2014-11-21 12:26:58 -04:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
/*
* AP_Compass_AK8963 . cpp
* Code by Georgii Staroselskii . Emlid . com
*
* Sensor is conected to SPI port
*
*/
# include <AP_Math.h>
# include <AP_HAL.h>
# include "AP_Compass_AK8963.h"
# define READ_FLAG 0x80
# define MPUREG_I2C_SLV0_ADDR 0x25
# define MPUREG_I2C_SLV0_REG 0x26
# define MPUREG_I2C_SLV0_CTRL 0x27
# define MPUREG_EXT_SENS_DATA_00 0x49
# define MPUREG_I2C_SLV0_DO 0x63
# define MPU9250_SPI_BACKEND 1
# define MPUREG_PWR_MGMT_1 0x6B
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device
/* bit definitions for MPUREG_USER_CTRL */
# define MPUREG_USER_CTRL 0x6A
# define BIT_USER_CTRL_I2C_MST_EN 0x20 /* Enable MPU to act as the I2C Master to external slave sensors */
# define BIT_USER_CTRL_I2C_IF_DIS 0x10
/* bit definitions for MPUREG_MST_CTRL */
# define MPUREG_I2C_MST_CTRL 0x24
# define I2C_SLV0_EN 0x80
# define I2C_MST_CLOCK_400KHZ 0x0D
# define AK8963_I2C_ADDR 0x0c
# define AK8963_WIA 0x00
# define AK8963_Device_ID 0x48
# define AK8963_INFO 0x01
# define AK8963_ST1 0x02
# define AK8963_DRDY 0x01
# define AK8963_DOR 0x02
# define AK8963_HXL 0x03
/* bit definitions for AK8963 CNTL1 */
# define AK8963_CNTL1 0x0A
# define AK8963_CONTINUOUS_MODE1 0x2
# define AK8963_CONTINUOUS_MODE2 0x6
# define AK8963_SELFTEST_MODE 0x8
# define AK8963_POWERDOWN_MODE 0x0
# define AK8963_FUSE_MODE 0xf
# define AK8963_16BIT_ADC 0x10
# define AK8963_14BIT_ADC 0x00
# define AK8963_CNTL2 0x0B
# define AK8963_RESET 0x01
# define AK8963_ASTC 0x0C
# define AK8983_SELFTEST_MAGNETIC_FIELD_ON 0x40
# define AK8963_ASAX 0x10
# define AK8963_DEBUG 0
# define AK8963_SELFTEST 0
# if AK8963_DEBUG
# define error(...) fprintf(stderr, __VA_ARGS__)
# define debug(...) hal.console->printf(__VA_ARGS__)
2015-01-06 17:39:54 -04:00
# define ASSERT(x) assert(x)
2014-11-21 12:26:58 -04:00
# else
# define error(...)
# define debug(...)
2015-01-06 17:39:54 -04:00
# define ASSERT(x)
2014-11-21 12:26:58 -04:00
# endif
extern const AP_HAL : : HAL & hal ;
AK8963_MPU9250_SPI_Backend : : AK8963_MPU9250_SPI_Backend ( )
{
_spi = hal . spi - > device ( AP_HAL : : SPIDevice_MPU9250 ) ;
if ( _spi = = NULL ) {
2015-01-06 17:39:54 -04:00
hal . scheduler - > panic ( PSTR ( " Cannot get SPIDevice_MPU9250 " ) ) ;
2014-11-21 12:26:58 -04:00
}
_spi_sem = _spi - > get_semaphore ( ) ;
}
bool AK8963_MPU9250_SPI_Backend : : sem_take_blocking ( )
{
return _spi_sem - > take ( 10 ) ;
}
bool AK8963_MPU9250_SPI_Backend : : sem_give ( )
{
return _spi_sem - > give ( ) ;
}
bool AK8963_MPU9250_SPI_Backend : : sem_take_nonblocking ( )
{
/**
* Take nonblocking from a TimerProcess context &
* monitor for bad failures
*/
static int _sem_failure_count = 0 ;
bool got = _spi_sem - > take_nonblocking ( ) ;
if ( ! got ) {
if ( ! hal . scheduler - > system_initializing ( ) ) {
_sem_failure_count + + ;
if ( _sem_failure_count > 100 ) {
hal . scheduler - > panic ( PSTR ( " PANIC: failed to take _spi_sem "
" 100 times in a row, in "
" AP_Compass_AK8963::_update " ) ) ;
}
}
return false ; /* never reached */
} else {
_sem_failure_count = 0 ;
}
return got ;
}
void AK8963_MPU9250_SPI_Backend : : read ( uint8_t address , uint8_t * buf , uint32_t count )
{
2015-01-06 17:39:54 -04:00
ASSERT ( count < 10 ) ;
2014-11-21 12:26:58 -04:00
uint8_t tx [ 11 ] ;
uint8_t rx [ 11 ] ;
tx [ 0 ] = address | READ_FLAG ;
tx [ 1 ] = 0 ;
_spi - > transaction ( tx , rx , count + 1 ) ;
memcpy ( buf , rx + 1 , count ) ;
}
void AK8963_MPU9250_SPI_Backend : : write ( uint8_t address , const uint8_t * buf , uint32_t count )
{
2015-01-06 17:39:54 -04:00
ASSERT ( count < 2 ) ;
2014-11-21 12:26:58 -04:00
uint8_t tx [ 2 ] ;
tx [ 0 ] = address ;
memcpy ( tx + 1 , buf , count ) ;
_spi - > transaction ( tx , NULL , count + 1 ) ;
}
AP_Compass_AK8963_MPU9250 : : AP_Compass_AK8963_MPU9250 ( )
{
product_id = AP_COMPASS_TYPE_AK8963_MPU9250 ;
}
void AP_Compass_AK8963_MPU9250 : : _dump_registers ( )
{
error ( PSTR ( " MPU9250 registers \n " ) ) ;
for ( uint8_t reg = 0x00 ; reg < = 0x7E ; reg + + ) {
uint8_t v = _backend - > read ( reg ) ;
error ( ( " %02x:%02x " ) , ( unsigned ) reg , ( unsigned ) v ) ;
if ( reg % 16 = = 0 ) {
error ( " \n " ) ;
}
}
error ( " \n " ) ;
}
void AP_Compass_AK8963_MPU9250 : : _backend_reset ( )
{
_backend - > write ( MPUREG_PWR_MGMT_1 , BIT_PWR_MGMT_1_DEVICE_RESET ) ;
}
bool AP_Compass_AK8963_MPU9250 : : _backend_init ( )
{
_backend - > write ( MPUREG_USER_CTRL , BIT_USER_CTRL_I2C_MST_EN ) ; /* I2C Master mode */
_backend - > write ( MPUREG_I2C_MST_CTRL , I2C_MST_CLOCK_400KHZ ) ; /* I2C configuration multi-master IIC 400KHz */
return true ;
}
bool AP_Compass_AK8963_MPU9250 : : init ( )
{
# if MPU9250_SPI_BACKEND
_backend = new AK8963_MPU9250_SPI_Backend ( ) ;
if ( _backend = = NULL ) {
2015-01-06 17:39:54 -04:00
hal . scheduler - > panic ( PSTR ( " _backend coudln't be allocated " ) ) ;
2014-11-21 12:26:58 -04:00
}
return AP_Compass_AK8963 : : init ( ) ;
# else
# error Wrong backend for AK8963 is selected
/* other backends not implented yet */
return false ;
# endif
}
void AP_Compass_AK8963_MPU9250 : : _register_write ( uint8_t address , uint8_t value )
{
_backend - > write ( MPUREG_I2C_SLV0_ADDR , AK8963_I2C_ADDR ) ; /* Set the I2C slave addres of AK8963 and set for _register_write. */
_backend - > write ( MPUREG_I2C_SLV0_REG , address ) ; /* I2C slave 0 register address from where to begin data transfer */
_backend - > write ( MPUREG_I2C_SLV0_DO , value ) ; /* Register value to continuous measurement in 16-bit */
_backend - > write ( MPUREG_I2C_SLV0_CTRL , I2C_SLV0_EN | 0x01 ) ; /* Enable I2C and set 1 byte */
}
void AP_Compass_AK8963_MPU9250 : : _register_read ( uint8_t address , uint8_t count , uint8_t * value )
{
_backend - > write ( MPUREG_I2C_SLV0_ADDR , AK8963_I2C_ADDR | READ_FLAG ) ; /* Set the I2C slave addres of AK8963 and set for read. */
_backend - > write ( MPUREG_I2C_SLV0_REG , address ) ; /* I2C slave 0 register address from where to begin data transfer */
_backend - > write ( MPUREG_I2C_SLV0_CTRL , I2C_SLV0_EN | count ) ; /* Enable I2C and set @count byte */
hal . scheduler - > delay ( 10 ) ;
_backend - > read ( MPUREG_EXT_SENS_DATA_00 , value , count ) ;
}
uint8_t AP_Compass_AK8963_MPU9250 : : _read_id ( )
{
return 1 ;
}
bool AP_Compass_AK8963_MPU9250 : : _read_raw ( )
{
uint8_t rx [ 14 ] = { 0 } ;
const uint8_t count = 9 ;
_backend - > read ( MPUREG_EXT_SENS_DATA_00 , rx , count ) ;
uint8_t st1 = rx [ 1 ] ; /* Read ST1 register */
uint8_t st2 = rx [ 8 ] ; /* End data read by reading ST2 register */
# define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx + 1] << 8) | v[2*idx]))
if ( ! ( st2 & 0x08 ) ) {
_mag_x = ( float ) int16_val ( rx , 1 ) ;
_mag_y = ( float ) int16_val ( rx , 2 ) ;
_mag_z = ( float ) int16_val ( rx , 3 ) ;
# if 1
error ( " %f %f %f st1: 0x%x st2: 0x%x \n " , _mag_x , _mag_y , _mag_z , st1 , st2 ) ;
# endif
if ( _mag_x = = 0 & & _mag_y = = 0 & & _mag_z = = 0 ) {
return false ;
}
return true ;
} else {
return false ;
}
}
AP_Compass_AK8963 : : AP_Compass_AK8963 ( ) :
Compass ( ) ,
_backend ( NULL )
{
_healthy [ 0 ] = true ;
_initialised = false ;
_mag_x_accum = _mag_y_accum = _mag_z_accum = 0 ;
_mag_x = _mag_y = _mag_z = 0 ;
_accum_count = 0 ;
_magnetometer_adc_resolution = AK8963_16BIT_ADC ;
}
/* stub to satisfy Compass API*/
void AP_Compass_AK8963 : : accumulate ( void )
{
}
bool AP_Compass_AK8963 : : _self_test ( )
{
bool success = false ;
/* see AK8963.pdf p.19 */
/* Set power-down mode */
_register_write ( AK8963_CNTL1 , AK8963_POWERDOWN_MODE | _magnetometer_adc_resolution ) ;
/* Turn the internal magnetic field on */
_register_write ( AK8963_ASTC , AK8983_SELFTEST_MAGNETIC_FIELD_ON ) ;
/* Register value to self-test mode in 14-bit */
_register_write ( AK8963_CNTL1 , AK8963_SELFTEST_MODE | _magnetometer_adc_resolution ) ;
_start_conversion ( ) ;
hal . scheduler - > delay ( 20 ) ;
_read_raw ( ) ;
float hx = _mag_x ;
float hy = _mag_y ;
float hz = _mag_z ;
error ( " AK8963's SELF-TEST STARTED \n " ) ;
switch ( _magnetometer_adc_resolution ) {
bool hx_is_in_range ;
bool hy_is_in_range ;
bool hz_is_in_range ;
case AK8963_14BIT_ADC :
hx_is_in_range = ( hx > = - 50 ) & & ( hx < = 50 ) ;
hy_is_in_range = ( hy > = - 50 ) & & ( hy < = 50 ) ;
hz_is_in_range = ( hz > = - 800 ) & & ( hz < = - 200 ) ;
if ( hx_is_in_range & & hy_is_in_range & & hz_is_in_range ) {
success = true ;
}
break ;
case AK8963_16BIT_ADC :
hx_is_in_range = ( hx > = - 200 ) & & ( hx < = 200 ) ;
hy_is_in_range = ( hy > = - 200 ) & & ( hy < = 200 ) ;
hz_is_in_range = ( hz > = - 3200 ) & & ( hz < = - 800 ) ;
if ( hx_is_in_range & & hy_is_in_range & & hz_is_in_range ) {
success = true ;
}
break ;
default :
success = false ;
hal . scheduler - > panic ( PSTR ( " Wrong AK8963's ADC resolution selected " ) ) ;
break ;
}
error ( " AK8963's SELF-TEST ENDED: %f %f %f \n " , hx , hy , hz ) ;
/* Turn the internal magnetic field off */
_register_write ( AK8963_ASTC , 0x0 ) ;
/* Register value to continuous measurement in 14-bit */
_register_write ( AK8963_CNTL1 , AK8963_POWERDOWN_MODE | _magnetometer_adc_resolution ) ;
return success ;
}
bool AP_Compass_AK8963 : : init ( )
{
_healthy [ 0 ] = true ;
_field [ 0 ] . x = 0.0f ;
_field [ 0 ] . y = 0.0f ;
_field [ 0 ] . z = 0.0f ;
hal . scheduler - > suspend_timer_procs ( ) ;
if ( ! _backend - > sem_take_blocking ( ) ) {
error ( " _spi_sem->take failed \n " ) ;
return false ;
}
if ( ! _backend_init ( ) ) {
_backend - > sem_give ( ) ;
return false ;
}
_register_write ( AK8963_CNTL2 , AK8963_RESET ) ; /* Reset AK8963 */
hal . scheduler - > delay ( 1000 ) ;
int id_mismatch_count ;
uint8_t deviceid ;
for ( id_mismatch_count = 0 ; id_mismatch_count < 5 ; id_mismatch_count + + ) {
_register_read ( AK8963_WIA , 0x01 , & deviceid ) ; /* Read AK8963's id */
if ( deviceid = = AK8963_Device_ID ) {
break ;
}
error ( " trying to read AK8963's ID once more... \n " ) ;
_backend_reset ( ) ;
hal . scheduler - > delay ( 100 ) ;
_dump_registers ( ) ;
}
if ( id_mismatch_count = = 5 ) {
_initialised = false ;
hal . console - > printf ( " WRONG AK8963 DEVICE ID: 0x%x \n " , ( unsigned ) deviceid ) ;
2015-01-06 17:39:54 -04:00
hal . scheduler - > panic ( PSTR ( " AK8963: bad DEVICE ID " ) ) ;
2014-11-21 12:26:58 -04:00
}
_calibrate ( ) ;
_initialised = true ;
# if AK8963_SELFTEST
if ( _self_test ( ) ) {
_initialised = true ;
} else {
_initialised = false ;
}
# endif
/* Register value to continuous measurement */
_register_write ( AK8963_CNTL1 , AK8963_CONTINUOUS_MODE2 | _magnetometer_adc_resolution ) ;
_backend - > sem_give ( ) ;
hal . scheduler - > resume_timer_procs ( ) ;
hal . scheduler - > register_timer_process ( AP_HAL_MEMBERPROC ( & AP_Compass_AK8963 : : _update ) ) ;
_start_conversion ( ) ;
_initialised = true ;
return _initialised ;
}
void AP_Compass_AK8963 : : _update ( )
{
if ( hal . scheduler - > micros ( ) - _last_update_timestamp < 10000 ) {
return ;
}
if ( ! _backend - > sem_take_nonblocking ( ) ) {
return ;
}
uint32_t timestamp = hal . scheduler - > micros ( ) ;
switch ( _state )
{
case CONVERSION :
_start_conversion ( ) ;
_state = SAMPLE ;
break ;
case SAMPLE :
_collect_samples ( ) ;
_state = CONVERSION ;
break ;
case ERROR :
break ;
default :
break ;
}
//error("state: %u %ld\n", (uint8_t) _state, hal.scheduler->micros() - timestamp);
_last_update_timestamp = hal . scheduler - > micros ( ) ;
_backend - > sem_give ( ) ;
}
bool AP_Compass_AK8963 : : _calibrate ( )
{
error ( " CALIBRATTION START \n " ) ;
_register_write ( AK8963_CNTL1 , AK8963_FUSE_MODE | _magnetometer_adc_resolution ) ; /* Enable FUSE-mode in order to be able to read calibreation data */
hal . scheduler - > delay ( 10 ) ;
uint8_t response [ 3 ] ;
_register_read ( AK8963_ASAX , 0x03 , response ) ;
for ( int i = 0 ; i < 3 ; i + + ) {
float data = response [ i ] ;
magnetometer_ASA [ i ] = ( ( data - 128 ) / 256 + 1 ) ;
error ( " %d: %lf \n " , i , magnetometer_ASA [ i ] ) ;
}
error ( " CALIBRATTION END \n " ) ;
return true ;
}
bool AP_Compass_AK8963 : : read ( )
{
if ( ! _initialised ) {
return false ;
}
2015-01-04 08:27:59 -04:00
if ( _accum_count = = 0 ) {
/* We're not ready to publish*/
return true ;
}
2014-11-21 12:26:58 -04:00
/* Update */
_field [ 0 ] . x = _mag_x_accum * magnetometer_ASA [ 0 ] / _accum_count ;
_field [ 0 ] . y = _mag_y_accum * magnetometer_ASA [ 1 ] / _accum_count ;
_field [ 0 ] . z = _mag_z_accum * magnetometer_ASA [ 2 ] / _accum_count ;
_mag_x_accum = _mag_y_accum = _mag_z_accum = 0 ;
_accum_count = 0 ;
// apply default board orientation for this compass type. This is
// a noop on most boards
_field [ 0 ] . rotate ( MAG_BOARD_ORIENTATION ) ;
// add user selectable orientation
_field [ 0 ] . rotate ( ( enum Rotation ) _orientation [ 0 ] . get ( ) ) ;
2015-01-04 08:37:29 -04:00
if ( ! _external [ 0 ] ) {
2014-11-21 12:26:58 -04:00
// and add in AHRS_ORIENTATION setting if not an external compass
_field [ 0 ] . rotate ( _board_orientation ) ;
}
_field [ 0 ] + = _offset [ 0 ] . get ( ) ;
#if 0
float x = _field [ 0 ] . x ;
float y = _field [ 0 ] . y ;
float z = _field [ 0 ] . z ;
error ( " %f %f %f \n " , x , y , z ) ;
# endif
last_update = hal . scheduler - > micros ( ) ; // record time of update
return true ;
}
void AP_Compass_AK8963 : : _start_conversion ( )
{
static const uint8_t address = AK8963_INFO ;
/* Read registers from INFO through ST2 */
static const uint8_t count = 0x09 ;
_backend_init ( ) ;
_backend - > write ( MPUREG_USER_CTRL , BIT_USER_CTRL_I2C_MST_EN ) ; /* I2C Master mode */
_backend - > write ( MPUREG_I2C_SLV0_ADDR , AK8963_I2C_ADDR | READ_FLAG ) ; /* Set the I2C slave addres of AK8963 and set for read. */
_backend - > write ( MPUREG_I2C_SLV0_REG , address ) ; /* I2C slave 0 register address from where to begin data transfer */
_backend - > write ( MPUREG_I2C_SLV0_CTRL , I2C_SLV0_EN | count ) ; /* Enable I2C and set @count byte */
}
void AP_Compass_AK8963 : : _collect_samples ( )
{
if ( ! _initialised ) {
return ;
}
if ( ! _read_raw ( ) ) {
error ( " _read_raw failed \n " ) ;
} else {
_mag_x_accum + = _mag_x ;
_mag_y_accum + = _mag_y ;
_mag_z_accum + = _mag_z ;
_accum_count + + ;
if ( _accum_count = = 10 ) {
_mag_x_accum / = 2 ;
_mag_y_accum / = 2 ;
_mag_z_accum / = 2 ;
_accum_count = 5 ;
}
}
}