Ardupilot2/libraries/AP_HAL_ChibiOS/system.cpp

378 lines
12 KiB
C++
Raw Normal View History

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <stdarg.h>
#include <stdio.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/system.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_InternalError/AP_InternalError.h>
#include "hwdef/common/watchdog.h"
#include "hwdef/common/stm32_util.h"
#include <AP_Vehicle/AP_Vehicle_Type.h>
#if AP_CRASHDUMP_ENABLED
#include <CrashCatcher.h>
#endif
#include <ch.h>
#include "hal.h"
#include <hrt.h>
#if CH_CFG_ST_RESOLUTION == 16
static_assert(sizeof(systime_t) == 2, "expected 16 bit systime_t");
#elif CH_CFG_ST_RESOLUTION == 32
static_assert(sizeof(systime_t) == 4, "expected 32 bit systime_t");
#endif
static_assert(sizeof(systime_t) == sizeof(sysinterval_t), "expected systime_t same size as sysinterval_t");
#if defined(HAL_EXPECTED_SYSCLOCK)
#ifdef STM32_SYS_CK
static_assert(HAL_EXPECTED_SYSCLOCK == STM32_SYS_CK, "unexpected STM32_SYS_CK value");
#elif defined(STM32_HCLK)
static_assert(HAL_EXPECTED_SYSCLOCK == STM32_HCLK, "unexpected STM32_HCLK value");
#else
#error "unknown system clock"
#endif
#endif
// debug variables chew up flash, but are handy if you've got a Fault and need
// easy access to the fault data iun the debugger:
#ifndef AP_FAULTHANDLER_DEBUG_VARIABLES_ENABLED
#define AP_FAULTHANDLER_DEBUG_VARIABLES_ENABLED 1
#endif
extern const AP_HAL::HAL& hal;
extern "C"
{
#define bkpt() __asm volatile("BKPT #0\n")
#if !AP_CRASHDUMP_ENABLED
// do legacy hardfault handling
void HardFault_Handler(void);
void HardFault_Handler(void) {
//Copy to local variables (not pointers) to allow GDB "i loc" to directly show the info
//Get thread context. Contains main registers including PC and LR
struct port_extctx ctx;
memcpy(&ctx, (void*)__get_PSP(), sizeof(struct port_extctx));
(void)ctx;
//Interrupt status register: Which interrupt have we encountered, e.g. HardFault?
FaultType faultType = (FaultType)__get_IPSR();
(void)faultType;
//For HardFault/BusFault this is the address that was accessed causing the error
uint32_t faultAddress = SCB->BFAR;
(void)faultAddress;
#if AP_FAULTHANDLER_DEBUG_VARIABLES_ENABLED
bool forced = SCB->HFSR & SCB_HFSR_FORCED_Msk;
(void)forced;
uint32_t cfsr = SCB->CFSR;
(void)cfsr;
//Flags about hardfault / busfault
//See http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/Cihdjcfc.html for reference
bool isFaultPrecise = ((SCB->CFSR >> SCB_CFSR_BUSFAULTSR_Pos) & (1 << 1) ? true : false);
bool isFaultImprecise = ((SCB->CFSR >> SCB_CFSR_BUSFAULTSR_Pos) & (1 << 2) ? true : false);
bool isFaultOnUnstacking = ((SCB->CFSR >> SCB_CFSR_BUSFAULTSR_Pos) & (1 << 3) ? true : false);
bool isFaultOnStacking = ((SCB->CFSR >> SCB_CFSR_BUSFAULTSR_Pos) & (1 << 4) ? true : false);
bool isFaultAddressValid = ((SCB->CFSR >> SCB_CFSR_BUSFAULTSR_Pos) & (1 << 7) ? true : false);
(void)isFaultPrecise;
(void)isFaultImprecise;
(void)isFaultOnUnstacking;
(void)isFaultOnStacking;
(void)isFaultAddressValid;
#endif // #if AP_FAULTHANDLER_DEBUG_VARIABLES_ENABLED
save_fault_watchdog(__LINE__, faultType, faultAddress, (uint32_t)ctx.lr_thd);
#ifdef HAL_GPIO_PIN_FAULT
while (true) {
// forced means that another kind of unhandled fault got escalated to a hardfault
if (faultType == BusFault) {
fault_printf("BUSFAULT\n");
} else if (forced) {
fault_printf("FORCED HARDFAULT\n");
} else {
fault_printf("HARDFAULT(%d)\n", int(faultType));
}
fault_printf("CSFR=0x%08x\n", cfsr);
fault_printf("CUR=0x%08x\n", ch.rlist.current);
if (ch.rlist.current) {
fault_printf("NAME=%s\n", ch.rlist.current->name);
}
fault_printf("FA=0x%08x\n", faultAddress);
fault_printf("PC=0x%08x\n", ctx.pc);
fault_printf("LR=0x%08x\n", ctx.lr_thd);
fault_printf("R0=0x%08x\n", ctx.r0);
fault_printf("R1=0x%08x\n", ctx.r1);
fault_printf("R2=0x%08x\n", ctx.r2);
fault_printf("R3=0x%08x\n", ctx.r3);
fault_printf("R12=0x%08x\n", ctx.r12);
fault_printf("XPSR=0x%08x\n", ctx.xpsr);
fault_printf("\n\n");
}
#endif
//Cause debugger to stop. Ignored if no debugger is attached
while(1) {}
}
// For the BusFault handler to be active SCB_SHCSR_BUSFAULTENA_Msk should be set in SCB->SHCSR
// ChibiOS does not do this by default
void BusFault_Handler(void) __attribute__((alias("HardFault_Handler")));
void UsageFault_Handler(void);
void UsageFault_Handler(void) {
//Copy to local variables (not pointers) to allow GDB "i loc" to directly show the info
//Get thread context. Contains main registers including PC and LR
struct port_extctx ctx;
memcpy(&ctx, (void*)__get_PSP(), sizeof(struct port_extctx));
(void)ctx;
//Interrupt status register: Which interrupt have we encountered, e.g. HardFault?
FaultType faultType = (FaultType)__get_IPSR();
(void)faultType;
uint32_t faultAddress = SCB->BFAR;
#if AP_FAULTHANDLER_DEBUG_VARIABLES_ENABLED
//Flags about hardfault / busfault
//See http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/Cihdjcfc.html for reference
bool isUndefinedInstructionFault = ((SCB->CFSR >> SCB_CFSR_USGFAULTSR_Pos) & (1 << 0) ? true : false);
bool isEPSRUsageFault = ((SCB->CFSR >> SCB_CFSR_USGFAULTSR_Pos) & (1 << 1) ? true : false);
bool isInvalidPCFault = ((SCB->CFSR >> SCB_CFSR_USGFAULTSR_Pos) & (1 << 2) ? true : false);
bool isNoCoprocessorFault = ((SCB->CFSR >> SCB_CFSR_USGFAULTSR_Pos) & (1 << 3) ? true : false);
bool isUnalignedAccessFault = ((SCB->CFSR >> SCB_CFSR_USGFAULTSR_Pos) & (1 << 8) ? true : false);
bool isDivideByZeroFault = ((SCB->CFSR >> SCB_CFSR_USGFAULTSR_Pos) & (1 << 9) ? true : false);
(void)isUndefinedInstructionFault;
(void)isEPSRUsageFault;
(void)isInvalidPCFault;
(void)isNoCoprocessorFault;
(void)isUnalignedAccessFault;
(void)isDivideByZeroFault;
#endif // AP_FAULTHANDLER_DEBUG_VARIABLES_ENABLED
save_fault_watchdog(__LINE__, faultType, faultAddress, (uint32_t)ctx.lr_thd);
//Cause debugger to stop. Ignored if no debugger is attached
while(1) {}
}
void MemManage_Handler(void);
void MemManage_Handler(void) {
//Copy to local variables (not pointers) to allow GDB "i loc" to directly show the info
//Get thread context. Contains main registers including PC and LR
struct port_extctx ctx;
memcpy(&ctx, (void*)__get_PSP(), sizeof(struct port_extctx));
(void)ctx;
//Interrupt status register: Which interrupt have we encountered, e.g. HardFault?
FaultType faultType = (FaultType)__get_IPSR();
(void)faultType;
//For HardFault/BusFault this is the address that was accessed causing the error
uint32_t faultAddress = SCB->MMFAR;
#if AP_FAULTHANDLER_DEBUG_VARIABLES_ENABLED
(void)faultAddress;
//Flags about hardfault / busfault
//See http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/Cihdjcfc.html for reference
bool isInstructionAccessViolation = ((SCB->CFSR >> SCB_CFSR_MEMFAULTSR_Pos) & (1 << 0) ? true : false);
bool isDataAccessViolation = ((SCB->CFSR >> SCB_CFSR_MEMFAULTSR_Pos) & (1 << 1) ? true : false);
bool isExceptionUnstackingFault = ((SCB->CFSR >> SCB_CFSR_MEMFAULTSR_Pos) & (1 << 3) ? true : false);
bool isExceptionStackingFault = ((SCB->CFSR >> SCB_CFSR_MEMFAULTSR_Pos) & (1 << 4) ? true : false);
bool isFaultAddressValid = ((SCB->CFSR >> SCB_CFSR_MEMFAULTSR_Pos) & (1 << 7) ? true : false);
(void)isInstructionAccessViolation;
(void)isDataAccessViolation;
(void)isExceptionUnstackingFault;
(void)isExceptionStackingFault;
(void)isFaultAddressValid;
#endif // AP_FAULTHANDLER_DEBUG_VARIABLES_ENABLED
save_fault_watchdog(__LINE__, faultType, faultAddress, (uint32_t)ctx.lr_thd);
while(1) {}
}
#else
// Handle via Crash Catcher
extern void HardFault_Handler(void);
void BusFault_Handler(void);
void BusFault_Handler(void) {
HardFault_Handler();
}
void UsageFault_Handler(void);
void UsageFault_Handler(void) {
HardFault_Handler();
}
void MemManage_Handler(void);
void MemManage_Handler(void) {
HardFault_Handler();
}
#endif
/*
save watchdog data for a hard fault
*/
void save_fault_watchdog(uint16_t line, FaultType fault_type, uint32_t fault_addr, uint32_t lr)
{
#ifndef HAL_BOOTLOADER_BUILD
bool using_watchdog = AP_BoardConfig::watchdog_enabled();
if (using_watchdog) {
AP_HAL::Util::PersistentData &pd = hal.util->persistent_data;
if (pd.fault_type == 0) {
// don't overwrite earlier fault
pd.fault_line = line;
pd.fault_type = fault_type;
pd.fault_addr = fault_addr;
thread_t *tp = chThdGetSelfX();
if (tp) {
pd.fault_thd_prio = tp->hdr.pqueue.prio;
// get first 4 bytes of the name, but only of first fault
if (tp->name && pd.thread_name4[0] == 0) {
strncpy_noterm(pd.thread_name4, tp->name, 4);
}
}
pd.fault_icsr = SCB->ICSR;
pd.fault_lr = lr;
}
stm32_watchdog_save((uint32_t *)&hal.util->persistent_data, (sizeof(hal.util->persistent_data)+3)/4);
}
#endif
}
void *__dso_handle;
void __cxa_pure_virtual(void);
void __cxa_pure_virtual() { while (1); } //TODO: Handle properly, maybe generate a traceback
void NMI_Handler(void);
void NMI_Handler(void) { while (1); }
#if defined(HAL_BOOTLOADER_BUILD) && HAL_ENABLE_DFU_BOOT
void __entry_hook(void);
void __entry_hook()
{
// read the persistent data
AP_HAL::Util::PersistentData pd;
stm32_watchdog_load((uint32_t *)&pd, (sizeof(pd)+3)/4);
if (pd.boot_to_dfu) {
pd.boot_to_dfu = false;
stm32_watchdog_save((uint32_t *)&pd, (sizeof(pd)+3)/4);
#if defined(STM32H7)
const uint32_t *app_base = (const uint32_t *)(0x1FF09800);
#else
const uint32_t *app_base = (const uint32_t *)(0x1FFF0000);
#endif
__set_MSP(*app_base);
((void (*)())*(&app_base[1]))();
while(true);
}
}
#endif
}
namespace AP_HAL {
void init()
{
}
void panic(const char *errormsg, ...)
{
#if !defined(HAL_BOOTLOADER_BUILD) && !APM_BUILD_TYPE(APM_BUILD_iofirmware)
INTERNAL_ERROR(AP_InternalError::error_t::panic);
va_list ap;
va_start(ap, errormsg);
vprintf(errormsg, ap);
va_end(ap);
hal.scheduler->delay_microseconds(10000);
while (1) {
va_start(ap, errormsg);
vprintf(errormsg, ap);
va_end(ap);
hal.scheduler->delay(500);
}
#else
// we don't support variable args in bootlaoder
chSysHalt(errormsg);
// we will never get here, this just to silence a warning
while (1) {}
#endif
}
__FASTRAMFUNC__ uint32_t micros()
{
#if CH_CFG_ST_RESOLUTION == 32 && CH_CFG_ST_FREQUENCY==1000000U
// special case optimisation for 32 bit timers
return st_lld_get_counter();
#else
return hrt_micros32();
#endif
}
2021-10-02 02:39:30 -03:00
uint16_t micros16()
{
#if CH_CFG_ST_RESOLUTION == 32 && CH_CFG_ST_FREQUENCY==1000000U
return st_lld_get_counter() & 0xFFFF;
#elif CH_CFG_ST_RESOLUTION == 16 && CH_CFG_ST_FREQUENCY==1000000U
return st_lld_get_counter();
#else
return hrt_micros32() & 0xFFFF;
#endif
}
__FASTRAMFUNC__ uint32_t millis()
{
return hrt_millis32();
}
__FASTRAMFUNC__ uint16_t millis16()
{
return hrt_millis32() & 0xFFFF;
}
__FASTRAMFUNC__ uint64_t micros64()
{
return hrt_micros64();
}
__FASTRAMFUNC__ uint64_t millis64()
{
return hrt_micros64() / 1000U;
}
__FASTRAMFUNC__ uint32_t native_micros()
{
return micros();
}
__FASTRAMFUNC__ uint32_t native_millis()
{
return millis();
}
__FASTRAMFUNC__ uint16_t native_millis16()
{
return millis16();
}
__FASTRAMFUNC__ uint64_t native_micros64()
{
return micros64();
}
__FASTRAMFUNC__ uint64_t native_millis64()
{
return millis64();
}
} // namespace AP_HAL