Ardupilot2/libraries/AC_AutoTune/AC_AutoTune_Multi.h

171 lines
7.4 KiB
C
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
support for autotune of multirotors. Based on original autotune code from ArduCopter, written by Leonard Hall
Converted to a library by Andrew Tridgell
*/
#pragma once
#include "AC_AutoTune.h"
class AC_AutoTune_Multi : public AC_AutoTune
{
public:
// constructor
AC_AutoTune_Multi();
// save gained, called on disarm
void save_tuning_gains() override;
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
protected:
//
// methods to load and save gains
//
// backup original gains and prepare for start of tuning
void backup_gains_and_initialise() override;
// switch to use original gains
void load_orig_gains() override;
// switch to gains found by last successful autotune
void load_tuned_gains() override;
// load gains used between tests. called during testing mode's update-gains step to set gains ahead of return-to-level step
void load_intra_test_gains() override;
// load test gains
void load_test_gains() override;
// reset the test vaariables for multi
void reset_vehicle_test_variables() override {};
// reset the update gain variables for multi
void reset_update_gain_variables() override {};
void test_init() override;
void test_run(AxisType test_axis, const float dir_sign) override;
// send intermittant updates to user on status of tune
void do_gcs_announcements() override;
// send post test updates to user
void do_post_test_gcs_announcements() override {};
// report final gains for a given axis to GCS
void report_final_gains(AxisType test_axis) const override;
// update gains for the rate P up tune type
void updating_rate_p_up_all(AxisType test_axis) override;
// update gains for the rate D up tune type
void updating_rate_d_up_all(AxisType test_axis) override;
// update gains for the rate D down tune type
void updating_rate_d_down_all(AxisType test_axis) override;
// update gains for the rate ff up tune type
void updating_rate_ff_up_all(AxisType test_axis) override {
// this should never happen
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
}
// update gains for the angle P up tune type
void updating_angle_p_up_all(AxisType test_axis) override;
// update gains for the angle P down tune type
void updating_angle_p_down_all(AxisType test_axis) override;
// update gains for the max gain tune type
void updating_max_gains_all(AxisType test_axis) override {
// this should never happen
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
}
// set gains post tune for the tune type
void set_gains_post_tune(AxisType test_axis) override;
// reverse direction for twitch test
bool twitch_reverse_direction() override { return !positive_direction; }
void Log_AutoTune() override;
void Log_AutoTuneDetails() override;
void Log_AutoTuneSweep() override {
// this should never happen
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
}
void Log_Write_AutoTune(uint8_t axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt);
void Log_Write_AutoTuneDetails(float angle_cd, float rate_cds);
void set_tune_sequence() override {
tune_seq[0] = RD_UP;
tune_seq[1] = RD_DOWN;
tune_seq[2] = RP_UP;
tune_seq[3] = SP_DOWN;
tune_seq[4] = SP_UP;
tune_seq[5] = TUNE_COMPLETE;
}
// get_axis_bitmask accessor
uint8_t get_axis_bitmask() const override { return axis_bitmask; }
// get_testing_step_timeout_ms accessor
uint32_t get_testing_step_timeout_ms() const override;
private:
// twitch test functions for multicopter
void twitch_test_init();
void twitch_test_run(AxisType test_axis, const float dir_sign);
void twitching_test_rate(float rate, float rate_target, float &meas_rate_min, float &meas_rate_max);
void twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min);
void twitching_test_angle(float angle, float rate, float angle_target, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max);
// measure acceleration during twitch test
void twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) const;
// updating_rate_d_up - increase D and adjust P to optimize the D term for a little bounce back
// optimize D term while keeping the maximum just below the target by adjusting P
void updating_rate_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max);
// updating_rate_d_down - decrease D and adjust P to optimize the D term for no bounce back
// optimize D term while keeping the maximum just below the target by adjusting P
void updating_rate_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max);
// updating_rate_p_up_d_down - increase P to ensure the target is reached while checking bounce back isn't increasing
// P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold
void updating_rate_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max);
// updating_angle_p_down - decrease P until we don't reach the target before time out
// P is decreased to ensure we are not overshooting the target
void updating_angle_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max);
// updating_angle_p_up - increase P to ensure the target is reached
// P is increased until we achieve our target within a reasonable time
void updating_angle_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max);
// report gain formating helper
void report_axis_gains(const char* axis_string, float rate_P, float rate_I, float rate_D, float angle_P, float max_accel) const;
// parameters
AP_Int8 axis_bitmask; // axes to be tuned
AP_Float aggressiveness; // aircraft response aggressiveness to be tuned
AP_Float min_d; // minimum rate d gain allowed during tuning
};