Ardupilot2/libraries/AP_HAL_Linux/RCOutput_AeroIO.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

288 lines
7.8 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2016 Intel Corporation. All rights reserved.
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "RCOutput_AeroIO.h"
#include <utility>
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/utility/sparse-endian.h>
#include <AP_Math/AP_Math.h>
using namespace Linux;
// Device name in @SPIDeviceDriver#_device
#define DEVICE_NAME "aeroio"
// Number of channels
#define PWM_CHAN_COUNT 16
// Set all channels
#define ALL_CHAN_MASK ((1 << PWM_CHAN_COUNT) - 1)
// Default PWM frequency
#define DEFAULT_FREQ 400
// Default PWM duty cycle
#define DEFAULT_DUTY 0
// Set or Clear MSb of BYTE
#define WADDRESS(x) ((x) | 0x8000)
#define RADDRESS(x) ((x) & 0x7FFF)
// Variables to perform ongoing tests
#define READ_PREFIX 0x80
#define WRITE_PREFIX 0x40
/**
* The data_array uses 3 elements to perform the data transaction.
* The first element is a data byte that provides to FPGA's hardware
* the transaction type that will be realized inside the SPI module.
* Where:
*
*
* MSB LSB
*
* wr_addr rd_addr reserved reserved reserved reserved reserved reserved
*
*
*
* Register wr_addr rd_addr
*
* write 0 X
*
* read X 0
*
* status 1 1
*
*
* So, to perform a write transaction in the SPI module it's necessary to send. E.g:
* 0b 01xx xxxx
* And to a read transaction..
* 0b 10xx xxxx
*
* The PWM frequency is always even and the duty cycle percentage odd. E.g:
* pwm_01: Address 0x0000 frequency
* : Address 0x0001 duty cycle
* pwm_02: Address 0x0002 frequency
* .
* .
* .
*
* Eg of allowed values:
* // PWM channel in 100Hz
* uint16_t freq = 100;
*
* // duty cycle in (1823/65535) that's 2.78% of 100Hz:
* // the signal will hold high until 278 usec
* uint16_t duty = 1823;
*/
extern const AP_HAL::HAL& hal;
RCOutput_AeroIO::RCOutput_AeroIO()
: _freq_buffer(new uint16_t[PWM_CHAN_COUNT])
, _duty_buffer(new uint16_t[PWM_CHAN_COUNT])
{
}
RCOutput_AeroIO::~RCOutput_AeroIO()
{
2018-01-24 15:53:40 -04:00
delete[] _freq_buffer;
delete[] _duty_buffer;
}
void RCOutput_AeroIO::init()
{
_spi = std::move(hal.spi->get_device(DEVICE_NAME));
if (!_spi) {
AP_HAL::panic("Could not initialize AeroIO");
}
// Reset all channels to default value
cork();
set_freq(ALL_CHAN_MASK, DEFAULT_FREQ);
for (uint8_t i = 0; i < PWM_CHAN_COUNT; i++) {
write(i, DEFAULT_DUTY);
}
push();
}
void RCOutput_AeroIO::set_freq(uint32_t chmask, uint16_t freq_hz)
{
_pending_freq_write_mask |= chmask;
for (uint8_t i = 0; i < PWM_CHAN_COUNT; i++) {
if ((chmask >> i) & 0x01) {
_freq_buffer[i] = freq_hz;
}
}
if (!_corking) {
_corking = true;
push();
}
}
uint16_t RCOutput_AeroIO::get_freq(uint8_t ch)
{
if (ch >= PWM_CHAN_COUNT) {
return 0;
}
return _freq_buffer[ch];
}
void RCOutput_AeroIO::enable_ch(uint8_t ch)
{
if (ch >= PWM_CHAN_COUNT) {
return;
}
_pending_duty_write_mask |= (1U << ch);
_corking = true;
push();
}
void RCOutput_AeroIO::disable_ch(uint8_t ch)
{
if (ch >= PWM_CHAN_COUNT) {
return;
}
_duty_buffer[ch] = 0;
_pending_duty_write_mask |= (1U << ch);
_corking = true;
push();
}
void RCOutput_AeroIO::write(uint8_t ch, uint16_t period_us)
{
_pending_duty_write_mask |= (1U << ch);
_duty_buffer[ch] = period_us;
if (!_corking) {
_corking = true;
push();
}
}
void RCOutput_AeroIO::cork()
{
_corking = true;
}
void RCOutput_AeroIO::push()
{
if (!_corking) {
return;
}
_corking = false;
for (uint8_t i = 0; i < PWM_CHAN_COUNT; i++) {
if ((_pending_freq_write_mask >> i) & 0x01) {
_hw_write(2 * i + 1, _freq_buffer[i]);
}
}
for (uint8_t i = 0; i < PWM_CHAN_COUNT; i++) {
if ((_pending_duty_write_mask >> i) & 0x01) {
_hw_write(2 * i, _usec_to_hw(_freq_buffer[i], _duty_buffer[i]));
}
}
_pending_freq_write_mask = _pending_duty_write_mask = 0;
}
uint16_t RCOutput_AeroIO::read(uint8_t ch)
{
if (ch >= PWM_CHAN_COUNT) {
return 0;
}
#ifndef AEROIO_DEBUG
return _duty_buffer[ch];
#else
return _hw_to_usec(_freq_buffer[ch], _hw_read(2 * ch));
#endif
}
void RCOutput_AeroIO::read(uint16_t *period_us, uint8_t len)
{
for (uint8_t i = 0; i < len; i++) {
period_us[i] = read(i);
}
}
bool RCOutput_AeroIO::_hw_write(uint16_t address, uint16_t data)
{
struct PACKED {
uint8_t prefix;
be16_t addr;
be16_t val;
} tx;
address = WADDRESS(address);
tx.prefix = WRITE_PREFIX;
tx.addr = htobe16(address);
tx.val = htobe16(data);
return _spi->transfer((uint8_t *)&tx, sizeof(tx), nullptr, 0);
}
uint16_t RCOutput_AeroIO::_hw_read(uint16_t address)
{
struct PACKED {
uint8_t prefix;
be16_t addr;
} tx;
struct PACKED {
uint8_t ignored[2];
be16_t val;
} rx;
address = RADDRESS(address);
// Write in the SPI buffer the address value
tx.prefix = WRITE_PREFIX;
tx.addr = htobe16(address);
if (!_spi->transfer((uint8_t *)&tx, sizeof(tx), nullptr, 0)) {
return 0;
}
/*
* Read the SPI buffer, sending only the prefix as tx
* The hardware will fill in 32 bits after the request
*/
tx.prefix = READ_PREFIX;
if (!_spi->transfer((uint8_t *)&tx, 1, (uint8_t *)&rx, sizeof(rx))) {
return 0;
}
return be16toh(rx.val);
}
uint16_t RCOutput_AeroIO::_usec_to_hw(uint16_t freq, uint16_t usec)
{
float f = freq;
float u = usec;
return 0xFFFF * u * f / AP_USEC_PER_SEC;
}
uint16_t RCOutput_AeroIO::_hw_to_usec(uint16_t freq, uint16_t hw_val)
{
float p = hw_val;
float f = freq;
return p * AP_USEC_PER_SEC / (0xFFFF * f);
}