Ardupilot2/ArduPlane/control_modes.pde

84 lines
3.0 KiB
Plaintext
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static void read_control_switch()
{
2012-08-16 21:50:15 -03:00
static bool switch_debouncer;
2012-12-04 18:22:21 -04:00
uint8_t switchPosition = readSwitch();
2012-08-16 21:50:15 -03:00
// If switchPosition = 255 this indicates that the mode control channel input was out of range
// If we get this value we do not want to change modes.
if(switchPosition == 255) return;
if (failsafe.ch3_failsafe || failsafe.ch3_counter > 0) {
// when we are in ch3_failsafe mode then RC input is not
// working, and we need to ignore the mode switch channel
return;
}
if (hal.scheduler->millis() - failsafe.last_valid_rc_ms > 100) {
// only use signals that are less than 0.1s old.
return;
}
// we look for changes in the switch position. If the
// RST_SWITCH_CH parameter is set, then it is a switch that can be
// used to force re-reading of the control switch. This is useful
// when returning to the previous mode after a failsafe or fence
// breach. This channel is best used on a momentary switch (such
// as a spring loaded trainer switch).
2012-08-16 21:50:15 -03:00
if (oldSwitchPosition != switchPosition ||
(g.reset_switch_chan != 0 &&
2012-12-04 18:22:21 -04:00
hal.rcin->read(g.reset_switch_chan-1) > RESET_SWITCH_CHAN_PWM)) {
if (switch_debouncer == false) {
// this ensures that mode switches only happen if the
// switch changes for 2 reads. This prevents momentary
// spikes in the mode control channel from causing a mode
// switch
switch_debouncer = true;
return;
}
set_mode((enum FlightMode)(flight_modes[switchPosition].get()));
2012-08-16 21:50:15 -03:00
oldSwitchPosition = switchPosition;
2014-03-03 09:50:45 -04:00
prev_WP.content.location = current_loc;
2012-08-16 21:50:15 -03:00
}
2012-08-16 21:50:15 -03:00
if (g.reset_mission_chan != 0 &&
2012-12-04 18:22:21 -04:00
hal.rcin->read(g.reset_mission_chan-1) > RESET_SWITCH_CHAN_PWM) {
2014-03-03 09:50:45 -04:00
if (mission.set_current_cmd(0)) {
// reset to first waypoint in mission
prev_WP.content.location = current_loc;
}
}
switch_debouncer = false;
if (g.inverted_flight_ch != 0) {
// if the user has configured an inverted flight channel, then
// fly upside down when that channel goes above INVERTED_FLIGHT_PWM
2012-12-04 18:22:21 -04:00
inverted_flight = (control_mode != MANUAL && hal.rcin->read(g.inverted_flight_ch-1) > INVERTED_FLIGHT_PWM);
}
}
static uint8_t readSwitch(void)
{
2012-12-04 18:22:21 -04:00
uint16_t pulsewidth = hal.rcin->read(g.flight_mode_channel - 1);
if (pulsewidth <= 900 || pulsewidth >= 2200) return 255; // This is an error condition
2012-08-16 21:50:15 -03:00
if (pulsewidth > 1230 && pulsewidth <= 1360) return 1;
if (pulsewidth > 1360 && pulsewidth <= 1490) return 2;
if (pulsewidth > 1490 && pulsewidth <= 1620) return 3;
if (pulsewidth > 1620 && pulsewidth <= 1749) return 4; // Software Manual
if (pulsewidth >= 1750) return 5; // Hardware Manual
return 0;
}
static void reset_control_switch()
{
oldSwitchPosition = 254;
2012-08-16 21:50:15 -03:00
read_control_switch();
}