Ardupilot2/libraries/AC_AttitudeControl/AC_AttitudeControl.cpp

519 lines
20 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
#include "AC_AttitudeControl.h"
#include <AP_HAL.h>
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AC_AttitudeControl::var_info[] PROGMEM = {
// @Param: RATE_RP_MAX
// @DisplayName: Angle Rate Roll-Pitch max
// @Description: maximum rotation rate in roll/pitch axis requested by angle controller used in stabilize, loiter, rtl, auto flight modes
2014-02-03 00:29:17 -04:00
// @Unit: Centi-Degrees/Sec
// @Range: 90000 250000
// @Increment: 500
// @User: Advanced
2014-02-03 00:29:17 -04:00
AP_GROUPINFO("RATE_RP_MAX", 0, AC_AttitudeControl, _angle_rate_rp_max, AC_ATTITUDE_CONTROL_RATE_RP_MAX_DEFAULT),
// @Param: RATE_Y_MAX
// @DisplayName: Angle Rate Yaw max
// @Description: maximum rotation rate in roll/pitch axis requested by angle controller used in stabilize, loiter, rtl, auto flight modes
2014-02-03 00:29:17 -04:00
// @Unit: Centi-Degrees/Sec
// @Range: 90000 250000
// @Increment: 500
// @User: Advanced
2014-02-03 00:29:17 -04:00
AP_GROUPINFO("RATE_Y_MAX", 1, AC_AttitudeControl, _angle_rate_y_max, AC_ATTITUDE_CONTROL_RATE_Y_MAX_DEFAULT),
// @Param: SLEW_YAW
// @DisplayName: Yaw target slew rate
// @Description: Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes
// @Unit: Centi-Degrees/Sec
// @Range: 500 18000
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("SLEW_YAW", 2, AC_AttitudeControl, _slew_yaw, AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT),
AP_GROUPEND
};
//
// high level controllers
//
// init_targets - resets target angles to current angles
void AC_AttitudeControl::init_targets()
{
_angle_ef_target.x = _ahrs.roll_sensor;
_angle_ef_target.y = _ahrs.pitch_sensor;
_angle_ef_target.z = _ahrs.yaw_sensor;
}
// angleef_rp_rateef_y - attempts to maintain a roll and pitch angle and yaw rate (all earth frame)
void AC_AttitudeControl::angleef_rp_rateef_y(float roll_angle_ef, float pitch_angle_ef, float yaw_rate_ef)
{
// set earth-frame angle targets
_angle_ef_target.x = roll_angle_ef;
_angle_ef_target.y = pitch_angle_ef;
// convert earth-frame angle targets to earth-frame rate targets
angle_to_rate_ef_roll();
angle_to_rate_ef_pitch();
// set earth-frame rate stabilize target for yaw
_rate_stab_ef_target.z = yaw_rate_ef;
// convert earth-frame stabilize rate to regular rate target
rate_stab_ef_to_rate_ef_yaw();
// convert earth-frame rates to body-frame rates
rate_ef_targets_to_bf(_rate_ef_target, _rate_bf_target);
// body-frame to motor outputs should be called separately
}
// angleef_rpy - attempts to maintain a roll, pitch and yaw angle (all earth frame)
2014-02-03 00:29:17 -04:00
// if yaw_slew is true then target yaw movement will be gradually moved to the new target based on the SLEW_YAW parameter
void AC_AttitudeControl::angleef_rpy(float roll_angle_ef, float pitch_angle_ef, float yaw_angle_ef, bool slew_yaw)
{
// set earth-frame angle targets
_angle_ef_target.x = roll_angle_ef;
_angle_ef_target.y = pitch_angle_ef;
2014-02-03 00:29:17 -04:00
if (slew_yaw && _angle_ef_target.z != yaw_angle_ef) {
float slew = _slew_yaw * _dt;
_angle_ef_target.z = wrap_360_cd_float(_angle_ef_target.z + constrain_float(wrap_180_cd_float(yaw_angle_ef - _angle_ef_target.z), -slew, slew));
}
// convert earth-frame angle targets to earth-frame rate targets
angle_to_rate_ef_roll();
angle_to_rate_ef_pitch();
angle_to_rate_ef_yaw();
// convert earth-frame rates to body-frame rates
rate_ef_targets_to_bf(_rate_ef_target, _rate_bf_target);
// body-frame to motor outputs should be called separately
}
// rateef_rpy - attempts to maintain a roll, pitch and yaw rate (all earth frame)
void AC_AttitudeControl::rateef_rpy(float roll_rate_ef, float pitch_rate_ef, float yaw_rate_ef)
{
// set stabilized earth-frame rate targets
_rate_stab_ef_target.x = roll_rate_ef;
_rate_stab_ef_target.y = pitch_rate_ef;
_rate_stab_ef_target.z = yaw_rate_ef;
// convert stabilized earth-frame rates to (regular) earth-frames rates
rate_stab_ef_to_rate_ef_roll();
rate_stab_ef_to_rate_ef_pitch();
rate_stab_ef_to_rate_ef_yaw();
// convert earth-frame rates to body-frame rates
rate_ef_targets_to_bf(_rate_ef_target, _rate_bf_target);
// body-frame to motor outputs should be called separately
}
// ratebf_rpy - attempts to maintain a roll, pitch and yaw rate (all body frame)
void AC_AttitudeControl::ratebf_rpy(float roll_rate_bf, float pitch_rate_bf, float yaw_rate_bf)
{
// Update angle error
rate_stab_bf_update_error();
// set earth-frame angle targets
_rate_stab_bf_target.x = roll_rate_bf;
_rate_stab_bf_target.y = pitch_rate_bf;
_rate_stab_bf_target.z = yaw_rate_bf;
// convert stabilize rates to regular rates
rate_stab_bf_to_rate_bf_roll();
rate_stab_bf_to_rate_bf_pitch();
rate_stab_bf_to_rate_bf_yaw();
// body-frame to motor outputs should be called separately
}
//
// angle controller methods
//
// angle_to_rate_ef_roll - ask the angle controller to calculate the earth frame rate targets for roll
void AC_AttitudeControl::angle_to_rate_ef_roll()
{
// calculate angle error
// To-Do: is this being converted to int32_t as part of wrap_180_cd?
float angle_error_cd = wrap_180_cd(_angle_ef_target.x - _ahrs.roll_sensor);
// convert to desired earth-frame rate
// To-Do: replace PI controller with just a single gain?
_rate_ef_target.x = _pi_angle_roll.kP() * angle_error_cd;
// constrain rate request
if (_flags.limit_angle_to_rate_request) {
_rate_ef_target.x = constrain_float(_rate_ef_target.x,-_angle_rate_rp_max,_angle_rate_rp_max);
}
}
// angle_to_rate_ef_pitch - ask the angle controller to calculate the earth frame rate targets for pitch
void AC_AttitudeControl::angle_to_rate_ef_pitch()
{
// calculate angle error
// To-Do: is this being converted to int32_t as part of wrap_180_cd?
float angle_error_cd = wrap_180_cd(_angle_ef_target.y - _ahrs.pitch_sensor);
// convert to desired earth-frame rate
// To-Do: replace PI controller with just a single gain?
_rate_ef_target.y = _pi_angle_pitch.kP() * angle_error_cd;
// constrain rate request
if (_flags.limit_angle_to_rate_request) {
_rate_ef_target.y = constrain_float(_rate_ef_target.y,-_angle_rate_rp_max,_angle_rate_rp_max);
}
}
// angle_to_rate_ef_yaw - ask the angle controller to calculate the earth-frame yaw rate in centi-degrees/second
void AC_AttitudeControl::angle_to_rate_ef_yaw()
{
// calculate angle error
// To-Do: is this being converted to int32_t as part of wrap_180_cd?
float angle_error_cd = wrap_180_cd(_angle_ef_target.z - _ahrs.yaw_sensor);
// convert to desired earth-frame rate in centi-degrees/second
// To-Do: replace PI controller with just a single gain?
_rate_ef_target.z = _pi_angle_yaw.kP() * angle_error_cd;
// constrain rate request
if (_flags.limit_angle_to_rate_request) {
_rate_ef_target.y = constrain_float(_rate_ef_target.y,-_angle_rate_y_max,_angle_rate_y_max);
}
// To-Do: deal with trad helicopter which do not use yaw rate controllers if using external gyros
}
//
// stabilized rate controller (earth-frame) methods
// stabilized rate controllers are better at maintaining a desired rate than the simpler earth-frame rate controllers
// because they also maintain angle-targets and increase/decrease the rate request passed to the earth-frame rate controller
// upon the errors between the actual angle and angle-target.
//
//
// rate_stab_ef_to_rate_ef_roll - converts earth-frame stabilized rate targets to regular earth-frame rate targets for roll, pitch and yaw axis
// targets rates in centi-degrees/second taken from _rate_stab_ef_target
// results in centi-degrees/sec put into _rate_ef_target
void AC_AttitudeControl::rate_stab_ef_to_rate_ef_roll()
{
float angle_error;
// convert the input to the desired roll rate
_angle_ef_target.x += _rate_stab_ef_target.x * _dt;
_angle_ef_target.x = wrap_180_cd(_angle_ef_target.x);
// ensure targets are within the lean angle limits
// To-Do: make angle_max part of the AP_Vehicle class
_angle_ef_target.x = constrain_float(_angle_ef_target.x, -_aparm.angle_max, _aparm.angle_max);
// calculate angle error with maximum of +- max_angle_overshoot
angle_error = wrap_180_cd(_angle_ef_target.x - _ahrs.roll_sensor);
angle_error = constrain_float(angle_error, -AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX);
// To-Do: handle check for traditional heli's motors.motor_runup_complete
// To-Do: reset target angle to current angle if motors not spinning
// update acro_roll to be within max_angle_overshoot of our current heading
_angle_ef_target.x = wrap_180_cd(angle_error + _ahrs.roll_sensor);
// set earth frame rate controller targets
_rate_ef_target.x = _pi_angle_roll.get_p(angle_error) + _rate_stab_ef_target.x;
}
void AC_AttitudeControl::rate_stab_ef_to_rate_ef_pitch()
{
float angle_error;
// convert the input to the desired roll rate
_angle_ef_target.y += _rate_stab_ef_target.y * _dt;
_angle_ef_target.y = wrap_180_cd(_angle_ef_target.y);
// ensure targets are within the lean angle limits
// To-Do: make angle_max part of the AP_Vehicle class
_angle_ef_target.y = constrain_float(_angle_ef_target.y, -_aparm.angle_max, _aparm.angle_max);
// calculate angle error with maximum of +- max_angle_overshoot
// To-Do: should we do something better as we cross 90 degrees?
angle_error = wrap_180_cd(_angle_ef_target.y - _ahrs.pitch_sensor);
angle_error = constrain_float(angle_error, -AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX);
// To-Do: handle check for traditional heli's motors.motor_runup_complete
// To-Do: reset target angle to current angle if motors not spinning
// update acro_roll to be within max_angle_overshoot of our current heading
_angle_ef_target.y = wrap_180_cd(angle_error + _ahrs.pitch_sensor);
// set earth frame rate controller targets
_rate_ef_target.y = _pi_angle_pitch.get_p(angle_error) + _rate_stab_ef_target.y;
}
void AC_AttitudeControl::rate_stab_ef_to_rate_ef_yaw()
{
float angle_error;
// convert the input to the desired roll rate
_angle_ef_target.z += _rate_stab_ef_target.z * _dt;
_angle_ef_target.z = wrap_360_cd(_angle_ef_target.z);
// calculate angle error with maximum of +- max_angle_overshoot
angle_error = wrap_180_cd(_angle_ef_target.z - _ahrs.yaw_sensor);
angle_error = constrain_float(angle_error, -AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX);
// To-Do: handle check for traditional heli's motors.motor_runup_complete
// To-Do: reset target angle to current angle if motors not spinning
// update acro_roll to be within max_angle_overshoot of our current heading
_angle_ef_target.z = wrap_360_cd(angle_error + _ahrs.yaw_sensor);
// set earth frame rate controller targets
_rate_ef_target.z = _pi_angle_yaw.get_p(angle_error) + _rate_stab_ef_target.z;
}
//
// stabilized rate controller (body-frame) methods
//
// rate_stab_bf_to_rate_ef_roll - converts body-frame stabilized rate targets to regular body-frame rate targets for roll, pitch and yaw axis
// targets rates in centi-degrees/second taken from _rate_stab_bf_target
// results in centi-degrees/sec put into _rate_bf_target
void AC_AttitudeControl::rate_stab_bf_update_error()
{
// roll - calculate body-frame angle error by integrating body-frame rate error
_rate_stab_bf_error.x += (_rate_stab_bf_target.x - (_ins.get_gyro().x * AC_ATTITUDE_CONTROL_DEGX100)) * _dt;
// roll - limit maximum error
_rate_stab_bf_error.x = constrain_float(_rate_stab_bf_error.x, -AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX);
// pitch - calculate body-frame angle error by integrating body-frame rate error
_rate_stab_bf_error.y += (_rate_stab_bf_target.y - (_ins.get_gyro().y * AC_ATTITUDE_CONTROL_DEGX100)) * _dt;
// pitch - limit maximum error
_rate_stab_bf_error.y = constrain_float(_rate_stab_bf_error.y, -AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX);
// yaw - calculate body-frame angle error by integrating body-frame rate error
_rate_stab_bf_error.z += (_rate_stab_bf_target.z - (_ins.get_gyro().z * AC_ATTITUDE_CONTROL_DEGX100)) * _dt;
// yaw - limit maximum error
_rate_stab_bf_error.z = constrain_float(_rate_stab_bf_error.z, -AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX);
// To-Do: handle case of motors being disarmed or g.rc_3.servo_out == 0 and set error to zero
}
void AC_AttitudeControl::rate_stab_bf_to_rate_bf_roll()
{
// calculate rate correction from angle errors
// To-Do: do we still need to have this rate correction calculated from the previous iteration's errors?
float rate_correction = _pi_angle_roll.get_p(_rate_stab_bf_error.x);
// set body frame targets for rate controller
_rate_bf_target.x = _rate_stab_bf_target.x + rate_correction;
}
void AC_AttitudeControl::rate_stab_bf_to_rate_bf_pitch()
{
// calculate rate correction from angle errors
// To-Do: do we still need to have this rate correction calculated from the previous iteration's errors?
float rate_correction = _pi_angle_pitch.get_p(_rate_stab_bf_error.y);
// set body frame targets for rate controller
_rate_bf_target.y = _rate_stab_bf_target.y + rate_correction;
}
void AC_AttitudeControl::rate_stab_bf_to_rate_bf_yaw()
{
// calculate rate correction from angle errors
float rate_correction = _pi_angle_yaw.get_p(_rate_stab_bf_error.z);
// set body frame targets for rate controller
_rate_bf_target.y = _rate_stab_bf_target.y + rate_correction;
}
//
// rate controller (earth-frame) methods
//
// rate_ef_targets_to_bf - converts earth frame rate targets to body frame rate targets
void AC_AttitudeControl::rate_ef_targets_to_bf(const Vector3f& rate_ef_target, Vector3f& rate_bf_target)
{
// convert earth frame rates to body frame rates
rate_bf_target.x = rate_ef_target.x - _sin_pitch * rate_ef_target.z;
rate_bf_target.y = _cos_roll * rate_ef_target.y + _sin_roll * _cos_pitch * rate_ef_target.z;
rate_bf_target.z = _cos_pitch * _cos_roll * rate_ef_target.z - _sin_roll * rate_ef_target.y;
}
//
// rate controller (body-frame) methods
//
// rate_controller_run - run lowest level rate controller and send outputs to the motors
// should be called at 100hz or more
void AC_AttitudeControl::rate_controller_run()
{
// call rate controllers and send output to motors object
// To-Do: should the outputs from get_rate_roll, pitch, yaw be int16_t which is the input to the motors library?
// To-Do: skip this step if the throttle out is zero?
_motor_roll = rate_bf_to_motor_roll(_rate_bf_target.x);
_motor_pitch = rate_bf_to_motor_pitch(_rate_bf_target.y);
_motor_yaw = rate_bf_to_motor_yaw(_rate_bf_target.z);
}
//
// private methods
//
//
// body-frame rate controller
//
// rate_bf_to_motor_roll - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second
float AC_AttitudeControl::rate_bf_to_motor_roll(float rate_target_cds)
{
float p,i,d; // used to capture pid values for logging
float current_rate; // this iteration's rate
float rate_error; // simply target_rate - current_rate
// get current rate
// To-Do: make getting gyro rates more efficient?
current_rate = (_ins.get_gyro().x * AC_ATTITUDE_CONTROL_DEGX100);
// calculate error and call pid controller
rate_error = rate_target_cds - current_rate;
p = _pid_rate_roll.get_p(rate_error);
// get i term
i = _pid_rate_roll.get_integrator();
// update i term as long as we haven't breached the limits or the I term will certainly reduce
if (!_motors.limit.roll_pitch || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
i = _pid_rate_roll.get_i(rate_error, _dt);
}
// get d term
d = _pid_rate_roll.get_d(rate_error, _dt);
// constrain output and return
return constrain_float((p+i+d), -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
// To-Do: allow logging of PIDs?
}
// rate_bf_to_motor_pitch - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second
float AC_AttitudeControl::rate_bf_to_motor_pitch(float rate_target_cds)
{
float p,i,d; // used to capture pid values for logging
float current_rate; // this iteration's rate
float rate_error; // simply target_rate - current_rate
// get current rate
// To-Do: make getting gyro rates more efficient?
current_rate = (_ins.get_gyro().y * AC_ATTITUDE_CONTROL_DEGX100);
// calculate error and call pid controller
rate_error = rate_target_cds - current_rate;
p = _pid_rate_pitch.get_p(rate_error);
// get i term
i = _pid_rate_pitch.get_integrator();
// update i term as long as we haven't breached the limits or the I term will certainly reduce
if (!_motors.limit.roll_pitch || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
i = _pid_rate_pitch.get_i(rate_error, _dt);
}
// get d term
d = _pid_rate_pitch.get_d(rate_error, _dt);
// constrain output and return
return constrain_float((p+i+d), -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
// To-Do: allow logging of PIDs?
}
// rate_bf_to_motor_yaw - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second
float AC_AttitudeControl::rate_bf_to_motor_yaw(float rate_target_cds)
{
float p,i,d; // used to capture pid values for logging
float current_rate; // this iteration's rate
float rate_error; // simply target_rate - current_rate
// get current rate
// To-Do: make getting gyro rates more efficient?
current_rate = (_ins.get_gyro().z * AC_ATTITUDE_CONTROL_DEGX100);
// calculate error and call pid controller
rate_error = rate_target_cds - current_rate;
p = _pid_rate_yaw.get_p(rate_error);
// separately calculate p, i, d values for logging
p = _pid_rate_yaw.get_p(rate_error);
// get i term
i = _pid_rate_yaw.get_integrator();
// update i term as long as we haven't breached the limits or the I term will certainly reduce
if (!_motors.limit.yaw || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
i = _pid_rate_yaw.get_i(rate_error, _dt);
}
// get d value
d = _pid_rate_yaw.get_d(rate_error, _dt);
// constrain output and return
return constrain_float((p+i+d), -AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX);
// To-Do: allow logging of PIDs?
}
//
// throttle functions
//
// set_throttle_out - to be called by upper throttle controllers when they wish to provide throttle output directly to motors
// provide 0 to cut motors
void AC_AttitudeControl::set_throttle_out(int16_t throttle_out, bool apply_angle_boost)
{
2014-01-05 23:28:35 -04:00
if (apply_angle_boost) {
_motor_throttle = get_angle_boost(throttle_out);
}else{
_motor_throttle = throttle_out;
// clear angle_boost for logging purposes
2014-01-05 23:28:35 -04:00
_angle_boost = 0;
}
// update compass with throttle value
// To-Do: find another method to grab the throttle out and feed to the compass. Could be done completely outside this class
//compass.set_throttle((float)g.rc_3.servo_out/1000.0f);
}
// get_angle_boost - returns a throttle including compensation for roll/pitch angle
// throttle value should be 0 ~ 1000
2014-01-05 23:28:35 -04:00
int16_t AC_AttitudeControl::get_angle_boost(int16_t throttle_pwm)
{
float temp = _cos_pitch * _cos_roll;
int16_t throttle_out;
temp = constrain_float(temp, 0.5f, 1.0f);
// reduce throttle if we go inverted
temp = constrain_float(9000-max(labs(_ahrs.roll_sensor),labs(_ahrs.pitch_sensor)), 0, 3000) / (3000 * temp);
// apply scale and constrain throttle
// To-Do: move throttle_min and throttle_max into the AP_Vehicles class?
2014-01-05 23:28:35 -04:00
throttle_out = constrain_float((float)(throttle_pwm-_motors.throttle_min()) * temp + _motors.throttle_min(), _motors.throttle_min(), 1000);
2014-01-05 23:28:35 -04:00
// record angle boost for logging
_angle_boost = throttle_out - throttle_pwm;
return throttle_out;
}