Ardupilot2/libraries/SITL/SIM_Aircraft.cpp

238 lines
6.2 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
parent class for aircraft simulators
*/
#include <AP_Common.h>
#include "SIM_Aircraft.h"
#include <unistd.h>
#include <sys/time.h>
#include <stdio.h>
/*
parent class for all simulator types
*/
/*
constructor
*/
Aircraft::Aircraft(const char *home_str) :
ground_level(0),
frame_height(0),
dcm(),
gyro(),
velocity_ef(),
velocity_body(),
mass(0),
update_frequency(50),
accel_body(0, 0, -GRAVITY_MSS),
time_now_us(0),
gyro_noise(radians(0.1f)),
accel_noise(0.3)
{
char *saveptr=NULL;
char *s = strdup(home_str);
char *lat_s = strtok_r(s, ",", &saveptr);
char *lon_s = strtok_r(NULL, ",", &saveptr);
char *alt_s = strtok_r(NULL, ",", &saveptr);
char *yaw_s = strtok_r(NULL, ",", &saveptr);
memset(&home, 0, sizeof(home));
home.lat = atof(lat_s) * 1.0e7;
home.lng = atof(lon_s) * 1.0e7;
home.alt = atof(alt_s) * 1.0e2;
location = home;
ground_level = home.alt*0.01;
dcm.from_euler(0, 0, atof(yaw_s));
free(s);
}
/*
return true if we are on the ground
*/
bool Aircraft::on_ground(const Vector3f &pos) const
{
return (-pos.z) + home.alt*0.01f <= ground_level + frame_height;
}
/*
update location from position
*/
void Aircraft::update_position(void)
{
float bearing = degrees(atan2f(position.y, position.x));
float distance = sqrtf(sq(position.x) + sq(position.y));
location = home;
location_update(location, bearing, distance);
location.alt = home.alt - position.z*100.0f;
velocity_body = dcm.transposed() * velocity_ef;
time_now_us += frame_time_us;
sync_frame_time();
}
/*
rotate to the given yaw
*/
void Aircraft::set_yaw_degrees(float yaw_degrees)
{
float roll, pitch, yaw;
dcm.to_euler(&roll, &pitch, &yaw);
yaw = radians(yaw_degrees);
dcm.from_euler(roll, pitch, yaw);
}
/* advance time by deltat in seconds */
void Aircraft::time_advance(float deltat)
{
time_now_us += deltat * 1.0e6f;
}
/* setup the frame step time */
void Aircraft::setup_frame_time(float new_rate, float new_speedup)
{
rate_hz = new_rate;
target_speedup = new_speedup;
frame_time_us = 1.0e6f/rate_hz;
scaled_frame_time_us = frame_time_us/target_speedup;
last_wall_time_us = get_wall_time_us();
achieved_rate_hz = rate_hz;
}
/* adjust frame_time calculation */
void Aircraft::adjust_frame_time(float new_rate)
{
rate_hz = new_rate;
frame_time_us = 1.0e6f/rate_hz;
scaled_frame_time_us = frame_time_us/target_speedup;
}
/* try to synchronise simulation time with wall clock time, taking
into account desired speedup */
void Aircraft::sync_frame_time(void)
{
uint64_t now = get_wall_time_us();
uint64_t dt_us = now - last_wall_time_us;
if (dt_us < scaled_frame_time_us) {
usleep(scaled_frame_time_us - dt_us);
now = get_wall_time_us();
if (now > last_wall_time_us && now - last_wall_time_us < 1.0e5) {
float rate = 1.0e6f/(now - last_wall_time_us);
achieved_rate_hz = (0.98f*achieved_rate_hz) + (0.02f*rate);
if (achieved_rate_hz < rate_hz * target_speedup) {
scaled_frame_time_us *= 0.999;
} else {
scaled_frame_time_us *= 1.001;
}
}
}
last_wall_time_us = now;
}
/* add noise based on throttle level (from 0..1) */
void Aircraft::add_noise(float throttle)
{
gyro += Vector3f(rand_normal(0, 1),
rand_normal(0, 1),
rand_normal(0, 1)) * gyro_noise * throttle;
accel_body += Vector3f(rand_normal(0, 1),
rand_normal(0, 1),
rand_normal(0, 1)) * accel_noise * throttle;
}
/*
normal distribution random numbers
See
http://en.literateprograms.org/index.php?title=Special:DownloadCode/Box-Muller_transform_%28C%29&oldid=7011
*/
double Aircraft::rand_normal(double mean, double stddev)
{
static double n2 = 0.0;
static int n2_cached = 0;
if (!n2_cached)
{
double x, y, r;
do
{
x = 2.0*rand()/RAND_MAX - 1;
y = 2.0*rand()/RAND_MAX - 1;
r = x*x + y*y;
}
while (r == 0.0 || r > 1.0);
{
double d = sqrt(-2.0*log(r)/r);
double n1 = x*d;
n2 = y*d;
double result = n1*stddev + mean;
n2_cached = 1;
return result;
}
}
else
{
n2_cached = 0;
return n2*stddev + mean;
}
}
/*
fill a sitl_fdm structure from the simulator state
*/
void Aircraft::fill_fdm(struct sitl_fdm &fdm) const
{
fdm.timestamp_us = time_now_us;
fdm.latitude = location.lat * 1.0e-7;
fdm.longitude = location.lng * 1.0e-7;
fdm.altitude = location.alt * 1.0e-2;
fdm.heading = degrees(atan2f(velocity_ef.y, velocity_ef.x));
fdm.speedN = velocity_ef.x;
fdm.speedE = velocity_ef.y;
fdm.speedD = velocity_ef.z;
fdm.xAccel = accel_body.x;
fdm.yAccel = accel_body.y;
fdm.zAccel = accel_body.z;
Vector3f gyro_ef = SITL::convert_earth_frame(dcm, gyro);
fdm.rollRate = degrees(gyro_ef.x);
fdm.pitchRate = degrees(gyro_ef.y);
fdm.yawRate = degrees(gyro_ef.z);
float r, p, y;
dcm.to_euler(&r, &p, &y);
fdm.rollDeg = degrees(r);
fdm.pitchDeg = degrees(p);
fdm.yawDeg = degrees(y);
fdm.airspeed = velocity_ef.length();
fdm.magic = 0x4c56414f;
}
uint64_t Aircraft::get_wall_time_us() const
{
struct timeval tp;
gettimeofday(&tp,NULL);
return tp.tv_sec*1.0e6 + tp.tv_usec;
}