Ardupilot2/ArduPlane/failsafe.cpp

112 lines
3.8 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2015-05-13 03:09:36 -03:00
#include "Plane.h"
/*
2012-08-16 21:50:15 -03:00
* failsafe support
* Andrew Tridgell, December 2011
*/
/*
2012-08-16 21:50:15 -03:00
* our failsafe strategy is to detect main loop lockup and switch to
* passing inputs straight from the RC inputs to RC outputs.
*/
/*
2012-08-16 21:50:15 -03:00
* this failsafe_check function is called from the core timer interrupt
* at 1kHz.
*/
2015-05-13 03:09:36 -03:00
void Plane::failsafe_check(void)
{
static uint16_t last_mainLoop_count;
static uint32_t last_timestamp;
static bool in_failsafe;
2013-09-28 03:31:17 -03:00
uint32_t tnow = hal.scheduler->micros();
if (mainLoop_count != last_mainLoop_count) {
// the main loop is running, all is OK
last_mainLoop_count = mainLoop_count;
last_timestamp = tnow;
in_failsafe = false;
return;
}
if (tnow - last_timestamp > 200000) {
// we have gone at least 0.2 seconds since the main loop
2012-08-16 21:50:15 -03:00
// ran. That means we're in trouble, or perhaps are in
// an initialisation routine or log erase. Start passing RC
// inputs through to outputs
in_failsafe = true;
}
if (in_failsafe && tnow - last_timestamp > 20000) {
last_timestamp = tnow;
#if OBC_FAILSAFE == ENABLED
if (in_calibration) {
// tell the failsafe system that we are calibrating
// sensors, so don't trigger failsafe
obc.heartbeat();
}
#endif
if (hal.rcin->num_channels() == 0) {
// we don't have any RC input to pass through
return;
}
// pass RC inputs to outputs every 20ms
2012-12-04 18:22:21 -04:00
hal.rcin->clear_overrides();
channel_roll->radio_out = channel_roll->read();
channel_pitch->radio_out = channel_pitch->read();
if (hal.util->get_soft_armed()) {
channel_throttle->radio_out = channel_throttle->read();
}
channel_rudder->radio_out = channel_rudder->read();
2013-06-28 21:14:57 -03:00
int16_t roll = channel_roll->pwm_to_angle_dz(0);
int16_t pitch = channel_pitch->pwm_to_angle_dz(0);
int16_t rudder = channel_rudder->pwm_to_angle_dz(0);
2013-06-28 21:14:57 -03:00
// setup secondary output channels that don't have
// corresponding input channels
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron, roll);
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator, pitch);
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_rudder, rudder);
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_steering, rudder);
2013-06-28 21:14:57 -03:00
if (g.vtail_output != MIXING_DISABLED) {
channel_output_mixer(g.vtail_output, channel_pitch->radio_out, channel_rudder->radio_out);
} else if (g.elevon_output != MIXING_DISABLED) {
channel_output_mixer(g.elevon_output, channel_pitch->radio_out, channel_roll->radio_out);
}
#if OBC_FAILSAFE == ENABLED
// this is to allow the failsafe module to deliberately crash
// the plane. Only used in extreme circumstances to meet the
// OBC rules
obc.check_crash_plane();
#endif
if (!demoing_servos) {
channel_roll->output();
channel_pitch->output();
}
channel_throttle->output();
if (g.rudder_only == 0) {
channel_rudder->output();
}
2013-06-28 21:14:57 -03:00
// setup secondary output channels that do have
// corresponding input channels
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_manual, true);
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_aileron_with_input, true);
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_elevator_with_input, true);
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap, 0);
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap_auto, 0);
// setup flaperons
flaperon_update(0);
}
}