Ardupilot2/libraries/AP_HAL_FLYMAPLE/RCOutput.cpp

170 lines
4.8 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Flymaple port by Mike McCauley
*/
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_FLYMAPLE
// Flymaple RC Outputs
// Derived from libmaple Servo.cpp
#include "RCOutput.h"
#include "FlymapleWirish.h"
using namespace AP_HAL_FLYMAPLE_NS;
#define MAX_OVERFLOW ((1 << 16) - 1)
void FLYMAPLERCOutput::init(void* machtnichts) {}
void FLYMAPLERCOutput::set_freq(uint32_t chmask, uint16_t freq_hz)
{
for (int i = 0; i < 32; i++) {
if ((chmask >> i) & 1) {
_set_freq(i, freq_hz);
}
}
}
uint16_t FLYMAPLERCOutput::get_freq(uint8_t ch)
{
if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS)
return 0;
uint8_t pin = _channel_to_flymaple_pin(ch);
timer_dev *tdev = PIN_MAP[pin].timer_device;
if (tdev == NULL)
return 0; // Should never happen
uint16 prescaler = timer_get_prescaler(tdev);
uint16 overflow = timer_get_reload(tdev);
return F_CPU / (prescaler+1) / overflow;
}
void FLYMAPLERCOutput::enable_ch(uint8_t ch)
{
if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS)
return;
uint8_t pin = _channel_to_flymaple_pin(ch);
timer_dev *tdev = PIN_MAP[pin].timer_device;
if (tdev == NULL) {
// don't reset any fields or ASSERT(0), to keep driving any
// previously attach()ed servo.
return;
}
pinMode(pin, PWM);
_set_freq(ch, 50); // Default to 50 Hz
write(ch, 0);
}
void FLYMAPLERCOutput::enable_mask(uint32_t chmask)
{
for (int i = 0; i < 32; i++) {
if ((chmask >> i) & 1) {
enable_ch(i);
}
}
}
void FLYMAPLERCOutput::disable_ch(uint8_t ch)
{
if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS)
return;
// TODO
}
void FLYMAPLERCOutput::disable_mask(uint32_t chmask)
{
for (int i = 0; i < 32; i++) {
if ((chmask >> i) & 1) {
disable_ch(i);
}
}
}
void FLYMAPLERCOutput::write(uint8_t ch, uint16_t period_us)
{
if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS)
return;
uint8_t pin = _channel_to_flymaple_pin(ch);
pwmWrite(pin, (period_us * _clocks_per_msecond[ch]) / 1000);
}
void FLYMAPLERCOutput::write(uint8_t ch, uint16_t* period_us, uint8_t len)
{
for (int i = 0; i < len; i++)
write(i + ch, period_us[i]);
}
uint16_t FLYMAPLERCOutput::read(uint8_t ch)
{
if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS)
return 0;
uint8_t pin = _channel_to_flymaple_pin(ch);
timer_dev *tdev = PIN_MAP[pin].timer_device;
uint8 timer_channel = PIN_MAP[pin].timer_channel;
__io uint32 *ccr = &(tdev->regs).gen->CCR1 + (timer_channel - 1);
return *ccr * 1000 / _clocks_per_msecond[ch];
}
void FLYMAPLERCOutput::read(uint16_t* period_us, uint8_t len)
{
for (int i = 0; i < len; i++)
period_us[i] = read(i);
}
uint8_t FLYMAPLERCOutput::_channel_to_flymaple_pin(uint8_t ch)
{
// This maps the ArduPilot channel numbers to Flymaple PWM output pins
// Channels on the same timer ALWAYS use the same frequency (the last one set)
// 28, 27, 11, 12 use Timer 3 OK
// 24, 14, 5, 9 use Timer 4 BREAKS I2C on pins 5 and 9
// 35, 36, 37, 38 use Timer 8 DONT USE: CRASHES. WHY?
// 0 1, 2, 3 use Timer 2 OK
static uint8_t ch_to_pin[FLYMAPLE_RC_OUTPUT_NUM_CHANNELS] = { 28, 27, 11, 12, 24, 14 };
if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS)
return 0; // Should never happen. REVISIT?
else
return ch_to_pin[ch];
}
void FLYMAPLERCOutput::_set_freq(uint8_t ch, uint16_t freq_hz)
{
if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS)
return;
if (freq_hz == 0)
return; // Silly, avoid divide by 0 later
uint8_t pin = _channel_to_flymaple_pin(ch);
timer_dev *tdev = PIN_MAP[pin].timer_device;
if (tdev == NULL)
return; // Should never happen
uint32 microseconds = 1000000 / freq_hz; // per period
uint32 period_cyc = microseconds * CYCLES_PER_MICROSECOND; // system clock cycles per period
// This picks the smallest prescaler that allows an overflow < 2^16.
uint16 prescaler = (uint16)(period_cyc / MAX_OVERFLOW + 1);
uint16 overflow = (uint16)(period_cyc / (prescaler+1));
_clocks_per_msecond[ch] = F_CPU / (prescaler+1) / 1000;
timer_pause(tdev);
timer_set_prescaler(tdev, prescaler);
timer_set_reload(tdev, overflow);
timer_generate_update(tdev);
timer_resume(tdev);
}
#endif