Ardupilot2/libraries/Filter/LowPassFilter.cpp

147 lines
3.8 KiB
C++
Raw Normal View History

//
/// @file LowPassFilter.cpp
/// @brief A class to implement a low pass filter without losing precision even for int types
/// the downside being that it's a little slower as it internally uses a float
/// and it consumes an extra 4 bytes of memory to hold the constant gain
#ifndef HAL_DEBUG_BUILD
#define AP_INLINE_VECTOR_OPS
#pragma GCC optimize("O2")
#endif
#include "LowPassFilter.h"
2022-12-05 02:18:51 -04:00
#include <AP_InternalError/AP_InternalError.h>
////////////////////////////////////////////////////////////////////////////////////////////
// DigitalLPF
////////////////////////////////////////////////////////////////////////////////////////////
template <class T>
DigitalLPF<T>::DigitalLPF() {
// built in initialization
_output = T();
}
// add a new raw value to the filter, retrieve the filtered result
template <class T>
T DigitalLPF<T>::apply(const T &sample, float cutoff_freq, float dt) {
2022-12-05 02:18:51 -04:00
if (is_negative(cutoff_freq) || is_negative(dt)) {
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
_output = sample;
return _output;
}
2022-12-05 02:18:51 -04:00
if (is_zero(cutoff_freq)) {
_output = sample;
return _output;
}
if (is_zero(dt)) {
return _output;
}
float rc = 1.0f/(M_2PI*cutoff_freq);
alpha = constrain_float(dt/(dt+rc), 0.0f, 1.0f);
_output += (sample - _output) * alpha;
if (!initialised) {
initialised = true;
_output = sample;
}
return _output;
}
template <class T>
T DigitalLPF<T>::apply(const T &sample) {
_output += (sample - _output) * alpha;
if (!initialised) {
initialised = true;
_output = sample;
}
return _output;
}
template <class T>
void DigitalLPF<T>::compute_alpha(float sample_freq, float cutoff_freq) {
2020-11-08 06:57:01 -04:00
if (sample_freq <= 0) {
alpha = 1;
} else {
2020-11-08 06:57:01 -04:00
alpha = calc_lowpass_alpha_dt(1.0/sample_freq, cutoff_freq);
}
}
// get latest filtered value from filter (equal to the value returned by latest call to apply method)
template <class T>
const T &DigitalLPF<T>::get() const {
return _output;
}
template <class T>
void DigitalLPF<T>::reset(T value) {
_output = value;
initialised = true;
}
////////////////////////////////////////////////////////////////////////////////////////////
// LowPassFilter
////////////////////////////////////////////////////////////////////////////////////////////
// constructors
template <class T>
LowPassFilter<T>::LowPassFilter() :
_cutoff_freq(0.0f) {}
template <class T>
LowPassFilter<T>::LowPassFilter(float cutoff_freq) :
_cutoff_freq(cutoff_freq) {}
template <class T>
LowPassFilter<T>::LowPassFilter(float sample_freq, float cutoff_freq)
{
set_cutoff_frequency(sample_freq, cutoff_freq);
}
// change parameters
template <class T>
void LowPassFilter<T>::set_cutoff_frequency(float cutoff_freq) {
_cutoff_freq = cutoff_freq;
}
template <class T>
void LowPassFilter<T>::set_cutoff_frequency(float sample_freq, float cutoff_freq) {
_cutoff_freq = cutoff_freq;
_filter.compute_alpha(sample_freq, cutoff_freq);
}
// return the cutoff frequency
template <class T>
float LowPassFilter<T>::get_cutoff_freq(void) const {
return _cutoff_freq;
}
template <class T>
T LowPassFilter<T>::apply(T sample, float dt) {
return _filter.apply(sample, _cutoff_freq, dt);
}
template <class T>
T LowPassFilter<T>::apply(T sample) {
return _filter.apply(sample);
}
template <class T>
const T &LowPassFilter<T>::get() const {
return _filter.get();
}
template <class T>
void LowPassFilter<T>::reset(T value) {
_filter.reset(value);
}
/*
* Make an instances
* Otherwise we have to move the constructor implementations to the header file :P
*/
template class LowPassFilter<int>;
template class LowPassFilter<long>;
template class LowPassFilter<float>;
template class LowPassFilter<Vector2f>;
template class LowPassFilter<Vector3f>;