Ardupilot2/libraries/AP_Baro/AP_Baro.cpp

254 lines
8.9 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* APM_Baro.cpp - barometer driver
*
*/
#include <AP_Math.h>
#include <AP_Common.h>
#include <AP_Baro.h>
2012-10-11 14:53:21 -03:00
#include <AP_HAL.h>
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_Baro::var_info[] PROGMEM = {
// NOTE: Index numbers 0 and 1 were for the old integer
// ground temperature and pressure
// @Param: ABS_PRESS
// @DisplayName: Absolute Pressure
// @Description: calibrated ground pressure in Pascals
2014-10-14 00:42:27 -03:00
// @Units: pascals
// @Increment: 1
AP_GROUPINFO("ABS_PRESS", 2, AP_Baro, _ground_pressure, 0),
2013-06-17 23:28:08 -03:00
// @Param: TEMP
// @DisplayName: ground temperature
// @Description: calibrated ground temperature in degrees Celsius
2014-10-14 00:42:27 -03:00
// @Units: degrees celsius
// @Increment: 1
AP_GROUPINFO("TEMP", 3, AP_Baro, _ground_temperature, 0),
// @Param: ALT_OFFSET
// @DisplayName: altitude offset
// @Description: altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.
// @Units: meters
// @Range: -128 127
// @Increment: 1
AP_GROUPINFO("ALT_OFFSET", 4, AP_Baro, _alt_offset, 0),
AP_GROUPEND
};
// calibrate the barometer. This must be called at least once before
// the altitude() or climb_rate() interfaces can be used
2012-10-11 14:53:21 -03:00
void AP_Baro::calibrate()
{
float ground_pressure = 0;
float ground_temperature = 0;
// reset the altitude offset when we calibrate. The altitude
// offset is supposed to be for within a flight
_alt_offset.set_and_save(0);
2012-12-05 21:18:04 -04:00
{
uint32_t tstart = hal.scheduler->millis();
while (ground_pressure == 0 || !_flags.healthy) {
2012-12-05 21:18:04 -04:00
read(); // Get initial data from absolute pressure sensor
if (hal.scheduler->millis() - tstart > 500) {
2012-12-17 20:29:05 -04:00
hal.scheduler->panic(PSTR("PANIC: AP_Baro::read unsuccessful "
2012-12-05 21:18:04 -04:00
"for more than 500ms in AP_Baro::calibrate [1]\r\n"));
}
ground_pressure = get_pressure();
ground_temperature = get_calibration_temperature();
2012-12-05 21:18:04 -04:00
hal.scheduler->delay(20);
}
}
// let the barometer settle for a full second after startup
// the MS5611 reads quite a long way off for the first second,
// leading to about 1m of error if we don't wait
2012-12-05 21:18:04 -04:00
for (uint8_t i = 0; i < 10; i++) {
uint32_t tstart = hal.scheduler->millis();
do {
read();
2012-12-05 21:18:04 -04:00
if (hal.scheduler->millis() - tstart > 500) {
2012-12-17 20:29:05 -04:00
hal.scheduler->panic(PSTR("PANIC: AP_Baro::read unsuccessful "
2012-12-05 21:18:04 -04:00
"for more than 500ms in AP_Baro::calibrate [2]\r\n"));
}
} while (!_flags.healthy);
2012-12-05 21:18:04 -04:00
ground_pressure = get_pressure();
ground_temperature = get_calibration_temperature();
2012-12-05 21:18:04 -04:00
2012-10-11 14:53:21 -03:00
hal.scheduler->delay(100);
}
// now average over 5 values for the ground pressure and
// temperature settings
for (uint16_t i = 0; i < 5; i++) {
2012-12-05 21:18:04 -04:00
uint32_t tstart = hal.scheduler->millis();
do {
read();
2012-12-05 21:18:04 -04:00
if (hal.scheduler->millis() - tstart > 500) {
2012-12-17 20:29:05 -04:00
hal.scheduler->panic(PSTR("PANIC: AP_Baro::read unsuccessful "
2012-12-05 21:18:04 -04:00
"for more than 500ms in AP_Baro::calibrate [3]\r\n"));
}
} while (!_flags.healthy);
ground_pressure = (ground_pressure * 0.8f) + (get_pressure() * 0.2f);
ground_temperature = (ground_temperature * 0.8f) +
(get_calibration_temperature() * 0.2f);
2012-12-05 21:18:04 -04:00
2012-10-11 14:53:21 -03:00
hal.scheduler->delay(100);
}
_ground_pressure.set_and_save(ground_pressure);
_ground_temperature.set_and_save(ground_temperature);
}
/**
update the barometer calibration
this updates the baro ground calibration to the current values. It
can be used before arming to keep the baro well calibrated
*/
void AP_Baro::update_calibration()
{
float pressure = get_pressure();
_ground_pressure.set(pressure);
float last_temperature = _ground_temperature;
_ground_temperature.set(get_calibration_temperature());
if (fabsf(last_temperature - _ground_temperature) > 3) {
// reset _EAS2TAS to force it to recalculate. This happens
// when a digital airspeed sensor comes online
_EAS2TAS = 0;
}
}
// return altitude difference in meters between current pressure and a
// given base_pressure in Pascal
float AP_Baro::get_altitude_difference(float base_pressure, float pressure) const
{
float ret;
#if HAL_CPU_CLASS <= HAL_CPU_CLASS_16
// on slower CPUs use a less exact, but faster, calculation
float scaling = base_pressure / pressure;
float temp = _ground_temperature + 273.15f;
ret = logf(scaling) * temp * 29.271267f;
#else
// on faster CPUs use a more exact calculation
float scaling = pressure / base_pressure;
float temp = _ground_temperature + 273.15f;
// This is an exact calculation that is within +-2.5m of the standard atmosphere tables
// in the troposphere (up to 11,000 m amsl).
ret = 153.8462f * temp * (1.0f - expf(0.190259f * logf(scaling)));
#endif
return ret;
}
// return current altitude estimate relative to time that calibrate()
// was called. Returns altitude in meters
// note that this relies on read() being called regularly to get new data
float AP_Baro::get_altitude(void)
{
if (_ground_pressure == 0) {
// called before initialisation
return 0;
}
if (_last_altitude_t == _last_update) {
// no new information
return _altitude + _alt_offset;
}
float pressure = get_pressure();
float alt = get_altitude_difference(_ground_pressure, pressure);
// record that we have consumed latest data
_last_altitude_t = _last_update;
// sanity check altitude
if (isnan(alt) || isinf(alt)) {
_flags.alt_ok = false;
} else {
_altitude = alt;
_flags.alt_ok = true;
}
// ensure the climb rate filter is updated
_climb_rate_filter.update(_altitude, _last_update);
return _altitude + _alt_offset;
}
// return current scale factor that converts from equivalent to true airspeed
// valid for altitudes up to 10km AMSL
// assumes standard atmosphere lapse rate
float AP_Baro::get_EAS2TAS(void)
{
if ((fabsf(_altitude - _last_altitude_EAS2TAS) < 100.0f) && (_EAS2TAS != 0.0f)) {
// not enough change to require re-calculating
return _EAS2TAS;
}
float tempK = ((float)_ground_temperature) + 273.15f - 0.0065f * _altitude;
_EAS2TAS = safe_sqrt(1.225f / ((float)get_pressure() / (287.26f * tempK)));
_last_altitude_EAS2TAS = _altitude;
return _EAS2TAS;
}
// return current climb_rate estimeate relative to time that calibrate()
// was called. Returns climb rate in meters/s, positive means up
// note that this relies on read() being called regularly to get new data
float AP_Baro::get_climb_rate(void)
{
// we use a 7 point derivative filter on the climb rate. This seems
// to produce somewhat reasonable results on real hardware
return _climb_rate_filter.slope() * 1.0e3f;
}
/*
set external temperature to be used for calibration (degrees C)
*/
void AP_Baro::set_external_temperature(float temperature)
{
_external_temperature = temperature;
_last_external_temperature_ms = hal.scheduler->millis();
}
/*
get the temperature in degrees C to be used for calibration purposes
*/
float AP_Baro::get_calibration_temperature(void) const
{
// if we have a recent external temperature then use it
if (_last_external_temperature_ms != 0 && hal.scheduler->millis() - _last_external_temperature_ms < 10000) {
return _external_temperature;
}
// if we don't have an external temperature then use the minimum
// of the barometer temperature and 25 degrees C. The reason for
// not just using the baro temperature is it tends to read high,
// often 30 degrees above the actual temperature. That means the
// EAS2TAS tends to be off by quite a large margin
float ret = get_temperature();
if (ret > 25) {
ret = 25;
}
return ret;
}