, (int32_t)packet.input_c, _state._mode);
}
void AP_Mount_Backend::control(int32_t pitch_or_lat, int32_t roll_or_lon, int32_t yaw_or_alt, MAV_MOUNT_MODE mount_mode)
{
_frontend.set_mode(_instance, mount_mode);
2015-04-17 10:59:34 -03:00
// interpret message fields based on mode
switch (_frontend.get_mode(_instance)) {
case MAV_MOUNT_MODE_RETRACT:
case MAV_MOUNT_MODE_NEUTRAL:
// do nothing with request if mount is retracted or in neutral position
break;
// set earth frame target angles from mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
set_angle_targets(roll_or_lon*0.01f, pitch_or_lat*0.01f, yaw_or_alt*0.01f);
2015-04-17 10:59:34 -03:00
break;
// Load neutral position and start RC Roll,Pitch,Yaw control with stabilization
case MAV_MOUNT_MODE_RC_TARGETING:
// do nothing if pilot is controlling the roll, pitch and yaw
break;
// set lat, lon, alt position targets from mavlink message
case MAV_MOUNT_MODE_GPS_POINT: {
const Location target_location{
pitch_or_lat,
roll_or_lon,
yaw_or_alt,
Location::AltFrame::ABOVE_HOME
};
2015-04-17 10:59:34 -03:00
set_roi_target(target_location);
break;
}
2015-04-17 10:59:34 -03:00
default:
// do nothing
break;
}
}
2018-11-10 16:08:59 -04:00
void AP_Mount_Backend::rate_input_rad(float &out, const RC_Channel *chan, float min, float max) const
{
if ((chan == nullptr) || (chan->get_radio_in() == 0)) {
return;
}
2018-11-10 16:08:59 -04:00
out += chan->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
out = constrain_float(out, radians(min*0.01f), radians(max*0.01f));
}
2015-04-17 10:59:34 -03:00
// update_targets_from_rc - updates angle targets using input from receiver
void AP_Mount_Backend::update_targets_from_rc()
{
const RC_Channel *roll_ch = rc().channel(_state._roll_rc_in - 1);
const RC_Channel *tilt_ch = rc().channel(_state._tilt_rc_in - 1);
const RC_Channel *pan_ch = rc().channel(_state._pan_rc_in - 1);
2015-04-17 10:59:34 -03:00
// if joystick_speed is defined then pilot input defines a rate of change of the angle
if (_frontend._joystick_speed) {
// allow pilot position input to come directly from an RC_Channel
rate_input_rad(_angle_ef_target_rad.x,
roll_ch,
_state._roll_angle_min,
_state._roll_angle_max);
rate_input_rad(_angle_ef_target_rad.y,
tilt_ch,
_state._tilt_angle_min,
_state._tilt_angle_max);
rate_input_rad(_angle_ef_target_rad.z,
pan_ch,
_state._pan_angle_min,
_state._pan_angle_max);
} else {
// allow pilot rate input to come directly from an RC_Channel
if ((roll_ch != nullptr) && (roll_ch->get_radio_in() != 0)) {
_angle_ef_target_rad.x = angle_input_rad(roll_ch, _state._roll_angle_min, _state._roll_angle_max);
2015-04-17 10:59:34 -03:00
}
if ((tilt_ch != nullptr) && (tilt_ch->get_radio_in() != 0)) {
_angle_ef_target_rad.y = angle_input_rad(tilt_ch, _state._tilt_angle_min, _state._tilt_angle_max);
2015-04-17 10:59:34 -03:00
}
if ((pan_ch != nullptr) && (pan_ch->get_radio_in() != 0)) {
_angle_ef_target_rad.z = angle_input_rad(pan_ch, _state._pan_angle_min, _state._pan_angle_max);
2015-04-17 10:59:34 -03:00
}
}
}
// returns the angle (radians) that the RC_Channel input is receiving
float AP_Mount_Backend::angle_input_rad(const RC_Channel* rc, int16_t angle_min, int16_t angle_max)
2015-04-17 10:59:34 -03:00
{
2019-04-04 07:50:00 -03:00
return radians(((rc->norm_input() + 1.0f) * 0.5f * (angle_max - angle_min) + angle_min)*0.01f);
2015-04-17 10:59:34 -03:00
}
bool AP_Mount_Backend::calc_angle_to_roi_target(Vector3f& angles_to_target_rad,
bool calc_tilt,
bool calc_pan,
2019-03-16 04:06:02 -03:00
bool relative_pan) const
{
if (!_state._roi_target_set) {
return false;
}
return calc_angle_to_location(_state._roi_target, angles_to_target_rad, calc_tilt, calc_pan, relative_pan);
}
2019-03-16 04:06:02 -03:00
bool AP_Mount_Backend::calc_angle_to_sysid_target(Vector3f& angles_to_target_rad,
bool calc_tilt,
bool calc_pan,
bool relative_pan) const
{
if (!_state._target_sysid_location_set) {
return false;
}
if (!_state._target_sysid) {
return false;
}
return calc_angle_to_location(_state._target_sysid_location,
angles_to_target_rad,
calc_tilt,
calc_pan,
relative_pan);
}
2015-04-17 10:59:34 -03:00
// calc_angle_to_location - calculates the earth-frame roll, tilt and pan angles (and radians) to point at the given target
2019-03-16 04:06:02 -03:00
bool AP_Mount_Backend::calc_angle_to_location(const struct Location &target, Vector3f& angles_to_target_rad, bool calc_tilt, bool calc_pan, bool relative_pan) const
2015-04-17 10:59:34 -03:00
{
Location current_loc;
if (!AP::ahrs().get_position(current_loc)) {
return false;
}
const float GPS_vector_x = (target.lng-current_loc.lng)*cosf(ToRad((current_loc.lat+target.lat)*0.00000005f))*0.01113195f;
const float GPS_vector_y = (target.lat-current_loc.lat)*0.01113195f;
int32_t target_alt_cm = 0;
if (!target.get_alt_cm(Location::AltFrame::ABOVE_HOME, target_alt_cm)) {
return false;
}
int32_t current_alt_cm = 0;
if (!current_loc.get_alt_cm(Location::AltFrame::ABOVE_HOME, current_alt_cm)) {
return false;
}
float GPS_vector_z = target_alt_cm - current_alt_cm;
float target_distance = 100.0f*norm(GPS_vector_x, GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters.
2015-04-17 10:59:34 -03:00
// initialise all angles to zero
angles_to_target_rad.zero();
// tilt calcs
if (calc_tilt) {
angles_to_target_rad.y = atan2f(GPS_vector_z, target_distance);
}
// pan calcs
if (calc_pan) {
// calc absolute heading and then onvert to vehicle relative yaw
angles_to_target_rad.z = atan2f(GPS_vector_x, GPS_vector_y);
if (relative_pan) {
angles_to_target_rad.z = wrap_PI(angles_to_target_rad.z - AP::ahrs().yaw);
}
2015-04-17 10:59:34 -03:00
}
return true;
2015-04-17 10:59:34 -03:00
}