Ardupilot2/libraries/AC_AttitudeControl/AC_AttitudeControl_TS.cpp

127 lines
5.5 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
This class inherits from AC_AttitudeControl_Multi and provides functionality
specific to tailsitter quadplanes.
1) "body-frame" roll control mode for all tailsitters
2) a relax_attitude_controller method needed for coping with vectored tailsitters
*/
#include "AC_AttitudeControl_TS.h"
void AC_AttitudeControl_TS::relax_attitude_controllers(bool exclude_pitch)
{
// If exclude_pitch: relax roll and yaw rate controller outputs only,
// leaving pitch controller active to let TVBS motors tilt up while in throttle_wait
if (exclude_pitch) {
// Get the current attitude quaternion
Quaternion current_attitude;
_ahrs.get_quat_body_to_ned(current_attitude);
Vector3f current_eulers;
current_attitude.to_euler(current_eulers.x, current_eulers.y, current_eulers.z);
// set target attitude to zero pitch with (approximate) current roll and yaw
// by rotating the current_attitude quaternion by the error in desired pitch
Quaternion pitch_rotation;
pitch_rotation.from_axis_angle(Vector3f(0, -1, 0), current_eulers.y);
_attitude_target = current_attitude * pitch_rotation;
_attitude_target.normalize();
_attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z);
_attitude_ang_error = current_attitude.inverse() * _attitude_target;
// Initialize the roll and yaw angular rate variables to the current rate
_ang_vel_target = _ahrs.get_gyro();
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target);
_ang_vel_body.x = _ahrs.get_gyro().x;
_ang_vel_body.z = _ahrs.get_gyro().z;
// Reset the roll and yaw I terms
get_rate_roll_pid().reset_I();
get_rate_yaw_pid().reset_I();
} else {
// relax all attitude controllers
AC_AttitudeControl::relax_attitude_controllers();
}
}
// Command euler yaw rate and pitch angle with roll angle specified in body frame
// (used only by tailsitter quadplanes)
// If plane_controls is true, swap the effects of roll and yaw as euler pitch approaches 90 degrees
void AC_AttitudeControl_TS::input_euler_rate_yaw_euler_angle_pitch_bf_roll(bool plane_controls, float body_roll_cd, float euler_pitch_cd, float euler_yaw_rate_cds)
{
// Convert from centidegrees on public interface to radians
float euler_yaw_rate = radians(euler_yaw_rate_cds*0.01f);
float euler_pitch = radians(constrain_float(euler_pitch_cd * 0.01f, -90.0f, 90.0f));
float body_roll = radians(-body_roll_cd * 0.01f);
const float cpitch = cosf(euler_pitch);
const float spitch = fabsf(sinf(euler_pitch));
// Compute attitude error
Quaternion attitude_body;
Quaternion error_quat;
_ahrs.get_quat_body_to_ned(attitude_body);
error_quat = attitude_body.inverse() * _attitude_target;
Vector3f att_error;
error_quat.to_axis_angle(att_error);
// update heading
float yaw_rate = euler_yaw_rate;
if (plane_controls) {
yaw_rate = (euler_yaw_rate * spitch) + (body_roll * cpitch);
}
// limit yaw error
float yaw_error = fabsf(att_error.z);
float error_ratio = yaw_error / M_PI_2;
if (error_ratio > 1) {
yaw_rate /= (error_ratio * error_ratio);
}
_euler_angle_target.z = wrap_PI(_euler_angle_target.z + yaw_rate * _dt);
// init attitude target to desired euler yaw and pitch with zero roll
_attitude_target.from_euler(0, euler_pitch, _euler_angle_target.z);
// apply body-frame yaw/roll (this is roll/yaw for a tailsitter in forward flight)
// rotate body_roll axis by |sin(pitch angle)|
Quaternion bf_roll_Q;
bf_roll_Q.from_axis_angle(Vector3f(0, 0, spitch * body_roll));
// rotate body_yaw axis by cos(pitch angle)
Quaternion bf_yaw_Q;
if (plane_controls) {
bf_yaw_Q.from_axis_angle(Vector3f(cpitch, 0, 0), euler_yaw_rate);
} else {
bf_yaw_Q.from_axis_angle(Vector3f(-cpitch * body_roll, 0, 0));
}
_attitude_target = _attitude_target * bf_roll_Q * bf_yaw_Q;
// _euler_angle_target roll and pitch: Note: roll/yaw will be indeterminate when pitch is near +/-90
// These should be used only for logging target eulers, with the caveat noted above.
// Also note that _attitude_target.from_euler() should only be used in special circumstances
// such as when attitude is specified directly in terms of Euler angles.
// _euler_angle_target.x = _attitude_target.get_euler_roll();
// _euler_angle_target.y = euler_pitch;
// Set rate feedforward requests to zero
_euler_rate_target.zero();
_ang_vel_target.zero();
// Compute attitude error
error_quat = attitude_body.inverse() * _attitude_target;
error_quat.to_axis_angle(att_error);
// Compute the angular velocity target from the attitude error
_ang_vel_body = update_ang_vel_target_from_att_error(att_error);
}