207 lines
5.2 KiB
C++
207 lines
5.2 KiB
C++
|
/*
|
||
|
multiple heap interface, allowing for an allocator that uses
|
||
|
multiple underlying heaps to cope with multiple memory regions on
|
||
|
STM32 boards
|
||
|
*/
|
||
|
|
||
|
#include "AP_MultiHeap.h"
|
||
|
|
||
|
#if ENABLE_HEAP
|
||
|
#include <AP_Math/AP_Math.h>
|
||
|
#include <stdio.h>
|
||
|
|
||
|
/*
|
||
|
allow up to 10 heaps
|
||
|
*/
|
||
|
#ifndef MAX_HEAPS
|
||
|
#define MAX_HEAPS 10
|
||
|
#endif
|
||
|
|
||
|
extern const AP_HAL::HAL &hal;
|
||
|
|
||
|
/*
|
||
|
create heaps with a total memory size, splitting over at most
|
||
|
max_heaps
|
||
|
*/
|
||
|
bool MultiHeap::create(uint32_t total_size, uint8_t max_heaps, bool _allow_expansion, uint32_t _reserve_size)
|
||
|
{
|
||
|
max_heaps = MIN(MAX_HEAPS, max_heaps);
|
||
|
if (heaps != nullptr) {
|
||
|
// don't allow double allocation
|
||
|
return false;
|
||
|
}
|
||
|
heaps = NEW_NOTHROW Heap[max_heaps];
|
||
|
if (heaps == nullptr) {
|
||
|
return false;
|
||
|
}
|
||
|
num_heaps = max_heaps;
|
||
|
for (uint8_t i=0; i<max_heaps; i++) {
|
||
|
uint32_t alloc_size = total_size;
|
||
|
while (alloc_size > 0) {
|
||
|
heaps[i].hp = heap_create(alloc_size);
|
||
|
if (heaps[i].hp != nullptr) {
|
||
|
total_size -= alloc_size;
|
||
|
sum_size += alloc_size;
|
||
|
break;
|
||
|
}
|
||
|
alloc_size *= 0.9;
|
||
|
}
|
||
|
if (total_size == 0) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (total_size != 0) {
|
||
|
destroy();
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
allow_expansion = _allow_expansion;
|
||
|
reserve_size = _reserve_size;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// destroy heap
|
||
|
void MultiHeap::destroy(void)
|
||
|
{
|
||
|
if (!available()) {
|
||
|
return;
|
||
|
}
|
||
|
for (uint8_t i=0; i<num_heaps; i++) {
|
||
|
if (heaps[i].hp != nullptr) {
|
||
|
heap_destroy(heaps[i].hp);
|
||
|
heaps[i].hp = nullptr;
|
||
|
}
|
||
|
}
|
||
|
delete[] heaps;
|
||
|
heaps = nullptr;
|
||
|
num_heaps = 0;
|
||
|
sum_size = 0;
|
||
|
expanded_to = 0;
|
||
|
}
|
||
|
|
||
|
// return true if heap is available for operations
|
||
|
bool MultiHeap::available(void) const
|
||
|
{
|
||
|
return heaps != nullptr && heaps[0].hp != nullptr;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
allocate memory from a heap
|
||
|
*/
|
||
|
void *MultiHeap::allocate(uint32_t size)
|
||
|
{
|
||
|
if (!available() || size == 0) {
|
||
|
return nullptr;
|
||
|
}
|
||
|
for (uint8_t i=0; i<num_heaps; i++) {
|
||
|
if (heaps[i].hp == nullptr) {
|
||
|
break;
|
||
|
}
|
||
|
void *newptr = heap_allocate(heaps[i].hp, size);
|
||
|
if (newptr != nullptr) {
|
||
|
last_failed = false;
|
||
|
return newptr;
|
||
|
}
|
||
|
}
|
||
|
if (!allow_expansion || !last_failed) {
|
||
|
/*
|
||
|
we only allow expansion when the last allocation
|
||
|
failed. This gives the lua engine a chance to use garbage
|
||
|
collection to recover memory
|
||
|
*/
|
||
|
last_failed = true;
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
if (!hal.util->get_soft_armed()) {
|
||
|
// only expand the available heaps when armed. When disarmed
|
||
|
// user should fix their SCR_HEAP_SIZE parameter
|
||
|
last_failed = true;
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
vehicle is armed and MultiHeap (for scripting) is out of
|
||
|
memory. We will see if we can add a new heap from available
|
||
|
memory if we have at least reserve_size bytes free
|
||
|
*/
|
||
|
const uint32_t available = hal.util->available_memory();
|
||
|
const uint32_t heap_overhead = 128; // conservative value, varies with HAL
|
||
|
const uint32_t min_size = size + heap_overhead;
|
||
|
if (available < reserve_size+min_size) {
|
||
|
last_failed = true;
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
// round up to a minimum of 30k to allocate, and allow for heap overhead
|
||
|
const uint32_t round_to = 30*1024U;
|
||
|
const uint32_t alloc_size = MIN(available - reserve_size, MAX(size+heap_overhead, round_to));
|
||
|
if (alloc_size < min_size) {
|
||
|
last_failed = true;
|
||
|
return nullptr;
|
||
|
}
|
||
|
for (uint8_t i=0; i<num_heaps; i++) {
|
||
|
if (heaps[i].hp == nullptr) {
|
||
|
heaps[i].hp = heap_create(alloc_size);
|
||
|
if (heaps[i].hp == nullptr) {
|
||
|
last_failed = true;
|
||
|
return nullptr;
|
||
|
}
|
||
|
sum_size += alloc_size;
|
||
|
expanded_to = sum_size;
|
||
|
void *p = heap_allocate(heaps[i].hp, size);
|
||
|
last_failed = p == nullptr;
|
||
|
return p;
|
||
|
}
|
||
|
}
|
||
|
last_failed = true;
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
free memory from a heap
|
||
|
*/
|
||
|
void MultiHeap::deallocate(void *ptr)
|
||
|
{
|
||
|
if (!available() || ptr == nullptr) {
|
||
|
return;
|
||
|
}
|
||
|
heap_free(ptr);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
change size of an allocation, operates like realloc(), but requires
|
||
|
the old_size when ptr is not NULL
|
||
|
*/
|
||
|
void *MultiHeap::change_size(void *ptr, uint32_t old_size, uint32_t new_size)
|
||
|
{
|
||
|
if (new_size == 0) {
|
||
|
deallocate(ptr);
|
||
|
return nullptr;
|
||
|
}
|
||
|
/*
|
||
|
we don't want to require the underlying allocation system to
|
||
|
support realloc() and we also want to be able to handle the case
|
||
|
of having to move the allocation to a new heap, so we do a
|
||
|
simple alloc/copy/deallocate for reallocation
|
||
|
*/
|
||
|
void *newp = allocate(new_size);
|
||
|
if (ptr == nullptr) {
|
||
|
return newp;
|
||
|
}
|
||
|
if (newp == nullptr) {
|
||
|
if (old_size >= new_size) {
|
||
|
// Lua assumes that the allocator never fails when osize >= nsize
|
||
|
// the best we can do is return the old pointer
|
||
|
return ptr;
|
||
|
}
|
||
|
return nullptr;
|
||
|
}
|
||
|
memcpy(newp, ptr, MIN(old_size, new_size));
|
||
|
deallocate(ptr);
|
||
|
return newp;
|
||
|
}
|
||
|
|
||
|
#endif // ENABLE_HEAP
|