Ardupilot2/libraries/AP_InertialSensor/BatchSampler.cpp

218 lines
6.5 KiB
C++
Raw Normal View History

#include "AP_InertialSensor.h"
#include <GCS_MAVLink/GCS.h>
// Class level parameters
const AP_Param::GroupInfo AP_InertialSensor::BatchSampler::var_info[] = {
// @Param: BAT_CNT
// @DisplayName: sample count per batch
// @Description: Number of samples to take when logging streams of IMU sensor readings. Will be rounded down to a multiple of 32.
// @User: Advanced
// @Increment: 32
AP_GROUPINFO("BAT_CNT", 1, AP_InertialSensor::BatchSampler, _required_count, 1024),
// @Param: BAT_MASK
// @DisplayName: Sensor Bitmask
// @Description: Bitmap of which IMUs to log batch data for
// @User: Advanced
// @Values: 0:None,1:First IMU,255:All
// @Bitmask: 0:IMU1,1:IMU2,2:IMU3
AP_GROUPINFO("BAT_MASK", 2, AP_InertialSensor::BatchSampler, _sensor_mask, DEFAULT_IMU_LOG_BAT_MASK),
AP_GROUPEND
};
extern const AP_HAL::HAL& hal;
void AP_InertialSensor::BatchSampler::init()
{
if (_sensor_mask == 0) {
return;
}
if (_required_count <= 0) {
return;
}
_required_count -= _required_count % 32; // round down to nearest multiple of 32
const uint32_t total_allocation = 3*_required_count*sizeof(uint16_t);
gcs().send_text(MAV_SEVERITY_DEBUG, "INS: alloc %u bytes for ISB (free=%u)", total_allocation, hal.util->available_memory());
data_x = (int16_t*)calloc(_required_count, sizeof(int16_t));
data_y = (int16_t*)calloc(_required_count, sizeof(int16_t));
data_z = (int16_t*)calloc(_required_count, sizeof(int16_t));
if (data_x == nullptr || data_y == nullptr || data_z == nullptr) {
free(data_x);
free(data_y);
free(data_z);
data_x = nullptr;
data_y = nullptr;
data_z = nullptr;
gcs().send_text(MAV_SEVERITY_WARNING, "Failed to allocate %u bytes for IMU batch sampling", total_allocation);
return;
}
rotate_to_next_sensor();
initialised = true;
}
void AP_InertialSensor::BatchSampler::periodic()
{
if (_sensor_mask == 0) {
return;
}
push_data_to_log();
}
void AP_InertialSensor::BatchSampler::rotate_to_next_sensor()
{
if (_sensor_mask == 0) {
// should not have been called
return;
}
if ((1U<<instance) > (uint8_t)_sensor_mask) {
// should only ever happen if user resets _sensor_mask
instance = 0;
}
if (type == IMU_SENSOR_TYPE_ACCEL) {
// we have logged accelerometers, now log gyros:
type = IMU_SENSOR_TYPE_GYRO;
multiplier = multiplier_gyro;
return;
}
// log for accel sensor:
type = IMU_SENSOR_TYPE_ACCEL;
multiplier = multiplier_accel;
// move to next IMU backend:
// we assume the number of gyros and accels is the same, taking
// this minimum stops us doing bad things if that isn't true:
const uint8_t _count = MIN(_imu._accel_count, _imu._gyro_count);
// find next backend instance to log:
for (uint8_t i=instance+1; i<_count; i++) {
if (_sensor_mask & (1U<<i)) {
instance = i;
return;
}
}
for (uint8_t i=0; i<instance; i++) {
if (_sensor_mask & (1U<<i)) {
instance = i;
return;
}
}
}
void AP_InertialSensor::BatchSampler::push_data_to_log()
{
if (!initialised) {
return;
}
if (_sensor_mask == 0) {
return;
}
if (data_write_offset - data_read_offset < samples_per_msg) {
// insuffucient data to pack a packet
return;
}
const uint32_t now = AP_HAL::millis();
if (now - last_sent_ms < push_interval_ms) {
// avoid flooding DataFlash's buffer
return;
}
DataFlash_Class *dataflash = DataFlash_Class::instance();
if (dataflash == nullptr) {
// should not have been called
return;
}
// possibly send isb header:
if (!isbh_sent && data_read_offset == 0) {
float sample_rate = 0; // avoid warning about uninitialised values
switch(type) {
case IMU_SENSOR_TYPE_GYRO:
sample_rate = _imu._gyro_raw_sample_rates[instance];
break;
case IMU_SENSOR_TYPE_ACCEL:
sample_rate = _imu._accel_raw_sample_rates[instance];
break;
}
if (!dataflash->Log_Write_ISBH(isb_seqnum,
type,
instance,
multiplier,
_required_count,
measurement_started_us,
sample_rate)) {
// buffer full?
return;
}
isbh_sent = true;
}
// pack and send a data packet:
if (!dataflash->Log_Write_ISBD(isb_seqnum,
data_read_offset/samples_per_msg,
&data_x[data_read_offset],
&data_y[data_read_offset],
&data_z[data_read_offset])) {
// maybe later?!
return;
}
data_read_offset += samples_per_msg;
last_sent_ms = AP_HAL::millis();
if (data_read_offset >= _required_count) {
// that was the last one. Clean up:
data_read_offset = 0;
isb_seqnum++;
isbh_sent = false;
// rotate to next instance:
rotate_to_next_sensor();
data_write_offset = 0; // unlocks writing process
}
}
bool AP_InertialSensor::BatchSampler::should_log(uint8_t _instance, IMU_SENSOR_TYPE _type)
{
if (_sensor_mask == 0) {
return false;
}
if (!initialised) {
return false;
}
if (_instance != instance) {
return false;
}
if (_type != type) {
return false;
}
if (data_write_offset >= _required_count) {
return false;
}
DataFlash_Class *dataflash = DataFlash_Class::instance();
#define MASK_LOG_ANY 0xFFFF
if (!dataflash->should_log(MASK_LOG_ANY)) {
return false;
}
return true;
}
void AP_InertialSensor::BatchSampler::sample(uint8_t _instance, AP_InertialSensor::IMU_SENSOR_TYPE _type, uint64_t sample_us, const Vector3f &_sample)
{
if (!should_log(_instance, _type)) {
return;
}
if (data_write_offset == 0) {
measurement_started_us = sample_us;
}
data_x[data_write_offset] = multiplier*_sample.x;
data_y[data_write_offset] = multiplier*_sample.y;
data_z[data_write_offset] = multiplier*_sample.z;
data_write_offset++; // may unblock the reading process
}