Ardupilot2/libraries/AC_Avoidance/AC_Avoid.cpp

466 lines
17 KiB
C++
Raw Normal View History

#include "AC_Avoid.h"
const AP_Param::GroupInfo AC_Avoid::var_info[] = {
// @Param: ENABLE
// @DisplayName: Avoidance control enable/disable
// @Description: Enabled/disable stopping at fence
// @Values: 0:None,1:StopAtFence,2:UseProximitySensor,3:All
// @Bitmask: 0:StopAtFence,1:UseProximitySensor
// @User: Standard
AP_GROUPINFO("ENABLE", 1, AC_Avoid, _enabled, AC_AVOID_ALL),
// @Param: ANGLE_MAX
// @DisplayName: Avoidance max lean angle in non-GPS flight modes
// @Description: Max lean angle used to avoid obstacles while in non-GPS modes
// @Range: 0 4500
// @User: Standard
AP_GROUPINFO("ANGLE_MAX", 2, AC_Avoid, _angle_max, 1000),
// @Param: DIST_MAX
// @DisplayName: Avoidance distance maximum in non-GPS flight modes
// @Description: Distance from object at which obstacle avoidance will begin in non-GPS modes
// @Units: meters
// @Range: 3 30
// @User: Standard
AP_GROUPINFO("DIST_MAX", 3, AC_Avoid, _dist_max, AC_AVOID_NONGPS_DIST_MAX_DEFAULT),
// @Param: MARGIN
// @DisplayName: Avoidance distance margin in GPS modes
// @Description: Vehicle will attempt to stay at least this distance (in meters) from objects while in GPS modes
// @Units: meters
// @Range: 1 10
// @User: Standard
AP_GROUPINFO("MARGIN", 4, AC_Avoid, _margin, 2.0f),
AP_GROUPEND
};
/// Constructor
AC_Avoid::AC_Avoid(const AP_AHRS& ahrs, const AP_InertialNav& inav, const AC_Fence& fence, const AP_Proximity& proximity)
: _ahrs(ahrs),
_inav(inav),
_fence(fence),
_proximity(proximity)
{
AP_Param::setup_object_defaults(this, var_info);
}
void AC_Avoid::adjust_velocity(float kP, float accel_cmss, Vector2f &desired_vel)
{
// exit immediately if disabled
if (_enabled == AC_AVOID_DISABLED) {
return;
}
// limit acceleration
float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX);
if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0) {
adjust_velocity_circle_fence(kP, accel_cmss_limited, desired_vel);
adjust_velocity_polygon_fence(kP, accel_cmss_limited, desired_vel);
}
if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) > 0 && _proximity_enabled) {
adjust_velocity_proximity(kP, accel_cmss_limited, desired_vel);
}
}
// convenience function to accept Vector3f. Only x and y are adjusted
void AC_Avoid::adjust_velocity(float kP, float accel_cmss, Vector3f &desired_vel)
{
Vector2f des_vel_xy(desired_vel.x, desired_vel.y);
adjust_velocity(kP, accel_cmss, des_vel_xy);
desired_vel.x = des_vel_xy.x;
desired_vel.y = des_vel_xy.y;
}
// adjust vertical climb rate so vehicle does not break the vertical fence
void AC_Avoid::adjust_velocity_z(float kP, float accel_cmss, float& climb_rate_cms)
{
// exit immediately if disabled
if (_enabled == AC_AVOID_DISABLED) {
return;
}
// do not adjust climb_rate if level or descending
if (climb_rate_cms <= 0.0f) {
return;
}
// limit acceleration
float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX);
bool limit_alt = false;
float alt_diff_cm = 0.0f; // distance from altitude limit to vehicle in cm (positive means vehicle is below limit)
// calculate distance below fence
if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0 && (_fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) > 0) {
// calculate distance from vehicle to safe altitude
float veh_alt = get_alt_above_home();
alt_diff_cm = _fence.get_safe_alt_max() * 100.0f - veh_alt;
limit_alt = true;
}
// calculate distance to optical flow altitude limit
float ekf_alt_limit_cm;
if (_inav.get_hgt_ctrl_limit(ekf_alt_limit_cm)) {
float ekf_alt_diff_cm = ekf_alt_limit_cm - _inav.get_altitude();
if (!limit_alt || ekf_alt_diff_cm < alt_diff_cm) {
alt_diff_cm = ekf_alt_diff_cm;
}
limit_alt = true;
}
// get distance from proximity sensor (in meters, convert to cm)
float proximity_alt_diff_m;
if (_proximity.get_upward_distance(proximity_alt_diff_m)) {
float proximity_alt_diff_cm = (proximity_alt_diff_m - _margin) * 100.0f;
if (!limit_alt || proximity_alt_diff_cm < alt_diff_cm) {
alt_diff_cm = proximity_alt_diff_cm;
}
limit_alt = true;
}
// limit climb rate
if (limit_alt) {
// do not allow climbing if we've breached the safe altitude
if (alt_diff_cm <= 0.0f) {
climb_rate_cms = MIN(climb_rate_cms, 0.0f);
return;
}
// limit climb rate
const float max_speed = get_max_speed(kP, accel_cmss_limited, alt_diff_cm);
climb_rate_cms = MIN(max_speed, climb_rate_cms);
}
}
// adjust roll-pitch to push vehicle away from objects
// roll and pitch value are in centi-degrees
void AC_Avoid::adjust_roll_pitch(float &roll, float &pitch, float veh_angle_max)
{
// exit immediately if proximity based avoidance is disabled
if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) == 0 || !_proximity_enabled) {
return;
}
// exit immediately if angle max is zero
if (_angle_max <= 0.0f || veh_angle_max <= 0.0f) {
return;
}
float roll_positive = 0.0f; // maximum positive roll value
float roll_negative = 0.0f; // minimum negative roll value
float pitch_positive = 0.0f; // maximum position pitch value
float pitch_negative = 0.0f; // minimum negative pitch value
// get maximum positive and negative roll and pitch percentages from proximity sensor
get_proximity_roll_pitch_pct(roll_positive, roll_negative, pitch_positive, pitch_negative);
// add maximum positive and negative percentages together for roll and pitch, convert to centi-degrees
Vector2f rp_out((roll_positive + roll_negative) * 4500.0f, (pitch_positive + pitch_negative) * 4500.0f);
// apply avoidance angular limits
// the object avoidance lean angle is never more than 75% of the total angle-limit to allow the pilot to override
const float angle_limit = constrain_float(_angle_max, 0.0f, veh_angle_max * AC_AVOID_ANGLE_MAX_PERCENT);
float vec_len = rp_out.length();
if (vec_len > angle_limit) {
rp_out *= (angle_limit / vec_len);
}
// add passed in roll, pitch angles
rp_out.x += roll;
rp_out.y += pitch;
// apply total angular limits
vec_len = rp_out.length();
if (vec_len > veh_angle_max) {
rp_out *= (veh_angle_max / vec_len);
}
// return adjusted roll, pitch
roll = rp_out.x;
pitch = rp_out.y;
}
/*
* Adjusts the desired velocity for the circular fence.
*/
void AC_Avoid::adjust_velocity_circle_fence(float kP, float accel_cmss, Vector2f &desired_vel)
{
// exit if circular fence is not enabled
if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) == 0) {
return;
}
// exit if the circular fence has already been breached
if ((_fence.get_breaches() & AC_FENCE_TYPE_CIRCLE) != 0) {
return;
}
// get position as a 2D offset in cm from ahrs home
const Vector2f position_xy = get_position();
float speed = desired_vel.length();
// get the fence radius in cm
const float fence_radius = _fence.get_radius() * 100.0f;
// get the margin to the fence in cm
const float margin_cm = _fence.get_margin() * 100.0f;
if (!is_zero(speed) && position_xy.length() <= fence_radius) {
// Currently inside circular fence
Vector2f stopping_point = position_xy + desired_vel*(get_stopping_distance(kP, accel_cmss, speed)/speed);
float stopping_point_length = stopping_point.length();
if (stopping_point_length > fence_radius - margin_cm) {
// Unsafe desired velocity - will not be able to stop before fence breach
// Project stopping point radially onto fence boundary
// Adjusted velocity will point towards this projected point at a safe speed
Vector2f target = stopping_point * ((fence_radius - margin_cm) / stopping_point_length);
Vector2f target_direction = target - position_xy;
float distance_to_target = target_direction.length();
float max_speed = get_max_speed(kP, accel_cmss, distance_to_target);
desired_vel = target_direction * (MIN(speed,max_speed) / distance_to_target);
}
}
}
/*
* Adjusts the desired velocity for the polygon fence.
*/
void AC_Avoid::adjust_velocity_polygon_fence(float kP, float accel_cmss, Vector2f &desired_vel)
{
// exit if the polygon fence is not enabled
if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) {
return;
}
// exit if the polygon fence has already been breached
if ((_fence.get_breaches() & AC_FENCE_TYPE_POLYGON) != 0) {
return;
}
// exit immediately if no desired velocity
if (desired_vel.is_zero()) {
return;
}
// get polygon boundary
// Note: first point in list is the return-point (which copter does not use)
uint16_t num_points;
Vector2f* boundary = _fence.get_polygon_points(num_points);
// adjust velocity using polygon
adjust_velocity_polygon(kP, accel_cmss, desired_vel, boundary, num_points, true, _fence.get_margin());
}
/*
* Adjusts the desired velocity based on output from the proximity sensor
*/
void AC_Avoid::adjust_velocity_proximity(float kP, float accel_cmss, Vector2f &desired_vel)
{
// exit immediately if proximity sensor is not present
if (_proximity.get_status() != AP_Proximity::Proximity_Good) {
return;
}
// exit immediately if no desired velocity
if (desired_vel.is_zero()) {
return;
}
// get boundary from proximity sensor
uint16_t num_points;
const Vector2f *boundary = _proximity.get_boundary_points(num_points);
adjust_velocity_polygon(kP, accel_cmss, desired_vel, boundary, num_points, false, _margin);
}
/*
* Adjusts the desired velocity for the polygon fence.
*/
void AC_Avoid::adjust_velocity_polygon(float kP, float accel_cmss, Vector2f &desired_vel, const Vector2f* boundary, uint16_t num_points, bool earth_frame, float margin)
{
// exit if there are no points
if (boundary == nullptr || num_points == 0) {
return;
}
// do not adjust velocity if vehicle is outside the polygon fence
Vector3f position;
if (earth_frame) {
position = _inav.get_position();
}
Vector2f position_xy(position.x, position.y);
if (_fence.boundary_breached(position_xy, num_points, boundary)) {
return;
}
// Safe_vel will be adjusted to remain within fence.
// We need a separate vector in case adjustment fails,
// e.g. if we are exactly on the boundary.
Vector2f safe_vel(desired_vel);
// if boundary points are in body-frame, rotate velocity vector from earth frame to body-frame
if (!earth_frame) {
safe_vel.x = desired_vel.y * _ahrs.sin_yaw() + desired_vel.x * _ahrs.cos_yaw(); // right
safe_vel.y = desired_vel.y * _ahrs.cos_yaw() - desired_vel.x * _ahrs.sin_yaw(); // forward
}
// calc margin in cm
float margin_cm = MAX(margin * 100.0f, 0);
uint16_t i, j;
for (i = 1, j = num_points-1; i < num_points; j = i++) {
// end points of current edge
Vector2f start = boundary[j];
Vector2f end = boundary[i];
// vector from current position to closest point on current edge
Vector2f limit_direction = Vector2f::closest_point(position_xy, start, end) - position_xy;
// distance to closest point
const float limit_distance = limit_direction.length();
if (!is_zero(limit_distance)) {
// We are strictly inside the given edge.
// Adjust velocity to not violate this edge.
limit_direction /= limit_distance;
limit_velocity(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance - margin_cm,0.0f));
} else {
// We are exactly on the edge - treat this as a fence breach.
// i.e. do not adjust velocity.
return;
}
}
// set modified desired velocity vector
if (earth_frame) {
desired_vel = safe_vel;
} else {
// if points were in body-frame, rotate resulting vector back to earth-frame
desired_vel.x = safe_vel.x * _ahrs.cos_yaw() - safe_vel.y * _ahrs.sin_yaw();
desired_vel.y = safe_vel.x * _ahrs.sin_yaw() + safe_vel.y * _ahrs.cos_yaw();
}
}
/*
* Limits the component of desired_vel in the direction of the unit vector
* limit_direction to be at most the maximum speed permitted by the limit_distance.
*
* Uses velocity adjustment idea from Randy's second email on this thread:
* https://groups.google.com/forum/#!searchin/drones-discuss/obstacle/drones-discuss/QwUXz__WuqY/qo3G8iTLSJAJ
*/
void AC_Avoid::limit_velocity(float kP, float accel_cmss, Vector2f &desired_vel, const Vector2f& limit_direction, float limit_distance) const
{
const float max_speed = get_max_speed(kP, accel_cmss, limit_distance);
// project onto limit direction
const float speed = desired_vel * limit_direction;
if (speed > max_speed) {
// subtract difference between desired speed and maximum acceptable speed
desired_vel += limit_direction*(max_speed - speed);
}
}
/*
* Gets the current xy-position, relative to home (not relative to EKF origin)
*/
2017-01-05 02:19:47 -04:00
Vector2f AC_Avoid::get_position() const
{
const Vector3f position_xyz = _inav.get_position();
const Vector2f position_xy(position_xyz.x,position_xyz.y);
const Vector2f diff = location_diff(_inav.get_origin(),_ahrs.get_home()) * 100.0f;
return position_xy - diff;
}
/*
* Gets the altitude above home in cm
*/
float AC_Avoid::get_alt_above_home() const
{
// vehicle's alt above ekf origin + ekf origin's alt above sea level - home's alt above sea level
return _inav.get_altitude() + _inav.get_origin().alt - _ahrs.get_home().alt;
}
/*
* Computes the speed such that the stopping distance
* of the vehicle will be exactly the input distance.
*/
float AC_Avoid::get_max_speed(float kP, float accel_cmss, float distance) const
{
return AC_AttitudeControl::sqrt_controller(distance, kP, accel_cmss);
}
/*
* Computes distance required to stop, given current speed.
*
* Implementation copied from AC_PosControl.
*/
float AC_Avoid::get_stopping_distance(float kP, float accel_cmss, float speed) const
{
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
if (kP <= 0.0f || accel_cmss <= 0.0f || is_zero(speed)) {
return 0.0f;
}
// calculate distance within which we can stop
// accel_cmss/kP is the point at which velocity switches from linear to sqrt
if (speed < accel_cmss/kP) {
return speed/kP;
} else {
// accel_cmss/(2.0f*kP*kP) is the distance at which we switch from linear to sqrt response
return accel_cmss/(2.0f*kP*kP) + (speed*speed)/(2.0f*accel_cmss);
}
}
// convert distance (in meters) to a lean percentage (in 0~1 range) for use in manual flight modes
float AC_Avoid::distance_to_lean_pct(float dist_m)
{
// ignore objects beyond DIST_MAX
if (dist_m < 0.0f || dist_m >= _dist_max || _dist_max <= 0.0f) {
return 0.0f;
}
// inverted but linear response
return 1.0f - (dist_m / _dist_max);
}
// returns the maximum positive and negative roll and pitch percentages (in -1 ~ +1 range) based on the proximity sensor
void AC_Avoid::get_proximity_roll_pitch_pct(float &roll_positive, float &roll_negative, float &pitch_positive, float &pitch_negative)
{
// exit immediately if proximity sensor is not present
if (_proximity.get_status() != AP_Proximity::Proximity_Good) {
return;
}
uint8_t obj_count = _proximity.get_object_count();
// if no objects return
if (obj_count == 0) {
return;
}
// calculate maximum roll, pitch values from objects
for (uint8_t i=0; i<obj_count; i++) {
float ang_deg, dist_m;
if (_proximity.get_object_angle_and_distance(i, ang_deg, dist_m)) {
if (dist_m < _dist_max) {
// convert distance to lean angle (in 0 to 1 range)
const float lean_pct = distance_to_lean_pct(dist_m);
// convert angle to roll and pitch lean percentages
const float angle_rad = radians(ang_deg);
const float roll_pct = -sinf(angle_rad) * lean_pct;
const float pitch_pct = cosf(angle_rad) * lean_pct;
// update roll, pitch maximums
if (roll_pct > 0.0f) {
roll_positive = MAX(roll_positive, roll_pct);
}
if (roll_pct < 0.0f) {
roll_negative = MIN(roll_negative, roll_pct);
}
if (pitch_pct > 0.0f) {
pitch_positive = MAX(pitch_positive, pitch_pct);
}
if (pitch_pct < 0.0f) {
pitch_negative = MIN(pitch_negative, pitch_pct);
}
}
}
}
}