2013-05-29 20:51:34 -03:00
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2013-08-29 02:34:34 -03:00
/*
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
2012-04-02 05:26:37 -03:00
/*
2012-08-17 03:20:26 -03:00
* AP_MotorsMatrix . cpp - ArduCopter motors library
* Code by RandyMackay . DIYDrones . com
*
*/
2012-10-26 20:59:07 -03:00
# include <AP_HAL.h>
2012-04-02 05:26:37 -03:00
# include "AP_MotorsMatrix.h"
2012-10-26 20:59:07 -03:00
extern const AP_HAL : : HAL & hal ;
2012-04-02 05:26:37 -03:00
// Init
void AP_MotorsMatrix : : Init ( )
{
2012-09-18 11:05:08 -03:00
// call parent Init function to set-up throttle curve
AP_Motors : : Init ( ) ;
2012-08-17 03:20:26 -03:00
// setup the motors
setup_motors ( ) ;
2012-04-02 05:26:37 -03:00
2012-08-17 03:20:26 -03:00
// enable fast channels or instant pwm
set_update_rate ( _speed_hz ) ;
2012-04-02 05:26:37 -03:00
}
2012-09-13 09:31:13 -03:00
// set update rate to motors - a value in hertz
2012-04-02 05:26:37 -03:00
void AP_MotorsMatrix : : set_update_rate ( uint16_t speed_hz )
{
2012-08-17 03:20:26 -03:00
int8_t i ;
// record requested speed
_speed_hz = speed_hz ;
// check each enabled motor
2013-01-10 00:52:46 -04:00
uint32_t mask = 0 ;
2012-08-17 03:20:26 -03:00
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2013-01-10 00:52:46 -04:00
mask | = 1U < < _motor_to_channel_map [ i ] ;
2012-08-17 03:20:26 -03:00
}
}
2013-01-10 00:52:46 -04:00
hal . rcout - > set_freq ( mask , _speed_hz ) ;
2012-04-02 05:26:37 -03:00
}
// set frame orientation (normally + or X)
void AP_MotorsMatrix : : set_frame_orientation ( uint8_t new_orientation )
{
2012-08-17 03:20:26 -03:00
// return if nothing has changed
2013-09-12 10:27:44 -03:00
if ( new_orientation = = _flags . frame_orientation ) {
2012-08-17 03:20:26 -03:00
return ;
}
2012-04-02 05:26:37 -03:00
2012-08-17 03:20:26 -03:00
// call parent
AP_Motors : : set_frame_orientation ( new_orientation ) ;
2012-04-02 05:26:37 -03:00
2012-08-17 03:20:26 -03:00
// setup the motors
setup_motors ( ) ;
2012-04-02 05:26:37 -03:00
2012-08-17 03:20:26 -03:00
// enable fast channels or instant pwm
set_update_rate ( _speed_hz ) ;
2012-04-02 05:26:37 -03:00
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsMatrix : : enable ( )
{
2012-08-17 03:20:26 -03:00
int8_t i ;
// enable output channels
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2012-10-26 20:59:07 -03:00
hal . rcout - > enable_ch ( _motor_to_channel_map [ i ] ) ;
2012-08-17 03:20:26 -03:00
}
}
2012-04-02 05:26:37 -03:00
}
// output_min - sends minimum values out to the motors
void AP_MotorsMatrix : : output_min ( )
{
2012-08-17 03:20:26 -03:00
int8_t i ;
2013-07-25 12:45:59 -03:00
// set limits flags
limit . roll_pitch = true ;
limit . yaw = true ;
limit . throttle_lower = true ;
limit . throttle_upper = false ;
2012-08-17 03:20:26 -03:00
// fill the motor_out[] array for HIL use and send minimum value to each motor
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2014-02-09 04:51:21 -04:00
hal . rcout - > write ( _motor_to_channel_map [ i ] , _rc_throttle - > radio_min ) ;
2012-08-17 03:20:26 -03:00
}
}
2012-04-02 05:26:37 -03:00
}
2013-05-26 23:21:31 -03:00
// output_armed - sends commands to the motors
// includes new scaling stability patch
void AP_MotorsMatrix : : output_armed ( )
{
int8_t i ;
2013-07-25 12:45:59 -03:00
int16_t out_min_pwm = _rc_throttle - > radio_min + _min_throttle ; // minimum pwm value we can send to the motors
int16_t out_max_pwm = _rc_throttle - > radio_max ; // maximum pwm value we can send to the motors
int16_t out_mid_pwm = ( out_min_pwm + out_max_pwm ) / 2 ; // mid pwm value we can send to the motors
int16_t out_best_thr_pwm ; // the is the best throttle we can come up which provides good control without climbing
2013-05-26 23:21:31 -03:00
float rpy_scale = 1.0 ; // this is used to scale the roll, pitch and yaw to fit within the motor limits
int16_t rpy_out [ AP_MOTORS_MAX_NUM_MOTORS ] ; // buffer so we don't have to multiply coefficients multiple times.
2014-02-09 04:51:21 -04:00
int16_t motor_out [ AP_MOTORS_MAX_NUM_MOTORS ] ; // final outputs sent to the motors
2013-05-26 23:21:31 -03:00
int16_t rpy_low = 0 ; // lowest motor value
int16_t rpy_high = 0 ; // highest motor value
int16_t yaw_allowed ; // amount of yaw we can fit in
2013-07-25 12:45:59 -03:00
int16_t thr_adj ; // the difference between the pilot's desired throttle and out_best_thr_pwm (the throttle that is actually provided)
2013-05-26 23:21:31 -03:00
2013-07-21 01:58:24 -03:00
// initialize limits flag
limit . roll_pitch = false ;
limit . yaw = false ;
2013-07-25 12:45:59 -03:00
limit . throttle_lower = false ;
limit . throttle_upper = false ;
2013-05-26 23:21:31 -03:00
// Throttle is 0 to 1000 only
// To-Do: we should not really be limiting this here because we don't "own" this _rc_throttle object
2013-09-12 10:27:44 -03:00
if ( _rc_throttle - > servo_out < 0 ) {
_rc_throttle - > servo_out = 0 ;
limit . throttle_lower = true ;
}
if ( _rc_throttle - > servo_out > _max_throttle ) {
_rc_throttle - > servo_out = _max_throttle ;
limit . throttle_upper = true ;
}
2013-05-26 23:21:31 -03:00
// capture desired roll, pitch, yaw and throttle from receiver
_rc_roll - > calc_pwm ( ) ;
_rc_pitch - > calc_pwm ( ) ;
_rc_throttle - > calc_pwm ( ) ;
_rc_yaw - > calc_pwm ( ) ;
// if we are not sending a throttle output, we cut the motors
if ( _rc_throttle - > servo_out = = 0 ) {
2013-07-16 03:25:57 -03:00
// range check spin_when_armed
2013-10-20 02:51:35 -03:00
if ( _spin_when_armed_ramped < 0 ) {
_spin_when_armed_ramped = 0 ;
2013-07-16 03:25:57 -03:00
}
2013-10-20 02:51:35 -03:00
if ( _spin_when_armed_ramped > _min_throttle ) {
_spin_when_armed_ramped = _min_throttle ;
2013-07-16 03:25:57 -03:00
}
2013-05-26 23:21:31 -03:00
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
2013-07-16 00:45:40 -03:00
// spin motors at minimum
2013-05-26 23:21:31 -03:00
if ( motor_enabled [ i ] ) {
2013-10-20 02:51:35 -03:00
motor_out [ i ] = _rc_throttle - > radio_min + _spin_when_armed_ramped ;
2013-05-26 23:21:31 -03:00
}
}
// Every thing is limited
2013-07-21 01:58:24 -03:00
limit . roll_pitch = true ;
limit . yaw = true ;
2013-07-25 12:45:59 -03:00
limit . throttle_lower = true ;
2013-05-26 23:21:31 -03:00
} else {
// check if throttle is below limit
2013-07-25 12:45:59 -03:00
if ( _rc_throttle - > radio_out < = out_min_pwm ) { // perhaps being at min throttle itself is not a problem, only being under is
limit . throttle_lower = true ;
2013-05-26 23:21:31 -03:00
}
// calculate roll and pitch for each motor
2013-07-25 12:45:59 -03:00
// set rpy_low and rpy_high to the lowest and highest values of the motors
2013-05-26 23:21:31 -03:00
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
rpy_out [ i ] = _rc_roll - > pwm_out * _roll_factor [ i ] +
_rc_pitch - > pwm_out * _pitch_factor [ i ] ;
// record lowest roll pitch command
if ( rpy_out [ i ] < rpy_low ) {
rpy_low = rpy_out [ i ] ;
}
// record highest roll pich command
if ( rpy_out [ i ] > rpy_high ) {
rpy_high = rpy_out [ i ] ;
}
}
}
2013-07-25 12:45:59 -03:00
// calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) which is the lower of:
// 1. mid throttle - average of highest and lowest motor (this would give the maximum possible room margin above the highest motor and below the lowest)
// 2. the higher of:
// a) the pilot's throttle input
// b) the mid point between the pilot's input throttle and hover-throttle
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this.
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise.
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favour reducing throttle *because* it provides better yaw control)
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favour reducing throttle instead of better yaw control because the pilot has commanded it
2013-05-26 23:21:31 -03:00
int16_t motor_mid = ( rpy_low + rpy_high ) / 2 ;
2013-07-25 12:45:59 -03:00
out_best_thr_pwm = min ( out_mid_pwm - motor_mid , max ( _rc_throttle - > radio_out , ( _rc_throttle - > radio_out + _hover_out ) / 2 ) ) ;
2013-05-26 23:21:31 -03:00
// calculate amount of yaw we can fit into the throttle range
// this is always equal to or less than the requested yaw from the pilot or rate controller
2013-07-25 12:45:59 -03:00
yaw_allowed = min ( out_max_pwm - out_best_thr_pwm , out_best_thr_pwm - out_min_pwm ) - ( rpy_high - rpy_low ) / 2 ;
2013-07-05 20:48:03 -03:00
yaw_allowed = max ( yaw_allowed , AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) ;
2013-05-26 23:21:31 -03:00
2013-07-05 20:48:03 -03:00
if ( _rc_yaw - > pwm_out > = 0 ) {
2013-05-26 23:21:31 -03:00
// if yawing right
2013-07-05 20:48:03 -03:00
if ( yaw_allowed > _rc_yaw - > pwm_out ) {
yaw_allowed = _rc_yaw - > pwm_out ; // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output
} else {
2013-07-21 01:58:24 -03:00
limit . yaw = true ;
2013-07-05 20:48:03 -03:00
}
2013-05-26 23:21:31 -03:00
} else {
2013-07-05 20:48:03 -03:00
// if yawing left
yaw_allowed = - yaw_allowed ;
if ( yaw_allowed < _rc_yaw - > pwm_out ) {
yaw_allowed = _rc_yaw - > pwm_out ; // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output
} else {
2013-07-21 01:58:24 -03:00
limit . yaw = true ;
2013-07-05 20:48:03 -03:00
}
2013-05-26 23:21:31 -03:00
}
// add yaw to intermediate numbers for each motor
2013-07-25 12:45:59 -03:00
rpy_low = 0 ;
rpy_high = 0 ;
2013-05-26 23:21:31 -03:00
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
rpy_out [ i ] = rpy_out [ i ] +
yaw_allowed * _yaw_factor [ i ] ;
// record lowest roll+pitch+yaw command
if ( rpy_out [ i ] < rpy_low ) {
rpy_low = rpy_out [ i ] ;
}
// record highest roll+pitch+yaw command
if ( rpy_out [ i ] > rpy_high ) {
rpy_high = rpy_out [ i ] ;
}
}
}
// check everything fits
2013-07-25 12:45:59 -03:00
thr_adj = _rc_throttle - > radio_out - out_best_thr_pwm ;
// calc upper and lower limits of thr_adj
int16_t thr_adj_max = out_max_pwm - ( out_best_thr_pwm + rpy_high ) ;
2013-05-26 23:21:31 -03:00
2013-07-25 12:45:59 -03:00
// if we are increasing the throttle (situation #2 above)..
2013-05-26 23:21:31 -03:00
if ( thr_adj > 0 ) {
// increase throttle as close as possible to requested throttle
2013-07-25 12:45:59 -03:00
// without going over out_max_pwm
if ( thr_adj > thr_adj_max ) {
thr_adj = thr_adj_max ;
2013-05-26 23:21:31 -03:00
// we haven't even been able to apply full throttle command
2013-07-25 12:45:59 -03:00
limit . throttle_upper = true ;
2013-05-26 23:21:31 -03:00
}
} else if ( thr_adj < 0 ) {
// decrease throttle as close as possible to requested throttle
2013-07-25 12:45:59 -03:00
// without going under out_min_pwm or over out_max_pwm
// earlier code ensures we can't break both boundaries
int16_t thr_adj_min = min ( out_min_pwm - ( out_best_thr_pwm + rpy_low ) , 0 ) ;
if ( thr_adj > thr_adj_max ) {
thr_adj = thr_adj_max ;
limit . throttle_upper = true ;
}
if ( thr_adj < thr_adj_min ) {
thr_adj = thr_adj_min ;
limit . throttle_lower = true ;
}
2013-05-26 23:21:31 -03:00
}
// do we need to reduce roll, pitch, yaw command
// earlier code does not allow both limit's to be passed simultainiously with abs(_yaw_factor)<1
2013-07-25 12:45:59 -03:00
if ( ( rpy_low + out_best_thr_pwm ) + thr_adj < out_min_pwm ) {
rpy_scale = ( float ) ( out_min_pwm - thr_adj - out_best_thr_pwm ) / rpy_low ;
2013-05-26 23:21:31 -03:00
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
2013-07-21 01:58:24 -03:00
limit . roll_pitch = true ;
limit . yaw = true ;
2013-07-25 12:45:59 -03:00
} else if ( ( rpy_high + out_best_thr_pwm ) + thr_adj > out_max_pwm ) {
rpy_scale = ( float ) ( out_max_pwm - thr_adj - out_best_thr_pwm ) / rpy_high ;
2013-05-26 23:21:31 -03:00
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
2013-07-21 01:58:24 -03:00
limit . roll_pitch = true ;
limit . yaw = true ;
2013-05-26 23:21:31 -03:00
}
// add scaled roll, pitch, constrained yaw and throttle for each motor
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2013-07-25 12:45:59 -03:00
motor_out [ i ] = out_best_thr_pwm + thr_adj +
2013-05-26 23:21:31 -03:00
rpy_scale * rpy_out [ i ] ;
}
}
// adjust for throttle curve
if ( _throttle_curve_enabled ) {
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
motor_out [ i ] = _throttle_curve . get_y ( motor_out [ i ] ) ;
}
}
}
// clip motor output if required (shouldn't be)
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2013-07-25 12:45:59 -03:00
motor_out [ i ] = constrain_int16 ( motor_out [ i ] , out_min_pwm , out_max_pwm ) ;
2013-05-26 23:21:31 -03:00
}
}
}
// send output to each motor
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
hal . rcout - > write ( _motor_to_channel_map [ i ] , motor_out [ i ] ) ;
}
}
}
2012-04-02 05:26:37 -03:00
// output_disarmed - sends commands to the motors
void AP_MotorsMatrix : : output_disarmed ( )
{
2012-08-17 03:20:26 -03:00
// Send minimum values to all motors
output_min ( ) ;
2012-04-02 05:26:37 -03:00
}
2013-11-27 09:31:16 -04:00
// output_test - spin each motor for a moment to allow the user to confirm the motor order and spin direction
2012-04-02 05:26:37 -03:00
void AP_MotorsMatrix : : output_test ( )
{
2013-05-14 06:03:34 -03:00
uint8_t min_order , max_order ;
uint8_t i , j ;
2012-08-17 03:20:26 -03:00
// find min and max orders
2013-05-14 06:03:34 -03:00
min_order = _test_order [ 0 ] ;
max_order = _test_order [ 0 ] ;
2012-08-17 03:20:26 -03:00
for ( i = 1 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
2013-05-14 06:03:34 -03:00
if ( _test_order [ i ] < min_order )
min_order = _test_order [ i ] ;
if ( _test_order [ i ] > max_order )
max_order = _test_order [ i ] ;
2012-08-17 03:20:26 -03:00
}
// shut down all motors
output_min ( ) ;
// first delay is longer
2012-10-26 20:59:07 -03:00
hal . scheduler - > delay ( 4000 ) ;
2012-08-17 03:20:26 -03:00
// loop through all the possible orders spinning any motors that match that description
for ( i = min_order ; i < = max_order ; i + + ) {
for ( j = 0 ; j < AP_MOTORS_MAX_NUM_MOTORS ; j + + ) {
2013-05-14 06:03:34 -03:00
if ( motor_enabled [ j ] & & _test_order [ j ] = = i ) {
2012-08-17 03:20:26 -03:00
// turn on this motor and wait 1/3rd of a second
2013-05-31 02:31:56 -03:00
hal . rcout - > write ( _motor_to_channel_map [ j ] , _rc_throttle - > radio_min + _min_throttle ) ;
2012-10-26 20:59:07 -03:00
hal . scheduler - > delay ( 300 ) ;
hal . rcout - > write ( _motor_to_channel_map [ j ] , _rc_throttle - > radio_min ) ;
hal . scheduler - > delay ( 2000 ) ;
2012-08-17 03:20:26 -03:00
}
}
}
// shut down all motors
output_min ( ) ;
2012-04-02 05:26:37 -03:00
}
// add_motor
2013-05-14 06:03:34 -03:00
void AP_MotorsMatrix : : add_motor_raw ( int8_t motor_num , float roll_fac , float pitch_fac , float yaw_fac , uint8_t testing_order )
2012-04-02 05:26:37 -03:00
{
2012-08-17 03:20:26 -03:00
// ensure valid motor number is provided
if ( motor_num > = 0 & & motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// increment number of motors if this motor is being newly motor_enabled
if ( ! motor_enabled [ motor_num ] ) {
motor_enabled [ motor_num ] = true ;
}
// set roll, pitch, thottle factors and opposite motor (for stability patch)
_roll_factor [ motor_num ] = roll_fac ;
_pitch_factor [ motor_num ] = pitch_fac ;
_yaw_factor [ motor_num ] = yaw_fac ;
// set order that motor appears in test
2013-05-14 06:03:34 -03:00
_test_order [ motor_num ] = testing_order ;
2014-02-07 09:03:34 -04:00
// disable this channel from being used by RC_Channel_aux
RC_Channel_aux : : disable_aux_channel ( _motor_to_channel_map [ motor_num ] ) ;
2012-08-17 03:20:26 -03:00
}
2012-04-02 05:26:37 -03:00
}
// add_motor using just position and prop direction
2013-05-14 06:03:34 -03:00
void AP_MotorsMatrix : : add_motor ( int8_t motor_num , float angle_degrees , float yaw_factor , uint8_t testing_order )
2012-04-02 05:26:37 -03:00
{
2012-08-17 03:20:26 -03:00
// call raw motor set-up method
add_motor_raw (
motor_num ,
2013-01-10 14:42:24 -04:00
cosf ( radians ( angle_degrees + 90 ) ) , // roll factor
cosf ( radians ( angle_degrees ) ) , // pitch factor
2013-04-25 05:52:19 -03:00
yaw_factor , // yaw factor
2012-08-17 03:20:26 -03:00
testing_order ) ;
2012-04-02 05:26:37 -03:00
}
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor
void AP_MotorsMatrix : : remove_motor ( int8_t motor_num )
{
2012-08-17 03:20:26 -03:00
// ensure valid motor number is provided
if ( motor_num > = 0 & & motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// disable the motor, set all factors to zero
motor_enabled [ motor_num ] = false ;
_roll_factor [ motor_num ] = 0 ;
_pitch_factor [ motor_num ] = 0 ;
_yaw_factor [ motor_num ] = 0 ;
}
2012-04-02 05:26:37 -03:00
}
// remove_all_motors - removes all motor definitions
void AP_MotorsMatrix : : remove_all_motors ( )
{
2012-08-17 03:20:26 -03:00
for ( int8_t i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
remove_motor ( i ) ;
}
2012-10-26 20:59:07 -03:00
}