337 lines
10 KiB
C++
337 lines
10 KiB
C++
|
/*
|
||
|
This program is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
/*
|
||
|
Simulator Connector for JSON based interfaces
|
||
|
*/
|
||
|
|
||
|
#include "SIM_JSON.h"
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <arpa/inet.h>
|
||
|
#include <errno.h>
|
||
|
|
||
|
#include <AP_HAL/AP_HAL.h>
|
||
|
#include <AP_Logger/AP_Logger.h>
|
||
|
#include <AP_HAL/utility/replace.h>
|
||
|
|
||
|
#define UDP_TIMEOUT_MS 100
|
||
|
|
||
|
extern const AP_HAL::HAL& hal;
|
||
|
|
||
|
using namespace SITL;
|
||
|
|
||
|
static const struct {
|
||
|
const char *name;
|
||
|
float value;
|
||
|
bool save;
|
||
|
} sim_defaults[] = {
|
||
|
{ "BRD_OPTIONS", 0},
|
||
|
{ "INS_GYR_CAL", 0 },
|
||
|
{ "INS_ACC2OFFS_X", 0.001 },
|
||
|
{ "INS_ACC2OFFS_Y", 0.001 },
|
||
|
{ "INS_ACC2OFFS_Z", 0.001 },
|
||
|
{ "INS_ACC2SCAL_X", 1.001 },
|
||
|
{ "INS_ACC2SCAL_Y", 1.001 },
|
||
|
{ "INS_ACC2SCAL_Z", 1.001 },
|
||
|
{ "INS_ACCOFFS_X", 0.001 },
|
||
|
{ "INS_ACCOFFS_Y", 0.001 },
|
||
|
{ "INS_ACCOFFS_Z", 0.001 },
|
||
|
{ "INS_ACCSCAL_X", 1.001 },
|
||
|
{ "INS_ACCSCAL_Y", 1.001 },
|
||
|
{ "INS_ACCSCAL_Z", 1.001 },
|
||
|
};
|
||
|
|
||
|
|
||
|
JSON::JSON(const char *frame_str) :
|
||
|
Aircraft(frame_str),
|
||
|
sock(true)
|
||
|
{
|
||
|
printf("Starting SITL: JSON\n");
|
||
|
|
||
|
const char *colon = strchr(frame_str, ':');
|
||
|
if (colon) {
|
||
|
target_ip = colon+1;
|
||
|
}
|
||
|
|
||
|
for (uint8_t i=0; i<ARRAY_SIZE(sim_defaults); i++) {
|
||
|
AP_Param::set_default_by_name(sim_defaults[i].name, sim_defaults[i].value);
|
||
|
if (sim_defaults[i].save) {
|
||
|
enum ap_var_type ptype;
|
||
|
AP_Param *p = AP_Param::find(sim_defaults[i].name, &ptype);
|
||
|
if (!p->configured()) {
|
||
|
p->save();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Create & set in/out socket
|
||
|
*/
|
||
|
void JSON::set_interface_ports(const char* address, const int port_in, const int port_out)
|
||
|
{
|
||
|
sock.set_blocking(false);
|
||
|
sock.reuseaddress();
|
||
|
|
||
|
if (strcmp("127.0.0.1",address) != 0) {
|
||
|
target_ip = address;
|
||
|
}
|
||
|
control_port = port_out;
|
||
|
|
||
|
printf("JSON control interface set to %s:%u\n", target_ip, control_port);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Decode and send servos
|
||
|
*/
|
||
|
void JSON::output_servos(const struct sitl_input &input)
|
||
|
{
|
||
|
servo_packet pkt;
|
||
|
pkt.frame_count = frame_counter;
|
||
|
pkt.speedup = get_speedup();
|
||
|
for (uint8_t i=0; i<16; i++) {
|
||
|
pkt.pwm[i] = input.servos[i];
|
||
|
}
|
||
|
|
||
|
size_t send_ret = sock.sendto(&pkt, sizeof(pkt), target_ip, control_port);
|
||
|
if (send_ret != sizeof(pkt)) {
|
||
|
if (send_ret <= 0) {
|
||
|
printf("Unable to send servo output to %s:%u - Error: %s, Return value: %ld\n",
|
||
|
target_ip, control_port, strerror(errno), (long)send_ret);
|
||
|
} else {
|
||
|
printf("Sent %ld bytes instead of %lu bytes\n", (long)send_ret, (unsigned long)sizeof(pkt));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
very simple JSON parser for sensor data
|
||
|
called with pointer to one row of sensor data, nul terminated
|
||
|
|
||
|
This parser does not do any syntax checking, and is not at all
|
||
|
general purpose
|
||
|
*/
|
||
|
bool JSON::parse_sensors(const char *json)
|
||
|
{
|
||
|
//printf("%s\n", json);
|
||
|
for (uint16_t i=0; i<ARRAY_SIZE(keytable); i++) {
|
||
|
struct keytable &key = keytable[i];
|
||
|
|
||
|
/* look for section header */
|
||
|
const char *p = strstr(json, key.section);
|
||
|
if (!p) {
|
||
|
// we don't have this sensor
|
||
|
printf("Failed to find %s\n", key.section);
|
||
|
continue;
|
||
|
}
|
||
|
p += strlen(key.section)+1;
|
||
|
|
||
|
// find key inside section
|
||
|
p = strstr(p, key.key);
|
||
|
if (!p) {
|
||
|
printf("Failed to find key %s/%s\n", key.section, key.key);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
p += strlen(key.key)+2;
|
||
|
switch (key.type) {
|
||
|
case DATA_UINT64:
|
||
|
*((uint64_t *)key.ptr) = atof(p); // using atof rather than strtoul means we support scientific notation
|
||
|
//printf("%s/%s = %lu\n", key.section, key.key, *((uint64_t *)key.ptr));
|
||
|
break;
|
||
|
|
||
|
case DATA_FLOAT:
|
||
|
*((float *)key.ptr) = atof(p);
|
||
|
//printf("%s/%s = %f\n", key.section, key.key, *((float *)key.ptr));
|
||
|
break;
|
||
|
|
||
|
case DATA_DOUBLE:
|
||
|
*((double *)key.ptr) = atof(p);
|
||
|
//printf("%s/%s = %f\n", key.section, key.key, *((double *)key.ptr));
|
||
|
break;
|
||
|
|
||
|
case DATA_VECTOR3F: {
|
||
|
Vector3f *v = (Vector3f *)key.ptr;
|
||
|
if (sscanf(p, "[%f, %f, %f]", &v->x, &v->y, &v->z) != 3) {
|
||
|
printf("Failed to parse Vector3f for %s/%s\n", key.section, key.key);
|
||
|
return false;
|
||
|
}
|
||
|
//printf("%s/%s = %f, %f, %f\n", key.section, key.key, v->x, v->y, v->z);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Receive new sensor data from simulator
|
||
|
This is a blocking function
|
||
|
*/
|
||
|
void JSON::recv_fdm(const struct sitl_input &input)
|
||
|
{
|
||
|
// Receive sensor packet
|
||
|
ssize_t ret = sock.recv(&sensor_buffer[sensor_buffer_len], sizeof(sensor_buffer)-sensor_buffer_len, UDP_TIMEOUT_MS);
|
||
|
uint32_t wait_ms = UDP_TIMEOUT_MS;
|
||
|
while (ret <= 0) {
|
||
|
//printf("No JSON sensor message received - %s\n", strerror(errno));
|
||
|
ret = sock.recv(&sensor_buffer[sensor_buffer_len], sizeof(sensor_buffer)-sensor_buffer_len, UDP_TIMEOUT_MS);
|
||
|
wait_ms += UDP_TIMEOUT_MS;
|
||
|
// if no sensor message is received after 10 second resend servos, this help cope with SITL and the physics getting out of sync
|
||
|
if (wait_ms > 1000) {
|
||
|
wait_ms = 0;
|
||
|
printf("No JSON sensor message received, resending servos\n");
|
||
|
output_servos(input);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// convert '\n' into nul
|
||
|
while (uint8_t *p = (uint8_t *)memchr(&sensor_buffer[sensor_buffer_len], '\n', ret)) {
|
||
|
*p = 0;
|
||
|
}
|
||
|
sensor_buffer_len += ret;
|
||
|
|
||
|
const uint8_t *p2 = (const uint8_t *)memrchr(sensor_buffer, 0, sensor_buffer_len);
|
||
|
if (p2 == nullptr || p2 == sensor_buffer) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const uint8_t *p1 = (const uint8_t *)memrchr(sensor_buffer, 0, p2 - sensor_buffer);
|
||
|
if (p1 == nullptr) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
parse_sensors((const char *)(p1+1));
|
||
|
|
||
|
memmove(sensor_buffer, p2, sensor_buffer_len - (p2 - sensor_buffer));
|
||
|
sensor_buffer_len = sensor_buffer_len - (p2 - sensor_buffer);
|
||
|
|
||
|
accel_body = Vector3f(state.imu.accel_body[0],
|
||
|
state.imu.accel_body[1],
|
||
|
state.imu.accel_body[2]);
|
||
|
|
||
|
gyro = Vector3f(state.imu.gyro[0],
|
||
|
state.imu.gyro[1],
|
||
|
state.imu.gyro[2]);
|
||
|
|
||
|
velocity_ef = Vector3f(state.velocity[0],
|
||
|
state.velocity[1],
|
||
|
state.velocity[2]);
|
||
|
|
||
|
position = Vector3f(state.position[0],
|
||
|
state.position[1],
|
||
|
state.position[2]);
|
||
|
|
||
|
dcm.from_euler(state.attitude[0], state.attitude[1], state.attitude[2]);
|
||
|
|
||
|
// Convert from a meters from origin physics to a lat long alt
|
||
|
update_position();
|
||
|
|
||
|
if (last_timestamp) {
|
||
|
int deltat;
|
||
|
if (state.timestamp < last_timestamp) {
|
||
|
// Physics time has gone backwards, don't reset AP, assume an average size timestep
|
||
|
printf("Detected physics reset\n");
|
||
|
deltat = average_frame_time;
|
||
|
} else {
|
||
|
deltat = state.timestamp - last_timestamp;
|
||
|
}
|
||
|
time_now_us += deltat;
|
||
|
|
||
|
if (deltat > 0 && deltat < 100000) {
|
||
|
if (average_frame_time < 1) {
|
||
|
average_frame_time = deltat;
|
||
|
}
|
||
|
average_frame_time = average_frame_time * 0.98 + deltat * 0.02;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
// @LoggerMessage: JSN1
|
||
|
// @Description: Log data received from JSON simulator
|
||
|
// @Field: TimeUS: Time since system startup
|
||
|
// @Field: TUS: Simulation's timestamp
|
||
|
// @Field: R: Simulation's roll
|
||
|
// @Field: P: Simulation's pitch
|
||
|
// @Field: Y: Simulation's yaw
|
||
|
// @Field: GX: Simulated gyroscope, X-axis
|
||
|
// @Field: GY: Simulated gyroscope, Y-axis
|
||
|
// @Field: GZ: Simulated gyroscope, Z-axis
|
||
|
AP::logger().Write("JSN1", "TimeUS,TUS,R,P,Y,GX,GY,GZ",
|
||
|
"QQffffff",
|
||
|
AP_HAL::micros64(),
|
||
|
state.timestamp,
|
||
|
degrees(state.pose.roll),
|
||
|
degrees(state.pose.pitch),
|
||
|
degrees(state.pose.yaw),
|
||
|
degrees(gyro.x),
|
||
|
degrees(gyro.y),
|
||
|
degrees(gyro.z));
|
||
|
|
||
|
Vector3f velocity_bf = dcm.transposed() * velocity_ef;
|
||
|
position = home.get_distance_NED(location);
|
||
|
|
||
|
// @LoggerMessage: JSN2
|
||
|
// @Description: Log data received from JSON simulator
|
||
|
// @Field: TimeUS: Time since system startup
|
||
|
// @Field: AX: simulation's acceleration, X-axis
|
||
|
// @Field: AY: simulation's acceleration, Y-axis
|
||
|
// @Field: AZ: simulation's acceleration, Z-axis
|
||
|
// @Field: VX: simulation's velocity, X-axis
|
||
|
// @Field: VY: simulation's velocity, Y-axis
|
||
|
// @Field: VZ: simulation's velocity, Z-axis
|
||
|
// @Field: PX: simulation's position, X-axis
|
||
|
// @Field: PY: simulation's position, Y-axis
|
||
|
// @Field: PZ: simulation's position, Z-axis
|
||
|
// @Field: Alt: simulation's gps altitude
|
||
|
// @Field: SD: simulation's earth-frame speed-down
|
||
|
AP::logger().Write("JSN2", "TimeUS,AX,AY,AZ,VX,VY,VZ,PX,PY,PZ,Alt,SD",
|
||
|
"Qfffffffffff",
|
||
|
AP_HAL::micros64(),
|
||
|
accel_body.x,
|
||
|
accel_body.y,
|
||
|
accel_body.z,
|
||
|
velocity_bf.x,
|
||
|
velocity_bf.y,
|
||
|
velocity_bf.z,
|
||
|
position.x,
|
||
|
position.y,
|
||
|
position.z,
|
||
|
state.gps.alt,
|
||
|
velocity_ef.z);
|
||
|
#endif
|
||
|
|
||
|
last_timestamp = state.timestamp;
|
||
|
frame_counter++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
update the JSON simulation by one time step
|
||
|
*/
|
||
|
void JSON::update(const struct sitl_input &input)
|
||
|
{
|
||
|
// send to JSON model
|
||
|
output_servos(input);
|
||
|
|
||
|
// receive from JSON model
|
||
|
recv_fdm(input);
|
||
|
|
||
|
// update magnetic field
|
||
|
// as the model does not provide mag feild we calculate it from position and attitude
|
||
|
update_mag_field_bf();
|
||
|
}
|