Ardupilot2/libraries/AP_InertialSensor/AP_InertialSensor_MPU6000.cpp

375 lines
11 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <FastSerial.h>
#include "AP_InertialSensor_MPU6000.h"
#include <SPI.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include <wiring.h>
#endif
// MPU 6000 registers
#define MPUREG_WHOAMI 0x75 //
#define MPUREG_SMPLRT_DIV 0x19 //
#define MPUREG_CONFIG 0x1A //
#define MPUREG_GYRO_CONFIG 0x1B
#define MPUREG_ACCEL_CONFIG 0x1C
#define MPUREG_FIFO_EN 0x23
#define MPUREG_INT_PIN_CFG 0x37
#define MPUREG_INT_ENABLE 0x38
#define MPUREG_INT_STATUS 0x3A
#define MPUREG_ACCEL_XOUT_H 0x3B //
#define MPUREG_ACCEL_XOUT_L 0x3C //
#define MPUREG_ACCEL_YOUT_H 0x3D //
#define MPUREG_ACCEL_YOUT_L 0x3E //
#define MPUREG_ACCEL_ZOUT_H 0x3F //
#define MPUREG_ACCEL_ZOUT_L 0x40 //
#define MPUREG_TEMP_OUT_H 0x41//
#define MPUREG_TEMP_OUT_L 0x42//
#define MPUREG_GYRO_XOUT_H 0x43 //
#define MPUREG_GYRO_XOUT_L 0x44 //
#define MPUREG_GYRO_YOUT_H 0x45 //
#define MPUREG_GYRO_YOUT_L 0x46 //
#define MPUREG_GYRO_ZOUT_H 0x47 //
#define MPUREG_GYRO_ZOUT_L 0x48 //
#define MPUREG_USER_CTRL 0x6A //
#define MPUREG_PWR_MGMT_1 0x6B //
#define MPUREG_PWR_MGMT_2 0x6C //
#define MPUREG_FIFO_COUNTH 0x72
#define MPUREG_FIFO_COUNTL 0x73
#define MPUREG_FIFO_R_W 0x74
#define MPUREG_PRODUCT_ID 0x0C // Product ID Register
// Configuration bits MPU 3000 and MPU 6000 (not revised)?
#define BIT_SLEEP 0x40
#define BIT_H_RESET 0x80
#define BITS_CLKSEL 0x07
#define MPU_CLK_SEL_PLLGYROX 0x01
#define MPU_CLK_SEL_PLLGYROZ 0x03
#define MPU_EXT_SYNC_GYROX 0x02
#define BITS_FS_250DPS 0x00
#define BITS_FS_500DPS 0x08
#define BITS_FS_1000DPS 0x10
#define BITS_FS_2000DPS 0x18
#define BITS_FS_MASK 0x18
#define BITS_DLPF_CFG_256HZ_NOLPF2 0x00
#define BITS_DLPF_CFG_188HZ 0x01
#define BITS_DLPF_CFG_98HZ 0x02
#define BITS_DLPF_CFG_42HZ 0x03
#define BITS_DLPF_CFG_20HZ 0x04
#define BITS_DLPF_CFG_10HZ 0x05
#define BITS_DLPF_CFG_5HZ 0x06
#define BITS_DLPF_CFG_2100HZ_NOLPF 0x07
#define BITS_DLPF_CFG_MASK 0x07
#define BIT_INT_ANYRD_2CLEAR 0x10
#define BIT_RAW_RDY_EN 0x01
#define BIT_I2C_IF_DIS 0x10
#define BIT_INT_STATUS_DATA 0x01
// Product ID Description for MPU6000
// high 4 bits low 4 bits
// Product Name Product Revision
#define MPU6000ES_REV_C4 0x14 // 0001 0100
#define MPU6000ES_REV_C5 0x15 // 0001 0101
#define MPU6000ES_REV_D6 0x16 // 0001 0110
#define MPU6000ES_REV_D7 0x17 // 0001 0111
#define MPU6000ES_REV_D8 0x18 // 0001 1000
#define MPU6000_REV_C4 0x54 // 0101 0100
#define MPU6000_REV_C5 0x55 // 0101 0101
#define MPU6000_REV_D6 0x56 // 0101 0110
#define MPU6000_REV_D7 0x57 // 0101 0111
#define MPU6000_REV_D8 0x58 // 0101 1000
#define MPU6000_REV_D9 0x59 // 0101 1001
uint8_t AP_InertialSensor_MPU6000::_cs_pin;
/*
RS-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of
gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
*/
const float AP_InertialSensor_MPU6000::_gyro_scale = (0.0174532 / 16.4);
/*
RS-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of
accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2)
See note below about accel scaling of engineering sample MPU6k
variants however
*/
const float AP_InertialSensor_MPU6000::_accel_scale = 9.81 / 4096.0;
/* pch: I believe the accel and gyro indicies are correct
* but somone else should please confirm.
*/
const uint8_t AP_InertialSensor_MPU6000::_gyro_data_index[3] = { 5, 4, 6 };
const int8_t AP_InertialSensor_MPU6000::_gyro_data_sign[3] = { 1, 1, -1 };
const uint8_t AP_InertialSensor_MPU6000::_accel_data_index[3] = { 1, 0, 2 };
const int8_t AP_InertialSensor_MPU6000::_accel_data_sign[3] = { 1, 1, -1 };
const uint8_t AP_InertialSensor_MPU6000::_temp_data_index = 3;
static volatile uint8_t _new_data;
static uint8_t _product_id;
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000( uint8_t cs_pin )
{
_cs_pin = cs_pin; /* can't use initializer list, is static */
_gyro.x = 0;
_gyro.y = 0;
_gyro.z = 0;
_accel.x = 0;
_accel.y = 0;
_accel.z = 0;
_temp = 0;
_initialised = 0;
}
uint16_t AP_InertialSensor_MPU6000::init( AP_PeriodicProcess * scheduler )
{
if (_initialised) return _product_id;
_initialised = 1;
2012-04-30 03:12:12 -03:00
scheduler->suspend_timer();
hardware_init();
2012-04-30 03:12:12 -03:00
scheduler->resume_timer();
scheduler->register_process( &AP_InertialSensor_MPU6000::read );
return _product_id;
}
// accumulation in ISR - must be read with interrupts disabled
// the sum of the values since last read
static volatile int32_t _sum[7];
// how many values we've accumulated since last read
static volatile uint16_t _count;
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
bool AP_InertialSensor_MPU6000::update( void )
{
int32_t sum[7];
uint16_t count;
float count_scale;
// wait for at least 1 sample
while (_count == 0) /* nop */;
// disable interrupts for mininum time
cli();
for (int i=0; i<7; i++) {
sum[i] = _sum[i];
_sum[i] = 0;
}
count = _count;
_count = 0;
sei();
count_scale = 1.0 / count;
_gyro.x = _gyro_scale * _gyro_data_sign[0] * sum[_gyro_data_index[0]] * count_scale;
_gyro.y = _gyro_scale * _gyro_data_sign[1] * sum[_gyro_data_index[1]] * count_scale;
_gyro.z = _gyro_scale * _gyro_data_sign[2] * sum[_gyro_data_index[2]] * count_scale;
_accel.x = _accel_scale * _accel_data_sign[0] * sum[_accel_data_index[0]] * count_scale;
_accel.y = _accel_scale * _accel_data_sign[1] * sum[_accel_data_index[1]] * count_scale;
_accel.z = _accel_scale * _accel_data_sign[2] * sum[_accel_data_index[2]] * count_scale;
_temp = _temp_to_celsius(sum[_temp_data_index] * count_scale);
return true;
}
bool AP_InertialSensor_MPU6000::new_data_available( void )
{
return _count != 0;
}
float AP_InertialSensor_MPU6000::gx() { return _gyro.x; }
float AP_InertialSensor_MPU6000::gy() { return _gyro.y; }
float AP_InertialSensor_MPU6000::gz() { return _gyro.z; }
void AP_InertialSensor_MPU6000::get_gyros( float * g )
{
g[0] = _gyro.x;
g[1] = _gyro.y;
g[2] = _gyro.z;
}
float AP_InertialSensor_MPU6000::ax() { return _accel.x; }
float AP_InertialSensor_MPU6000::ay() { return _accel.y; }
float AP_InertialSensor_MPU6000::az() { return _accel.z; }
void AP_InertialSensor_MPU6000::get_accels( float * a )
{
a[0] = _accel.x;
a[1] = _accel.y;
a[2] = _accel.z;
}
void AP_InertialSensor_MPU6000::get_sensors( float * sensors )
{
sensors[0] = _gyro.x;
sensors[1] = _gyro.y;
sensors[2] = _gyro.z;
sensors[3] = _accel.x;
sensors[4] = _accel.y;
sensors[5] = _accel.z;
}
float AP_InertialSensor_MPU6000::temperature() { return _temp; }
uint32_t AP_InertialSensor_MPU6000::sample_time()
{
uint32_t us = micros();
uint32_t delta = us - _last_sample_micros;
reset_sample_time();
return delta;
}
void AP_InertialSensor_MPU6000::reset_sample_time()
{
_last_sample_micros = micros();
}
/*================ HARDWARE FUNCTIONS ==================== */
static int16_t spi_transfer_16(void)
{
uint8_t byte_H, byte_L;
byte_H = SPI.transfer(0);
byte_L = SPI.transfer(0);
return (((int16_t)byte_H)<<8) | byte_L;
}
/*
this is called from a timer interrupt to read data from the MPU6000
and add it to _sum[]
*/
void AP_InertialSensor_MPU6000::read(uint32_t )
{
if (_new_data == 0) {
// no new data is ready from the MPU6000
return;
}
_new_data = 0;
// now read the data
digitalWrite(_cs_pin, LOW);
byte addr = MPUREG_ACCEL_XOUT_H | 0x80;
SPI.transfer(addr);
for (uint8_t i=0; i<7; i++) {
_sum[i] += spi_transfer_16();
}
_count++;
if (_count == 0) {
// rollover - v unlikely
memset((void*)_sum, 0, sizeof(_sum));
}
digitalWrite(_cs_pin, HIGH);
}
uint8_t AP_InertialSensor_MPU6000::register_read( uint8_t reg )
{
uint8_t dump;
uint8_t return_value;
uint8_t addr = reg | 0x80; // Set most significant bit
digitalWrite(_cs_pin, LOW);
dump = SPI.transfer(addr);
return_value = SPI.transfer(0);
digitalWrite(_cs_pin, HIGH);
return return_value;
}
void AP_InertialSensor_MPU6000::register_write(uint8_t reg, uint8_t val)
{
uint8_t dump;
digitalWrite(_cs_pin, LOW);
dump = SPI.transfer(reg);
dump = SPI.transfer(val);
digitalWrite(_cs_pin, HIGH);
}
// MPU6000 new data interrupt on INT6
void AP_InertialSensor_MPU6000::data_interrupt(void)
{
// tell the timer routine that there is data to be read
_new_data = 1;
}
void AP_InertialSensor_MPU6000::hardware_init()
{
// MPU6000 chip select setup
pinMode(_cs_pin, OUTPUT);
digitalWrite(_cs_pin, HIGH);
delay(1);
// Chip reset
register_write(MPUREG_PWR_MGMT_1, BIT_H_RESET);
delay(100);
// Wake up device and select GyroZ clock (better performance)
register_write(MPUREG_PWR_MGMT_1, MPU_CLK_SEL_PLLGYROZ);
delay(1);
// Disable I2C bus (recommended on datasheet)
register_write(MPUREG_USER_CTRL, BIT_I2C_IF_DIS);
delay(1);
// SAMPLE RATE
register_write(MPUREG_SMPLRT_DIV,0x04); // Sample rate = 200Hz Fsample= 1Khz/(4+1) = 200Hz
delay(1);
// FS & DLPF FS=2000º/s, DLPF = 98Hz (low pass filter)
register_write(MPUREG_CONFIG, BITS_DLPF_CFG_98HZ);
delay(1);
register_write(MPUREG_GYRO_CONFIG,BITS_FS_2000DPS); // Gyro scale 2000º/s
delay(1);
_product_id = register_read(MPUREG_PRODUCT_ID); // read the product ID rev c has 1/2 the sensitivity of rev d
//Serial.printf("Product_ID= 0x%x\n", (unsigned) _product_id);
if ((_product_id == MPU6000ES_REV_C4) || (_product_id == MPU6000ES_REV_C5) ||
(_product_id == MPU6000_REV_C4) || (_product_id == MPU6000_REV_C5)){
// Accel scale 8g (4096 LSB/g)
// Rev C has different scaling than rev D
register_write(MPUREG_ACCEL_CONFIG,1<<3);
} else {
// Accel scale 8g (4096 LSB/g)
register_write(MPUREG_ACCEL_CONFIG,2<<3);
}
delay(1);
// INT CFG => Interrupt on Data Ready
register_write(MPUREG_INT_ENABLE,BIT_RAW_RDY_EN); // INT: Raw data ready
delay(1);
register_write(MPUREG_INT_PIN_CFG,BIT_INT_ANYRD_2CLEAR); // INT: Clear on any read
delay(1);
// Oscillator set
// register_write(MPUREG_PWR_MGMT_1,MPU_CLK_SEL_PLLGYROZ);
delay(1);
attachInterrupt(6,data_interrupt,RISING);
}
float AP_InertialSensor_MPU6000::_temp_to_celsius ( uint16_t regval )
{
/* TODO */
return 20.0;
}
// return the MPU6k gyro drift rate in radian/s/s
// note that this is much better than the oilpan gyros
float AP_InertialSensor_MPU6000::get_gyro_drift_rate(void)
{
// 0.5 degrees/second/minute
return ToRad(0.5/60);
}