Ardupilot2/ArduCopter/inertia.pde

126 lines
3.5 KiB
Plaintext
Raw Normal View History

#if INERTIAL_NAV == ENABLED
// generates a new location and velocity in space based on inertia
// Calc 100 hz
void calc_inertia()
{
// rotate accels based on DCM
// --------------------------
accels_rotated = ahrs.get_dcm_matrix() * imu.get_accel();
accels_rotated += accels_offset; // skew accels to account for long term error using calibration
accels_rotated.z += 9.805; // remove influence of gravity
// rising = 2
// neutral = 0
// falling = -2
// ACC Y POS = going EAST
// ACC X POS = going North
// ACC Z POS = going DOWN (lets flip this)
// Integrate accels to get the velocity
// ------------------------------------
Vector3f temp = accels_rotated * (G_Dt * 100);
temp.z = -temp.z;
// Temp is changed to world frame and we can use it normaly
// Integrate accels to get the velocity
// ------------------------------------
accels_velocity += temp;
accels_position += accels_velocity * G_Dt;
}
void xy_error_correction()
{
// Calculate speed error
// ---------------------
speed_error.x = x_actual_speed - accels_velocity.x;
speed_error.y = y_actual_speed - accels_velocity.y;
// correct integrated velocity by speed_error
// this number must be small or we will bring back sensor latency
// -------------------------------------------
accels_velocity.x += speed_error.x * 0.02; // g.speed_correction_x;
accels_velocity.y += speed_error.y * 0.02;
// Error correct the accels to deal with calibration, drift and noise
// ------------------------------------------------------------------
accels_position.x -= accels_position.x * 0.03; // g.loiter_offset_correction; //.001;
accels_position.y -= accels_position.y * 0.03; // g.loiter_offset_correction; //.001;
// update our accel offsets
// -------------------------
accels_offset.x -= accels_position.x * 0.000001; // g.loiter_i_correction;
accels_offset.y -= accels_position.y * 0.000001; // g.loiter_i_correction;
}
void z_error_correction()
{
// Calculate speed error
// ---------------------
speed_error.z = climb_rate - accels_velocity.z;
// correct integrated velocity by speed_error
// this number must be small or we will bring back sensor latency
// -------------------------------------------
accels_velocity.z += speed_error.z * 0.0350; //speed_correction_z;
// ------------------------------------------------------------------
accels_velocity.z -= accels_position.z * 0.006; //g.alt_offset_correction; // OK
// update our accel offsets
// -------------------------
accels_offset.z -= accels_position.z * 0.000003; //g.alt_i_correction ; // .000002;
// For developement only
// ---------------------
if(motors.armed())
Log_Write_Raw();
}
static void calibrate_accels()
{
// sets accels_velocity to 0,0,0
zero_accels();
accels_offset.x = 0;
accels_offset.y = 0;
accels_offset.z = 0;
for (int i = 0; i < 200; i++){
delay(10);
read_AHRS();
}
for (int i = 0; i < 100; i++){
delay(10);
read_AHRS();
calc_inertia();
//Serial.printf("call accels: %1.5f, %1.5f, %1.5f,\n", accels_rotated.x, accels_rotated.y, accels_rotated.z);
}
accels_velocity /= 100;
accels_offset = accels_velocity;
zero_accels();
calc_inertia();
Log_Write_Data(25, (float)accels_offset.x);
Log_Write_Data(26, (float)accels_offset.y);
Log_Write_Data(27, (float)accels_offset.z);
}
void zero_accels()
{
accels_rotated.x = 0;
accels_rotated.y = 0;
accels_rotated.z = 0;
accels_velocity.x = 0;
accels_velocity.y = 0;
accels_velocity.z = 0;
}
#endif