Ardupilot2/libraries/AP_Motors/AP_MotorsHeli.cpp

866 lines
30 KiB
C++
Raw Normal View History

2013-05-29 20:51:34 -03:00
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsHeli.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
2012-10-26 20:59:07 -03:00
#include <stdlib.h>
#include <AP_HAL.h>
#include "AP_MotorsHeli.h"
2012-10-26 20:59:07 -03:00
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Param: SV1_POS
// @DisplayName: Servo 1 Position
// @Description: Angular location of swash servo #1
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, _servo1_pos, AP_MOTORS_HELI_SERVO1_POS),
// @Param: SV2_POS
// @DisplayName: Servo 2 Position
// @Description: Angular location of swash servo #2
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, _servo2_pos, AP_MOTORS_HELI_SERVO2_POS),
// @Param: SV3_POS
// @DisplayName: Servo 3 Position
// @Description: Angular location of swash servo #3
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, _servo3_pos, AP_MOTORS_HELI_SERVO3_POS),
// @Param: ROL_MAX
// @DisplayName: Swash Roll Angle Max
// @Description: Maximum roll angle of the swash plate
// @Range: 0 18000
// @Units: Centi-Degrees
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, _roll_max, AP_MOTORS_HELI_SWASH_ROLL_MAX),
// @Param: PIT_MAX
// @DisplayName: Swash Pitch Angle Max
// @Description: Maximum pitch angle of the swash plate
// @Range: 0 18000
// @Units: Centi-Degrees
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, _pitch_max, AP_MOTORS_HELI_SWASH_PITCH_MAX),
// @Param: COL_MIN
// @DisplayName: Collective Pitch Minimum
// @Description: Lowest possible servo position for the swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
// @Param: COL_MAX
// @DisplayName: Collective Pitch Maximum
// @Description: Highest possible servo position for the swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
// @Param: COL_MID
// @DisplayName: Collective Pitch Mid-Point
// @Description: Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, _collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID),
// @Param: TAIL_TYPE
// @DisplayName: Tail Type
// @Description: Tail type selection. Simpler yaw controller used if external gyro is selected
// @Values: 0:Servo only,1:Servo w/ ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch
// @User: Standard
AP_GROUPINFO("TAIL_TYPE",9, AP_MotorsHeli, _tail_type, AP_MOTORS_HELI_TAILTYPE_SERVO),
// @Param: SWASH_TYPE
// @DisplayName: Swash Type
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing
// @User: Standard
AP_GROUPINFO("SWASH_TYPE",10, AP_MotorsHeli, _swash_type, AP_MOTORS_HELI_SWASH_CCPM),
// @Param: GYR_GAIN
// @DisplayName: External Gyro Gain
// @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("GYR_GAIN", 11, AP_MotorsHeli, _ext_gyro_gain, AP_MOTORS_HELI_EXT_GYRO_GAIN),
// @Param: SV_MAN
// @DisplayName: Manual Servo Mode
// @Description: Pass radio inputs directly to servos for set-up. Do not set this manually!
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, _servo_manual, 0),
// @Param: PHANG
// @DisplayName: Swashplate Phase Angle Compensation
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
// @Range: -90 90
// @Units: Degrees
// @User: Advanced
// @Increment: 1
AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, _phase_angle, 0),
// @Param: COLYAW
// @DisplayName: Collective-Yaw Mixing
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
// @Range: -10 10
AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, _collective_yaw_effect, 0),
// @Param: GOV_SETPOINT
// @DisplayName: External Motor Governor Setpoint
// @Description: PWM passed to the external motor governor when external governor is enabled
// @Range: 0 1000
// @Units: PWM
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_SETPOINT", 15, AP_MotorsHeli, _rsc_setpoint, AP_MOTORS_HELI_RSC_SETPOINT),
// @Param: RSC_MODE
// @DisplayName: Rotor Speed Control Mode
// @Description: Controls the source of the desired rotor speed, either ch8 or RSC_SETPOINT
// @Values: 0:None, 1:Ch8 Input, 2:SetPoint
// @User: Standard
AP_GROUPINFO("RSC_MODE", 16, AP_MotorsHeli, _rsc_mode, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH),
// 17 was RSC_RAMP_RATE which has been replaced by RSC_RAMP_TIME
// @Param: FLYBAR_MODE
// @DisplayName: Flybar Mode Selector
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
// @Range: 0:NoFlybar 1:Flybar
// @User: Standard
AP_GROUPINFO("FLYBAR_MODE", 18, AP_MotorsHeli, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
2013-11-06 08:39:10 -04:00
// @Param: STAB_COL_MIN
// @DisplayName: Stabilize Throttle Minimum
// @Description: Minimum collective position while pilot directly controls collective
// @Range: 0 50
// @Units: Percent
// @Increment: 1
// @User: Standard
AP_GROUPINFO("STAB_COL_MIN", 19, AP_MotorsHeli, _manual_collective_min, AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN),
2013-11-06 08:39:10 -04:00
// @Param: STAB_COL_MAX
// @DisplayName: Stabilize Throttle Maximum
// @Description: Maximum collective position while pilot directly controls collective
// @Range: 50 100
// @Units: Percent
// @Increment: 1
// @User: Standard
AP_GROUPINFO("STAB_COL_MAX", 20, AP_MotorsHeli, _manual_collective_max, AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX),
2013-11-06 08:39:10 -04:00
// @Param: LAND_COL_MIN
// @DisplayName: Landing Collective Minimum
// @Description: Minimum collective position while landed or landing
// @Range: 0 500
// @Units: pwm
// @Increment: 1
// @User: Standard
AP_GROUPINFO("LAND_COL_MIN", 21, AP_MotorsHeli, _land_collective_min, AP_MOTORS_HELI_LAND_COLLECTIVE_MIN),
// @Param: RSC_RAMP_TIME
// @DisplayName: RSC Ramp Time
// @Description: Time in seconds for the main rotor to reach full speed
// @Range: 0 60
// @Units: Seconds
// @User: Standard
AP_GROUPINFO("RSC_RAMP_TIME", 22, AP_MotorsHeli,_rsc_ramp_time, AP_MOTORS_HELI_RSC_RAMP_TIME),
// @Param: TAIL_SPEED
// @DisplayName: Direct Drive VarPitch Tail ESC speed
// @Description: Direct Drive VarPitch Tail ESC speed. Only used when TailType is DirectDrive VarPitch
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("TAIL_SPEED", 24, AP_MotorsHeli, _direct_drive_tailspeed, AP_MOTOR_HELI_DIRECTDRIVE_DEFAULT),
AP_GROUPEND
};
//
// public methods
//
// init
void AP_MotorsHeli::Init()
{
// set update rate
set_update_rate(_speed_hz);
// ensure inputs are not passed through to servos
_servo_manual = 0;
// initialise some scalers
recalc_scalers();
// initialise swash plate
init_swash();
}
// set update rate to motors - a value in hertz
void AP_MotorsHeli::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
uint32_t mask =
1U << _motor_to_channel_map[AP_MOTORS_MOT_1] |
1U << _motor_to_channel_map[AP_MOTORS_MOT_2] |
1U << _motor_to_channel_map[AP_MOTORS_MOT_3] |
1U << _motor_to_channel_map[AP_MOTORS_MOT_4];
hal.rcout->set_freq(mask, _speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsHeli::enable()
{
// enable output channels
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_1]); // swash servo 1
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_2]); // swash servo 2
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_3]); // swash servo 3
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_4]); // yaw
hal.rcout->enable_ch(AP_MOTORS_HELI_AUX); // output for gyro gain or direct drive variable pitch tail motor
hal.rcout->enable_ch(AP_MOTORS_HELI_RSC); // output for main rotor esc
}
// output_min - sends minimum values out to the motors
void AP_MotorsHeli::output_min()
{
// move swash to mid
move_swash(0,0,500,0);
2013-11-06 08:39:10 -04:00
// override limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = false;
}
// output_test - wiggle servos in order to show connections are correct
void AP_MotorsHeli::output_test()
{
int16_t i;
// Send minimum values to all motors
output_min();
// servo 1
for( i=0; i<5; i++ ) {
2012-10-26 20:59:07 -03:00
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 100);
hal.scheduler->delay(300);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim - 100);
hal.scheduler->delay(300);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 0);
hal.scheduler->delay(300);
}
// servo 2
for( i=0; i<5; i++ ) {
2012-10-26 20:59:07 -03:00
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 100);
hal.scheduler->delay(300);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim - 100);
hal.scheduler->delay(300);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 0);
hal.scheduler->delay(300);
}
// servo 3
for( i=0; i<5; i++ ) {
2012-10-26 20:59:07 -03:00
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 100);
hal.scheduler->delay(300);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim - 100);
hal.scheduler->delay(300);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 0);
hal.scheduler->delay(300);
}
// external gyro
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) {
hal.rcout->write(AP_MOTORS_HELI_AUX, _ext_gyro_gain);
}
// servo 4
for( i=0; i<5; i++ ) {
2012-10-26 20:59:07 -03:00
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 100);
hal.scheduler->delay(300);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim - 100);
hal.scheduler->delay(300);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 0);
hal.scheduler->delay(300);
}
// Send minimum values to all motors
output_min();
}
// allow_arming - returns true if main rotor is spinning and it is ok to arm
bool AP_MotorsHeli::allow_arming()
{
// ensure main rotor has started
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_NONE && _servo_rsc->control_in > 0) {
return false;
}
// all other cases it is ok to arm
return true;
}
// get_pilot_desired_collective - converts pilot input (from 0 ~ 1000) to a value that can be fed into the move_swash function
int16_t AP_MotorsHeli::get_pilot_desired_collective(int16_t control_in)
{
// return immediately if reduce collective range for manual flight has not been configured
if (_manual_collective_min == 0 && _manual_collective_max == 100) {
return control_in;
}
// scale
int16_t collective_out;
collective_out = _manual_collective_min*10 + control_in * _collective_scalar_manual;
collective_out = constrain_int16(collective_out, 0, 1000);
return collective_out;
}
2013-11-06 08:39:10 -04:00
// return true if the main rotor is up to speed
bool AP_MotorsHeli::motor_runup_complete()
{
// if we have no control of motors, assume pilot has spun them up
if (_rsc_mode == AP_MOTORS_HELI_RSC_MODE_NONE) {
return true;
}
return _heliflags.motor_runup_complete;
}
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
void AP_MotorsHeli::recalc_scalers()
{
// recalculate rotor ramp up increment
if (_rsc_ramp_time <= 0) {
_rsc_ramp_time = 1;
}
_rsc_ramp_increment = 1000.0f / (_rsc_ramp_time * 100.0f);
}
//
// protected methods
//
// output_armed - sends commands to the motors
void AP_MotorsHeli::output_armed()
{
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
if (_servo_manual == 1) {
_rc_roll->servo_out = _rc_roll->control_in;
_rc_pitch->servo_out = _rc_pitch->control_in;
_rc_throttle->servo_out = _rc_throttle->control_in;
_rc_yaw->servo_out = _rc_yaw->control_in;
}
//static int counter = 0;
_rc_roll->calc_pwm();
_rc_pitch->calc_pwm();
_rc_throttle->calc_pwm();
_rc_yaw->calc_pwm();
move_swash( _rc_roll->servo_out, _rc_pitch->servo_out, _rc_throttle->servo_out, _rc_yaw->servo_out );
// To-Do: clean-up the passing in of the desired rotor speed
rsc_control(_servo_rsc->control_in);
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli::output_disarmed()
{
// for helis - armed or disarmed we allow servos to move
output_armed();
}
//
// private methods
//
// reset_swash - free up swash for maximum movements. Used for set-up
void AP_MotorsHeli::reset_swash()
{
// free up servo ranges
_servo_1->radio_min = 1000;
_servo_1->radio_max = 2000;
_servo_2->radio_min = 1000;
_servo_2->radio_max = 2000;
_servo_3->radio_min = 1000;
_servo_3->radio_max = 2000;
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// set roll, pitch and throttle scaling
_roll_scaler = 1.0f;
_pitch_scaler = 1.0f;
_collective_scalar = ((float)(_rc_throttle->radio_max - _rc_throttle->radio_min))/1000.0f;
_collective_scalar_manual = 1.0f;
// we must be in set-up mode so mark swash as uninitialised
_heliflags.swash_initialised = false;
}
// init_swash - initialise the swash plate
void AP_MotorsHeli::init_swash()
{
// swash servo initialisation
_servo_1->set_range(0,1000);
_servo_2->set_range(0,1000);
_servo_3->set_range(0,1000);
_servo_4->set_angle(4500);
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min = 1000;
_collective_max = 2000;
}
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
// calculate collective mid point as a number from 0 to 1000
_collective_mid_pwm = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min))*1000.0f;
2012-10-26 20:59:07 -03:00
// determine roll, pitch and collective input scaling
_roll_scaler = (float)_roll_max/4500.0f;
_pitch_scaler = (float)_pitch_max/4500.0f;
_collective_scalar = ((float)(_collective_max-_collective_min))/1000.0f;
_collective_scalar_manual = ((float)(_manual_collective_max - _manual_collective_min))/100.0f;
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// servo min/max values
_servo_1->radio_min = 1000;
_servo_1->radio_max = 2000;
_servo_2->radio_min = 1000;
_servo_2->radio_max = 2000;
_servo_3->radio_min = 1000;
_servo_3->radio_max = 2000;
// mark swash as initialised
_heliflags.swash_initialised = true;
}
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void AP_MotorsHeli::calculate_roll_pitch_collective_factors()
{
if (_swash_type == AP_MOTORS_HELI_SWASH_CCPM) { //CCPM Swashplate, perform control mixing
// roll factors
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _phase_angle));
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _phase_angle));
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _phase_angle));
// pitch factors
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - _phase_angle));
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - _phase_angle));
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - _phase_angle));
// collective factors
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
}else{ //H1 Swashplate, keep servo outputs seperated
// roll factors
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = 0;
_rollFactor[CH_3] = 0;
// pitch factors
_pitchFactor[CH_1] = 0;
_pitchFactor[CH_2] = 1;
_pitchFactor[CH_3] = 0;
// collective factors
_collectiveFactor[CH_1] = 0;
_collectiveFactor[CH_2] = 0;
_collectiveFactor[CH_3] = 1;
}
}
//
// heli_move_swash - moves swash plate to attitude of parameters passed in
// - expected ranges:
// roll : -4500 ~ 4500
// pitch: -4500 ~ 4500
// collective: 0 ~ 1000
// yaw: -4500 ~ 4500
//
void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out)
{
int16_t yaw_offset = 0;
int16_t coll_out_scaled;
2013-11-06 08:39:10 -04:00
// initialize limits flag
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
if (_servo_manual == 1) { // are we in manual servo mode? (i.e. swash set-up mode)?
// check if we need to free up the swash
if (_heliflags.swash_initialised) {
reset_swash();
}
coll_out_scaled = coll_in * _collective_scalar + _rc_throttle->radio_min - 1000;
}else{ // regular flight mode
// check if we need to reinitialise the swash
if (!_heliflags.swash_initialised) {
init_swash();
}
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion
// across the input range instead of stopping when the input hits the constrain value
// these calculations are based on an assumption of the user specified roll_max and pitch_max
// coming into this equation at 4500 or less, and based on the original assumption of the
// total _servo_x.servo_out range being -4500 to 4500.
roll_out = roll_out * _roll_scaler;
2013-11-06 08:39:10 -04:00
if (roll_out < -_roll_max) {
roll_out = -_roll_max;
limit.roll_pitch = true;
}
if (roll_out > _roll_max) {
roll_out = _roll_max;
limit.roll_pitch = true;
}
2013-11-06 08:39:10 -04:00
// scale pitch and update limits
pitch_out = pitch_out * _pitch_scaler;
2013-11-06 08:39:10 -04:00
if (pitch_out < -_pitch_max) {
pitch_out = -_pitch_max;
limit.roll_pitch = true;
}
if (pitch_out > _pitch_max) {
pitch_out = _pitch_max;
limit.roll_pitch = true;
}
// constrain collective input
_collective_out = coll_in;
if (_collective_out <= 0) {
_collective_out = 0;
limit.throttle_lower = true;
}
if (_collective_out >= 1000) {
_collective_out = 1000;
limit.throttle_upper = true;
}
// ensure not below landed/landing collective
if (_heliflags.landing_collective && _collective_out < _land_collective_min) {
_collective_out = _land_collective_min;
limit.throttle_lower = true;
}
// scale collective pitch
coll_out_scaled = _collective_out * _collective_scalar + _collective_min - 1000;
// rudder feed forward based on collective
// the feed-forward is not required when the motor is shut down and not creating torque
// also not required if we are using external gyro
if (motor_runup_complete() && _tail_type != AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) {
yaw_offset = _collective_yaw_effect * abs(_collective_out - _collective_mid_pwm);
}
}
// swashplate servos
_servo_1->servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1->radio_trim-1500);
_servo_2->servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2->radio_trim-1500);
if (_swash_type == AP_MOTORS_HELI_SWASH_H1) {
_servo_1->servo_out += 500;
_servo_2->servo_out += 500;
}
_servo_3->servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_servo_3->radio_trim-1500);
_servo_4->servo_out = yaw_out + yaw_offset;
2013-11-06 08:39:10 -04:00
// constrain yaw and update limits
if (_servo_4->servo_out < -4500) {
_servo_4->servo_out = -4500;
limit.yaw = true;
}
if (_servo_4->servo_out > 4500) {
_servo_4->servo_out = 4500;
limit.yaw = true;
}
// use servo_out to calculate pwm_out and radio_out
_servo_1->calc_pwm();
_servo_2->calc_pwm();
_servo_3->calc_pwm();
_servo_4->calc_pwm();
// actually move the servos
2012-10-26 20:59:07 -03:00
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_out);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_out);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_out);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_out);
// output gain to exernal gyro
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) {
hal.rcout->write(AP_MOTORS_HELI_AUX, _ext_gyro_gain);
}
// to be compatible with other frame types
motor_out[AP_MOTORS_MOT_1] = _servo_1->radio_out;
motor_out[AP_MOTORS_MOT_2] = _servo_2->radio_out;
motor_out[AP_MOTORS_MOT_3] = _servo_3->radio_out;
motor_out[AP_MOTORS_MOT_4] = _servo_4->radio_out;
}
// rsc_control - update value to send to tail and main rotor's ESC
// desired_rotor_speed is a desired speed from 0 to 1000
void AP_MotorsHeli::rsc_control(int16_t desired_rotor_speed)
{
// if disarmed output minimums
if (!armed()) {
// shut down tail rotor
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH || _tail_type == AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH) {
_tail_direct_drive_out = 0;
write_aux(_tail_direct_drive_out);
}
// shut down main rotor
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_NONE) {
_rotor_out = 0;
write_rsc(_rotor_out);
}
return;
}
// handle simpler case of pilot directly controlling main rotor
if (_rsc_mode == AP_MOTORS_HELI_RSC_MODE_NONE) {
switch (_tail_type) {
// return immediately if no direct drive tail motor
case AP_MOTORS_HELI_TAILTYPE_SERVO:
case AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO:
default:
return;
break;
// direct drive variable pitch tail
case AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH:
if (desired_rotor_speed > 0) {
// ramp up tail if main rotor on
tail_ramp(_direct_drive_setpoint);
}else{
// ramp down tail rotor if main rotor off
tail_ramp(0);
}
return;
break;
// direct drive fixed pitch tail
case AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH:
// output fixed-pitch speed control if Ch8 is high
if (desired_rotor_speed > 0) {
// copy yaw output to tail esc
write_aux(_servo_4->servo_out);
}else{
write_aux(0);
}
return;
break;
}
return;
}
// handle more complex case of channel 8 passthrough and external governor
int16_t temp_rotor_speed;
if (_rsc_mode == AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH) {
temp_rotor_speed = desired_rotor_speed;
}else{
// rotor speed is predefined set-point
if (desired_rotor_speed > 0) {
temp_rotor_speed = _rsc_setpoint;
}else{
temp_rotor_speed = 0;
}
}
// ramp up or down main rotor and tail
if (temp_rotor_speed > 0) {
// ramp up tail rotor (this does nothing if not using direct drive variable pitch tail)
tail_ramp(_direct_drive_tailspeed);
// note: this always returns true if not using direct drive variable pitch tail
if (tail_rotor_runup_complete()) {
rotor_ramp(temp_rotor_speed);
}
}else{
// shutting down main rotor
rotor_ramp(0);
// if completed shutting down main motor then shut-down tail rotor. Note: this does nothing if not using direct drive vairable pitch tail
if (_rotor_out == 0) {
tail_ramp(0);
}
}
// direct drive fixed pitch tail servo gets copy of yaw servo out (ch4) while main rotor is running
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH) {
// output fixed-pitch speed control if Ch8 is high
if (temp_rotor_speed > 0 || _rotor_out > 0) {
// copy yaw output to tail esc
write_aux(_servo_4->servo_out);
}else{
write_aux(0);
}
}
}
// rotor_ramp - ramps rotor towards target
// result put in _rotor_out and sent to ESC
void AP_MotorsHeli::rotor_ramp(int16_t rotor_target)
{
bool ramp_down = false; // true if we are ramping down so that we immediately output the target to the rotor ESC
// return immediately if not ramping required
if (_rsc_mode == AP_MOTORS_HELI_RSC_MODE_NONE) {
_rotor_out = rotor_target;
return;
}
// range check rotor_target
rotor_target = constrain_int16(rotor_target,0,1000);
// ramp towards target
if (_rotor_out < rotor_target) {
_rotor_out += _rsc_ramp_increment;
if (_rotor_out > rotor_target) {
_rotor_out = rotor_target;
}
}else if(_rotor_out > rotor_target) {
_rotor_out -= _rsc_ramp_increment;
if (_rotor_out < rotor_target) {
_rotor_out = rotor_target;
}
ramp_down = true;
}
// set runup complete flag
if (!_heliflags.motor_runup_complete && rotor_target > 0 && _rotor_out >= rotor_target) {
_heliflags.motor_runup_complete = true;
}
if (_heliflags.motor_runup_complete && rotor_target == 0 && _rotor_out <= 0) {
_heliflags.motor_runup_complete = false;
}
// output to rsc servo
if (ramp_down) {
// if ramping down we immediately output the target to the motors
// the _rotor_out is just an estimate of how fast the rotor is actually spinning
write_rsc(rotor_target);
}else{
write_rsc(_rotor_out);
}
2012-10-26 20:59:07 -03:00
}
// tail_ramp - ramps tail motor towards target. Only used for direct drive variable pitch tails
// results put into _tail_direct_drive_out and sent to ESC
void AP_MotorsHeli::tail_ramp(int16_t tail_target)
{
// return immediately if not ramping required
if (_tail_type != AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH) {
_tail_direct_drive_out = tail_target;
return;
}
// range check tail_target
tail_target = constrain_int16(tail_target,0,1000);
// ramp towards target
if (_tail_direct_drive_out < tail_target) {
_tail_direct_drive_out += AP_MOTORS_HELI_TAIL_RAMP_INCREMENT;
if (_tail_direct_drive_out >= tail_target) {
_tail_direct_drive_out = tail_target;
}
}else if(_tail_direct_drive_out > tail_target) {
_tail_direct_drive_out -= AP_MOTORS_HELI_TAIL_RAMP_INCREMENT;
if (_tail_direct_drive_out < tail_target) {
_tail_direct_drive_out = tail_target;
}
}
// output to tail servo
write_aux(_tail_direct_drive_out);
}
// return true if the tail rotor is up to speed
bool AP_MotorsHeli::tail_rotor_runup_complete()
{
// always return true if not using direct drive variable pitch tails
if (_tail_type != AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH) {
return true;
}
// check speed
return (armed() && _tail_direct_drive_out >= _direct_drive_tailspeed);
}
// write_rsc - outputs pwm onto output rsc channel (ch8)
// servo_out parameter is of the range 0 ~ 1000
void AP_MotorsHeli::write_rsc(int16_t servo_out)
{
_servo_rsc->servo_out = servo_out;
_servo_rsc->calc_pwm();
hal.rcout->write(AP_MOTORS_HELI_RSC, _servo_rsc->radio_out);
// put radio out into motors array for reporting purposes
motor_out[AP_MOTORS_MOT_8] = _servo_rsc->radio_out;
}
// write_aux - outputs pwm onto output aux channel (ch7)
// servo_out parameter is of the range 0 ~ 1000
void AP_MotorsHeli::write_aux(int16_t servo_out)
{
_servo_aux->servo_out = servo_out;
_servo_aux->calc_pwm();
hal.rcout->write(AP_MOTORS_HELI_AUX, _servo_aux->radio_out);
// put radio out into motors array for reporting purposes
motor_out[AP_MOTORS_MOT_7] = _servo_aux->radio_out;
}