300 lines
11 KiB
Lua
300 lines
11 KiB
Lua
|
-- quadruped robot script
|
||
|
|
||
|
local L = 80 -- length of frame
|
||
|
local W = 150 -- width of frame
|
||
|
|
||
|
local L_COXA = 30 --distance from coxa servo to femur servo
|
||
|
local L_FEMUR = 85 --distance from femur servo to tibia servo
|
||
|
local L_TIBIA = 125 --distance from tibia servo to foot
|
||
|
|
||
|
--body position and rotation parameters
|
||
|
local bodyRotX = 0
|
||
|
local bodyRotY = 0
|
||
|
local bodyRotZ = 0
|
||
|
local bodyPosX = 0
|
||
|
local bodyPosY = 0
|
||
|
local bodyPosZ = 0
|
||
|
|
||
|
-- starting positions of the legs
|
||
|
local endpoints1 = {math.cos(45/180*math.pi)*(L_COXA + L_FEMUR), math.sin(45/180*math.pi)*(L_COXA + L_FEMUR), L_TIBIA }
|
||
|
local endpoints2 = {math.cos(45/180*math.pi)*(L_COXA + L_FEMUR), math.sin(-45/180*math.pi)*(L_COXA + L_FEMUR), L_TIBIA }
|
||
|
local endpoints3 = {-math.cos(45/180*math.pi)*(L_COXA + L_FEMUR), math.sin(-45/180*math.pi)*(L_COXA + L_FEMUR), L_TIBIA }
|
||
|
local endpoints4 = {-math.cos(45/180*math.pi)*(L_COXA + L_FEMUR), math.sin(45/180*math.pi)*(L_COXA + L_FEMUR), L_TIBIA }
|
||
|
|
||
|
--select a gait pattern(default gait = 0)
|
||
|
local GaitType = 0
|
||
|
--lift height while walking
|
||
|
local LegLiftHeight = 50
|
||
|
--gait step in exectution
|
||
|
local GaitStep = 0
|
||
|
--initial position of the leg
|
||
|
local GaitLegNr = {0,0,0,0}
|
||
|
local TLDivFactor = 0
|
||
|
local NrLiftedPos = 0
|
||
|
local LiftDivFactor = 0
|
||
|
local HalfLiftHeigth = 0
|
||
|
local FrontDownPos = 0
|
||
|
local TravelRequest = false
|
||
|
--Number of steps in gait
|
||
|
local StepsInGait = 0
|
||
|
local GaitStep = 0
|
||
|
local GaitPosX = {0,0,0,0}
|
||
|
local GaitPosY = {0,0,0,0}
|
||
|
local GaitPosZ = {0,0,0,0}
|
||
|
local GaitRotZ = {0,0,0,0}
|
||
|
local LegIndex = 0
|
||
|
local Walking = false
|
||
|
local X_speed = 0
|
||
|
local Yaw_speed = 0
|
||
|
local Y_speed = 0
|
||
|
local DeadZone = 5
|
||
|
local last_angle = {0,0,0,0,0,0,0,0,0,0,0,0}
|
||
|
local current = {0,0,0,0,0,0,0,0,0,0,0,0}
|
||
|
local start_time = 0
|
||
|
local curr_target = 0
|
||
|
local throttle = 3
|
||
|
local yaw = 4
|
||
|
local roll = 1
|
||
|
local pitch = 2
|
||
|
local gait = 5
|
||
|
local mode = 6
|
||
|
local max_step_factor = 40
|
||
|
local max_rotation_factor = 10
|
||
|
local max_yaw_factor = 10
|
||
|
local pwm = { 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500}
|
||
|
-- turn off rudder based arming/disarming
|
||
|
param:set_and_save('ARMING_RUDDER',0)
|
||
|
function Gaitselect()
|
||
|
--Alternating gait
|
||
|
if (GaitType == 0) then
|
||
|
GaitLegNr = {1,4,1,4}
|
||
|
NrLiftedPos = 2
|
||
|
FrontDownPos = 1
|
||
|
LiftDivFactor = 2
|
||
|
HalfLiftHeigth = 1
|
||
|
TLDivFactor = 4
|
||
|
StepsInGait = 6
|
||
|
elseif (GaitType == 1) then
|
||
|
-- wave gait with 28 steps
|
||
|
GaitLegNr = {8,15,1,22}
|
||
|
NrLiftedPos = 3
|
||
|
FrontDownPos = 2
|
||
|
LiftDivFactor = 2
|
||
|
HalfLiftHeigth = 3
|
||
|
TLDivFactor = 24
|
||
|
StepsInGait = 28
|
||
|
end
|
||
|
end
|
||
|
|
||
|
-- Calculate Gait sequence
|
||
|
function Sequence_Gen()
|
||
|
TravelRequest =(math.abs(X_speed) > DeadZone) or (math.abs(Y_speed) > DeadZone) or (math.abs(Yaw_speed) > DeadZone)
|
||
|
|
||
|
if TravelRequest then
|
||
|
for LegIndex=1,4,1
|
||
|
do
|
||
|
Gaitgen(LegIndex)
|
||
|
end
|
||
|
|
||
|
GaitStep = GaitStep + 1
|
||
|
if (GaitStep>StepsInGait) then
|
||
|
GaitStep = 1
|
||
|
end
|
||
|
else
|
||
|
GaitPosX = {0,0,0,0}
|
||
|
GaitPosY = {0,0,0,0}
|
||
|
GaitPosZ = {0,0,0,0}
|
||
|
GaitRotZ = {0,0,0,0}
|
||
|
end
|
||
|
end
|
||
|
|
||
|
-- In order for the bot to move forward it needs to move its legs in a
|
||
|
-- specific order and this is repeated over and over to attain linear motion . when a
|
||
|
-- specific leg number is passed the Gaitgen() produces the set off values for the
|
||
|
-- given leg at that step , for each cycle of the gait each leg will move to a set
|
||
|
-- distance which is decided by the X_speed,Yaw_speed,Y_speed
|
||
|
function Gaitgen(moving_leg)
|
||
|
local LegStep = GaitStep - GaitLegNr[moving_leg]
|
||
|
|
||
|
if ((TravelRequest and (NrLiftedPos and 1) and
|
||
|
LegStep==0) or
|
||
|
(not TravelRequest and LegStep==0 and ((GaitPosX[moving_leg]>2) or
|
||
|
(GaitPosZ[moving_leg]>2) or (GaitRotZ[moving_leg] >2))))
|
||
|
then
|
||
|
GaitPosX[moving_leg] = 0
|
||
|
GaitPosZ[moving_leg] = -LegLiftHeight
|
||
|
GaitPosY[moving_leg] = 0
|
||
|
GaitRotZ[moving_leg] = 0
|
||
|
|
||
|
elseif (((NrLiftedPos==2 and LegStep==0) or (NrLiftedPos>=3 and
|
||
|
(LegStep==-1 or LegStep==(StepsInGait-1))))
|
||
|
and TravelRequest)
|
||
|
then
|
||
|
GaitPosX[moving_leg] = -X_speed/LiftDivFactor
|
||
|
GaitPosZ[moving_leg] = -3*LegLiftHeight/(3+HalfLiftHeigth)
|
||
|
GaitPosY[moving_leg] = -Y_speed/LiftDivFactor
|
||
|
GaitRotZ[moving_leg] = -Yaw_speed/LiftDivFactor
|
||
|
|
||
|
elseif ((NrLiftedPos>=2) and (LegStep==1 or LegStep==-(StepsInGait-1)) and TravelRequest)
|
||
|
then
|
||
|
GaitPosX[moving_leg] = X_speed/LiftDivFactor
|
||
|
GaitPosZ[moving_leg] = -3*LegLiftHeight/(3+HalfLiftHeigth)
|
||
|
GaitPosY[moving_leg] = Y_speed/LiftDivFactor
|
||
|
GaitRotZ[moving_leg] = Yaw_speed/LiftDivFactor
|
||
|
|
||
|
elseif (((NrLiftedPos==5 and (LegStep==-2 ))) and TravelRequest)
|
||
|
then
|
||
|
GaitPosX[moving_leg] = -X_speed/2
|
||
|
GaitPosZ[moving_leg] = -LegLiftHeight/2
|
||
|
GaitPosY[moving_leg] = -Y_speed/2
|
||
|
GaitRotZ[moving_leg] = -Yaw_speed/2
|
||
|
|
||
|
elseif ((NrLiftedPos==5) and (LegStep==2 or LegStep==-(StepsInGait-2)) and TravelRequest)
|
||
|
then
|
||
|
GaitPosX[moving_leg] = X_speed/2
|
||
|
GaitPosZ[moving_leg] = -LegLiftHeight/2
|
||
|
GaitPosY[moving_leg] = Y_speed/2
|
||
|
GaitRotZ[moving_leg] = Yaw_speed/2
|
||
|
|
||
|
elseif ((LegStep==FrontDownPos or LegStep==-(StepsInGait-FrontDownPos)) and GaitPosY[moving_leg]<0)
|
||
|
then
|
||
|
GaitPosX[moving_leg] = X_speed/2
|
||
|
GaitPosZ[moving_leg] = Y_speed/2
|
||
|
GaitPosY[moving_leg] = Yaw_speed/2
|
||
|
GaitRotZ[moving_leg] = 0
|
||
|
|
||
|
else
|
||
|
GaitPosX[moving_leg] = GaitPosX[moving_leg] - (X_speed/TLDivFactor)
|
||
|
GaitPosZ[moving_leg] = 0
|
||
|
GaitPosY[moving_leg] = GaitPosZ[moving_leg] - (Y_speed/TLDivFactor)
|
||
|
GaitRotZ[moving_leg] = GaitRotZ[moving_leg] - (Yaw_speed/TLDivFactor)
|
||
|
end
|
||
|
end
|
||
|
|
||
|
-- This function determines where each leg should be.
|
||
|
-- To calculate each legs pose this takes pose of the body
|
||
|
-- as input bodyRotX, bodyRotY, bodyRotZ - rotation of and body ,bodyPosX,
|
||
|
-- bodyPosY - offset of the center of body
|
||
|
function Body_FK(X , Y , Z, Xdist, Ydist,Zrot)
|
||
|
local totaldist = { X + Xdist + bodyPosX, Y + Ydist + bodyPosY }
|
||
|
local distBodyCenterFeet = math.sqrt(totaldist[1]^2 + totaldist[2]^2)
|
||
|
local AngleBodyCenter = math.atan(totaldist[2], totaldist[1])
|
||
|
local rolly = math.tan(bodyRotY * math.pi/180) * totaldist[1]
|
||
|
local pitchy = math.tan(bodyRotX * math.pi/180) * totaldist[2]
|
||
|
|
||
|
local ansx = math.cos(AngleBodyCenter + ((bodyRotZ+Zrot) * math.pi/180)) * distBodyCenterFeet - totaldist[1] + bodyPosX
|
||
|
local ansy = math.sin(AngleBodyCenter + ((bodyRotZ+Zrot) * math.pi/180)) * distBodyCenterFeet - totaldist[2] + bodyPosY
|
||
|
local ansz = rolly+pitchy + bodyPosZ
|
||
|
local ans = {ansx, ansy ,ansz}
|
||
|
return ans
|
||
|
end
|
||
|
|
||
|
-- Calculates the angles of servos of each joint using the output of the
|
||
|
-- Body_FK() function which gives the origin of each leg on the body frame
|
||
|
function Leg_IK(X , Y , Z)
|
||
|
local coxa = math.atan(X,Y)* 180/math.pi
|
||
|
local trueX = math.sqrt(X^2+ Y^2 ) - L_COXA
|
||
|
local im = math.sqrt(trueX^2 + Z^2)
|
||
|
|
||
|
local q1 = -math.atan(Z,trueX)
|
||
|
local d1 = L_FEMUR^2 - L_TIBIA^2 + im^2
|
||
|
local d2 = 2*L_FEMUR*im
|
||
|
local q2 = math.acos(d1/d2)
|
||
|
local femur = (q1+q2) * 180/math.pi
|
||
|
|
||
|
local d1 = L_FEMUR^2 - im^2 + L_TIBIA^2
|
||
|
local d2 = 2*L_TIBIA*L_FEMUR
|
||
|
local tibia = (math.acos(d1/d2)-1.57) * 180/math.pi
|
||
|
local ang = { coxa, -femur ,-tibia}
|
||
|
return ang
|
||
|
end
|
||
|
|
||
|
-- checks if the servo has moved to its expected postion
|
||
|
function servo_estimate(start_time,current,last_angle)
|
||
|
local target = 0
|
||
|
for j = 1, 12 do
|
||
|
curr_target = math.abs(current[j] - last_angle[j])
|
||
|
if curr_target > target then
|
||
|
target = curr_target
|
||
|
end
|
||
|
end
|
||
|
local target_time = target * (0.24/60) * 1000
|
||
|
local now = millis()
|
||
|
|
||
|
if (target_time + start_time) <= now then
|
||
|
return true
|
||
|
else
|
||
|
return false
|
||
|
end
|
||
|
end
|
||
|
|
||
|
-- main_IK produces the IK solution for each
|
||
|
-- leg joint servos by taking into consideration the initial_pos, gait offset and the
|
||
|
-- bodyIK values.
|
||
|
function main_IK()
|
||
|
local ans1 = Body_FK(endpoints1[1]+GaitPosX[1], endpoints1[2]+GaitPosY[1], endpoints1[3]+GaitPosZ[1], L/2, W/2,GaitRotZ[1])
|
||
|
local angles1 = Leg_IK(endpoints1[1]+ans1[1]+GaitPosX[1],endpoints1[2]+ans1[2]+GaitPosY[1], endpoints1[3]+ans1[3]+GaitPosZ[1])
|
||
|
angles1 = {-45 + angles1[1],angles1[2],angles1[3]}
|
||
|
|
||
|
local ans2 = Body_FK(endpoints2[1]+GaitPosX[2], endpoints2[2]+GaitPosY[2], endpoints2[3]+GaitPosZ[2], L/2, -W/2,GaitRotZ[2])
|
||
|
local angles2 = Leg_IK(endpoints2[1]+ans2[1]+GaitPosX[2],endpoints2[2]+ans2[2]+GaitPosY[2], endpoints2[3]+ans2[3]+GaitPosZ[2])
|
||
|
angles2 = {-135 + angles2[1],angles2[2],angles2[3]}
|
||
|
|
||
|
local ans3 = Body_FK(endpoints3[1]+GaitPosX[3], endpoints3[2]+GaitPosY[3], endpoints3[3]+GaitPosZ[3], -L/2, -W/2,GaitRotZ[3])
|
||
|
local angles3 = Leg_IK(endpoints3[1]+ans3[1]+GaitPosX[3],endpoints3[2]+ans3[2]+GaitPosY[3], endpoints3[3]+ans3[3]+GaitPosZ[3])
|
||
|
angles3 = {135 + angles3[1],angles3[2],angles3[3]}
|
||
|
|
||
|
local ans4 = Body_FK(endpoints4[1]+GaitPosX[4], endpoints4[2]+GaitPosY[4], endpoints4[3]+GaitPosZ[4], -L/2, W/2,GaitRotZ[4])
|
||
|
local angles4 = Leg_IK(endpoints4[1]+ans4[1]+GaitPosX[4],endpoints4[2]+ans4[2]+GaitPosY[4], endpoints4[3]+ans4[3]+GaitPosZ[4])
|
||
|
angles4 = {45 + angles4[1],angles4[2],angles4[3]}
|
||
|
Gaitselect()
|
||
|
current = {angles1[1],angles1[2],angles1[3],angles2[1],angles2[2],angles2[3],angles3[1],angles3[2],angles3[3],angles4[1],angles4[2],angles4[3]}
|
||
|
|
||
|
if servo_estimate(start_time,current,last_angle) then
|
||
|
start_time = millis()
|
||
|
Sequence_Gen()
|
||
|
last_angle = current
|
||
|
end
|
||
|
|
||
|
return angles1,angles4,angles3,angles2
|
||
|
end
|
||
|
|
||
|
local rest_angles = { 45, -90, 40,
|
||
|
-45, -90, 40,
|
||
|
45, -90, 40,
|
||
|
-45, -90, 40}
|
||
|
local servo_direction = { 1,1,1,
|
||
|
-1,-1,-1,
|
||
|
-1,-1,1,
|
||
|
1,1,-1}
|
||
|
|
||
|
function update()
|
||
|
X_speed = vehicle:get_control_output(throttle) * max_step_factor
|
||
|
Yaw_speed = vehicle:get_control_output(yaw) * max_yaw_factor
|
||
|
|
||
|
bodyRotX = -(vehicle:get_control_output(roll) * 10)
|
||
|
bodyRotY = -(vehicle:get_control_output(pitch) * 10)
|
||
|
|
||
|
if arming:is_armed() then
|
||
|
FR_angles , BL_angles, BR_angles, FL_angles = main_IK()
|
||
|
|
||
|
angles = { FR_angles[1],FR_angles[2],FR_angles[3] , FL_angles[1],FL_angles[2],FL_angles[3],BR_angles[1],BR_angles[2],BR_angles[3], BL_angles[1],BL_angles[2],BL_angles[3]}
|
||
|
else
|
||
|
angles = rest_angles
|
||
|
end
|
||
|
|
||
|
for j = 1, 12 do
|
||
|
pwm[j] = math.floor(((angles[j] * servo_direction[j] * 1000)/90) + 1500)
|
||
|
end
|
||
|
|
||
|
for i = 1, 12 do
|
||
|
SRV_Channels:set_output_pwm_chan_timeout(i-1, pwm[i], 1000)
|
||
|
end
|
||
|
|
||
|
return update,10
|
||
|
|
||
|
end
|
||
|
|
||
|
gcs:send_text(0, "quadruped simulation")
|
||
|
return update()
|