Ardupilot2/APMrover2/system.pde

494 lines
13 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************************************************
The init_ardupilot function processes everything we need for an in - air restart
We will determine later if we are actually on the ground and process a
ground start in that case.
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// Functions called from the top-level menu
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv);
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("Commands:\n"
" logs log readback/setup mode\n"
" setup setup mode\n"
" test test mode\n"
"\n"
"Move the slide switch and reset to FLY.\n"
"\n"));
return(0);
}
// Command/function table for the top-level menu.
static const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"logs", process_logs},
{"setup", setup_mode},
{"test", test_mode},
{"reboot", reboot_board},
{"help", main_menu_help}
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv)
{
2013-09-03 22:58:41 -03:00
hal.scheduler->reboot(false);
return 0;
}
// the user wants the CLI. It never exits
static void run_cli(AP_HAL::UARTDriver *port)
{
// disable the failsafe code in the CLI
hal.scheduler->register_timer_failsafe(NULL,1);
// disable the mavlink delay callback
hal.scheduler->register_delay_callback(NULL, 5);
cliSerial = port;
Menu::set_port(port);
port->set_blocking_writes(true);
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void init_ardupilot()
{
// Console serial port
//
// The console port buffers are defined to be sufficiently large to support
// the console's use as a logging device, optionally as the GPS port when
// GPS_PROTOCOL_IMU is selected, and as the telemetry port.
//
// XXX This could be optimised to reduce the buffer sizes in the cases
// where they are not otherwise required.
//
hal.uartA->begin(SERIAL0_BAUD, 128, 128);
// GPS serial port.
//
// XXX currently the EM406 (SiRF receiver) is nominally configured
// at 57600, however it's not been supported to date. We should
// probably standardise on 38400.
//
// XXX the 128 byte receive buffer may be too small for NMEA, depending
// on the message set configured.
//
// standard gps running
2013-09-04 00:17:02 -03:00
hal.uartB->begin(115200, 256, 16);
cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE
"\n\nFree RAM: %u\n"),
memcheck_available_memory());
//
// Check the EEPROM format version before loading any parameters from EEPROM.
//
load_parameters();
set_control_channels();
2013-01-17 16:56:32 -04:00
// after parameter load setup correct baud rate on uartA
hal.uartA->begin(map_baudrate(g.serial0_baud, SERIAL0_BAUD));
// keep a record of how many resets have happened. This can be
// used to detect in-flight resets
g.num_resets.set_and_save(g.num_resets+1);
// init the GCS
gcs0.init(hal.uartA);
// Register mavlink_delay_cb, which will run anytime you have
// more than 5ms remaining in your call to hal.scheduler->delay
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
2013-09-20 20:21:02 -03:00
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
usb_connected = true;
check_usb_mux();
// we have a 2nd serial port for telemetry
hal.uartC->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128);
gcs3.init(hal.uartC);
mavlink_system.sysid = g.sysid_this_mav;
#if LOGGING_ENABLED == ENABLED
DataFlash.Init(); // DataFlash log initialization
if (!DataFlash.CardInserted()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted"));
g.log_bitmask.set(0);
} else if (DataFlash.NeedErase()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS"));
do_erase_logs();
}
if (g.log_bitmask != 0) {
2013-04-19 10:19:37 -03:00
start_logging();
}
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
adc.Init(); // APM ADC library initialization
#endif
if (g.compass_enabled==true) {
if (!compass.init()|| !compass.read()) {
cliSerial->println_P(PSTR("Compass initialisation failed!"));
g.compass_enabled = false;
} else {
ahrs.set_compass(&compass);
//compass.get_offsets(); // load offsets to account for airframe magnetic interference
}
}
// initialise sonar
init_sonar();
// Do GPS init
g_gps = &g_gps_driver;
// GPS initialisation
g_gps->init(hal.uartB, GPS::GPS_ENGINE_AUTOMOTIVE);
//mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav
mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id
mavlink_system.type = MAV_TYPE_GROUND_ROVER;
rc_override_active = hal.rcin->set_overrides(rc_override, 8);
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
relay.init();
/*
setup the 'main loop is dead' check. Note that this relies on
the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check, 1000);
// If the switch is in 'menu' mode, run the main menu.
//
// Since we can't be sure that the setup or test mode won't leave
// the system in an odd state, we don't let the user exit the top
// menu; they must reset in order to fly.
//
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
cliSerial->println_P(msg);
if (gcs3.initialised) {
hal.uartC->println_P(msg);
}
startup_ground();
if (g.log_bitmask & MASK_LOG_CMD)
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
set_mode((enum mode)g.initial_mode.get());
// set the correct flight mode
// ---------------------------
reset_control_switch();
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
static void startup_ground(void)
{
set_mode(INITIALISING);
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START"));
#if(GROUND_START_DELAY > 0)
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> With Delay"));
delay(GROUND_START_DELAY * 1000);
#endif
// Makes the servos wiggle
// step 1 = 1 wiggle
// -----------------------
demo_servos(1);
//IMU ground start
//------------------------
//
startup_INS_ground(false);
// read the radio to set trims
// ---------------------------
trim_radio();
// initialize commands
// -------------------
init_commands();
// Makes the servos wiggle - 3 times signals ready to fly
// -----------------------
demo_servos(3);
hal.uartA->set_blocking_writes(false);
hal.uartC->set_blocking_writes(false);
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to drive."));
}
static void set_mode(enum mode mode)
{
if(control_mode == mode){
// don't switch modes if we are already in the correct mode.
return;
}
control_mode = mode;
throttle_last = 0;
throttle = 500;
if (control_mode != AUTO) {
auto_triggered = false;
}
switch(control_mode)
{
case MANUAL:
case HOLD:
case LEARNING:
case STEERING:
break;
case AUTO:
rtl_complete = false;
restart_nav();
break;
case RTL:
do_RTL();
break;
default:
do_RTL();
break;
}
if (g.log_bitmask & MASK_LOG_MODE)
2013-04-19 04:53:07 -03:00
Log_Write_Mode();
}
/*
called to set/unset a failsafe event.
*/
static void failsafe_trigger(uint8_t failsafe_type, bool on)
{
uint8_t old_bits = failsafe.bits;
if (on) {
failsafe.bits |= failsafe_type;
} else {
failsafe.bits &= ~failsafe_type;
}
if (old_bits == 0 && failsafe.bits != 0) {
// a failsafe event has started
failsafe.start_time = millis();
}
if (failsafe.triggered != 0 && failsafe.bits == 0) {
// a failsafe event has ended
gcs_send_text_fmt(PSTR("Failsafe ended"));
}
failsafe.triggered &= failsafe.bits;
if (failsafe.triggered == 0 &&
failsafe.bits != 0 &&
millis() - failsafe.start_time > g.fs_timeout*1000 &&
control_mode != RTL &&
control_mode != HOLD) {
failsafe.triggered = failsafe.bits;
gcs_send_text_fmt(PSTR("Failsafe trigger 0x%x"), (unsigned)failsafe.triggered);
switch (g.fs_action) {
case 0:
break;
case 1:
set_mode(RTL);
break;
case 2:
set_mode(HOLD);
break;
}
}
}
static void startup_INS_ground(bool force_accel_level)
{
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC..."));
mavlink_delay(500);
// Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!!
// -----------------------
demo_servos(2);
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move vehicle"));
mavlink_delay(1000);
2013-01-13 01:03:54 -04:00
ahrs.init();
ahrs.set_fly_forward(true);
2012-11-29 07:57:10 -04:00
ins.init(AP_InertialSensor::COLD_START,
2013-09-19 05:32:57 -03:00
ins_sample_rate);
if (force_accel_level) {
// when MANUAL_LEVEL is set to 1 we don't do accelerometer
// levelling on each boot, and instead rely on the user to do
// it once via the ground station
2013-09-19 05:32:57 -03:00
ins.init_accel();
2013-02-19 20:56:38 -04:00
ahrs.set_trim(Vector3f(0, 0, 0));
}
ahrs.reset();
}
2013-08-29 00:14:16 -03:00
// updates the notify state
2013-08-24 06:05:18 -03:00
// should be called at 50hz
2013-08-29 00:14:16 -03:00
static void update_notify()
{
2013-08-29 00:14:16 -03:00
notify.update();
}
static void resetPerfData(void) {
mainLoop_count = 0;
G_Dt_max = 0;
ahrs.renorm_range_count = 0;
ahrs.renorm_blowup_count = 0;
gps_fix_count = 0;
pmTest1 = 0;
perf_mon_timer = millis();
}
/*
map from a 8 bit EEPROM baud rate to a real baud rate
*/
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud)
{
switch (rate) {
case 1: return 1200;
case 2: return 2400;
case 4: return 4800;
case 9: return 9600;
case 19: return 19200;
case 38: return 38400;
case 57: return 57600;
case 111: return 111100;
case 115: return 115200;
}
cliSerial->println_P(PSTR("Invalid SERIAL3_BAUD"));
return default_baud;
}
static void check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == usb_connected) {
return;
}
// the user has switched to/from the telemetry port
usb_connected = usb_check;
2013-09-20 20:21:02 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
// the APM2 has a MUX setup where the first serial port switches
// between USB and a TTL serial connection. When on USB we use
// SERIAL0_BAUD, but when connected as a TTL serial port we run it
// at SERIAL3_BAUD.
if (usb_connected) {
hal.uartA->begin(SERIAL0_BAUD);
} else {
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
}
2013-09-20 20:21:02 -03:00
#endif
2013-04-19 04:53:07 -03:00
}
/*
2013-09-12 00:26:12 -03:00
* Read board voltage in millivolts
*/
uint16_t board_voltage(void)
{
2013-09-12 00:26:12 -03:00
return vcc_pin->voltage_latest() * 1000;
}
static void
2013-04-20 02:18:42 -03:00
print_mode(AP_HAL::BetterStream *port, uint8_t mode)
{
switch (mode) {
case MANUAL:
2013-04-20 02:18:42 -03:00
port->print_P(PSTR("Manual"));
break;
case HOLD:
2013-04-20 02:18:42 -03:00
port->print_P(PSTR("HOLD"));
break;
case LEARNING:
2013-04-20 02:18:42 -03:00
port->print_P(PSTR("Learning"));
break;
case STEERING:
2013-04-20 02:18:42 -03:00
port->print_P(PSTR("Stearing"));
break;
case AUTO:
2013-04-20 02:18:42 -03:00
port->print_P(PSTR("AUTO"));
break;
case RTL:
2013-04-20 02:18:42 -03:00
port->print_P(PSTR("RTL"));
break;
default:
2013-04-20 02:18:42 -03:00
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode);
break;
}
}
/*
check a digitial pin for high,low (1/0)
*/
static uint8_t check_digital_pin(uint8_t pin)
{
int8_t dpin = hal.gpio->analogPinToDigitalPin(pin);
if (dpin == -1) {
return 0;
}
// ensure we are in input mode
hal.gpio->pinMode(dpin, GPIO_INPUT);
// enable pullup
hal.gpio->write(dpin, 1);
return hal.gpio->read(dpin);
}
/*
write to a servo
*/
static void servo_write(uint8_t ch, uint16_t pwm)
{
#if HIL_MODE != HIL_MODE_DISABLED
2013-07-14 21:30:10 -03:00
if (ch < 8) {
RC_Channel::rc_channel(ch)->radio_out = pwm;
}
2013-07-14 21:30:10 -03:00
#else
hal.rcout->enable_ch(ch);
hal.rcout->write(ch, pwm);
2013-07-14 21:30:10 -03:00
#endif
}