512 lines
14 KiB
Plaintext
512 lines
14 KiB
Plaintext
|
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
|
||
|
|
||
|
/*****************************************************************************
|
||
|
The init_ardupilot function processes everything we need for an in - air restart
|
||
|
We will determine later if we are actually on the ground and process a
|
||
|
ground start in that case.
|
||
|
|
||
|
*****************************************************************************/
|
||
|
|
||
|
// Functions called from the top-level menu
|
||
|
extern int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
|
||
|
extern int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
|
||
|
extern int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
|
||
|
|
||
|
// This is the help function
|
||
|
// PSTR is an AVR macro to read strings from flash memory
|
||
|
// printf_P is a version of print_f that reads from flash memory
|
||
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
Serial.printf_P(PSTR("Commands:\n"
|
||
|
" logs log readback/setup mode\n"
|
||
|
" setup setup mode\n"
|
||
|
" test test mode\n"
|
||
|
"\n"
|
||
|
"Move the slide switch and reset to FLY.\n"
|
||
|
"\n"));
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
// Command/function table for the top-level menu.
|
||
|
const struct Menu::command main_menu_commands[] PROGMEM = {
|
||
|
// command function called
|
||
|
// ======= ===============
|
||
|
{"logs", process_logs},
|
||
|
{"setup", setup_mode},
|
||
|
{"test", test_mode},
|
||
|
{"help", main_menu_help}
|
||
|
};
|
||
|
|
||
|
// Create the top-level menu object.
|
||
|
MENU(main_menu, "ArduPilotMega", main_menu_commands);
|
||
|
|
||
|
void init_ardupilot()
|
||
|
{
|
||
|
|
||
|
byte last_log_num;
|
||
|
int last_log_start;
|
||
|
int last_log_end;
|
||
|
|
||
|
// Console serial port
|
||
|
//
|
||
|
// The console port buffers are defined to be sufficiently large to support
|
||
|
// the console's use as a logging device, optionally as the GPS port when
|
||
|
// GPS_PROTOCOL_IMU is selected, and as the telemetry port.
|
||
|
//
|
||
|
// XXX This could be optimised to reduce the buffer sizes in the cases
|
||
|
// where they are not otherwise required.
|
||
|
//
|
||
|
Serial.begin(SERIAL0_BAUD, 128, 128);
|
||
|
|
||
|
// GPS serial port.
|
||
|
//
|
||
|
// Not used if the IMU/X-Plane GPS is in use.
|
||
|
//
|
||
|
// XXX currently the EM406 (SiRF receiver) is nominally configured
|
||
|
// at 57600, however it's not been supported to date. We should
|
||
|
// probably standardise on 38400.
|
||
|
//
|
||
|
// XXX the 128 byte receive buffer may be too small for NMEA, depending
|
||
|
// on the message set configured.
|
||
|
//
|
||
|
#if HIL_MODE != HIL_MODE_DISABLED && HIL_PORT == 1 // TODO: figure out a better way to do this
|
||
|
// Steal gps port for hardware in the loop
|
||
|
Serial1.begin(115200, 128, 128);
|
||
|
#else
|
||
|
// standard gps running
|
||
|
Serial1.begin(38400, 128, 16);
|
||
|
#endif
|
||
|
|
||
|
// Telemetry port.
|
||
|
//
|
||
|
// Not used if telemetry is going to the console.
|
||
|
//
|
||
|
// XXX for unidirectional protocols, we could (should) minimize
|
||
|
// the receive buffer, and the transmit buffer could also be
|
||
|
// shrunk for protocols that don't send large messages.
|
||
|
//
|
||
|
Serial3.begin(SERIAL3_BAUD, 128, 128);
|
||
|
|
||
|
Serial.printf_P(PSTR("\n\n"
|
||
|
"Init ArduPilotMega (unstable development version)\n\n"
|
||
|
"Firmware Version: %d freeRAM: %lu\n"),
|
||
|
FIRMWARE_VERSION, freeRAM());
|
||
|
|
||
|
// !!! Check firmware version before loading any
|
||
|
// data from EEPROM !!!
|
||
|
if (FIRMWARE_VERSION != get(PARAM_FIRMWARE_VER))
|
||
|
{
|
||
|
Serial.printf_P(PSTR("\n\n"
|
||
|
"Firmware Mismatch! ROM Firmware Version: %d\n"
|
||
|
"\nA factory reset is being performed."),get(PARAM_FIRMWARE_VER));
|
||
|
|
||
|
// If firmware mismatches a factory reset is forced
|
||
|
param_reset_defaults();
|
||
|
}
|
||
|
|
||
|
|
||
|
APM_RC.Init(); // APM Radio initialization
|
||
|
//read_EEPROM_startup(); // Read critical config information to start
|
||
|
|
||
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
||
|
adc.Init(); // APM ADC library initialization
|
||
|
pitot.Init(); // APM Abs Pressure sensor initialization
|
||
|
compass.init(); // I2C initialization
|
||
|
#endif
|
||
|
DataFlash.Init(); // DataFlash log initialization
|
||
|
gps.init(); // GPS Initialization
|
||
|
|
||
|
// init the GCS
|
||
|
#if GCS_PORT == 3
|
||
|
gcs.init(&Serial3);
|
||
|
#else
|
||
|
gcs.init(&Serial);
|
||
|
#endif
|
||
|
|
||
|
// init the HIL
|
||
|
#if HIL_MODE != HIL_MODE_DISABLED
|
||
|
|
||
|
#if HIL_PORT == 3
|
||
|
hil.init(&Serial3);
|
||
|
#elif HIL_PORT == 1
|
||
|
hil.init(&Serial1);
|
||
|
#else
|
||
|
hil.init(&Serial);
|
||
|
#endif
|
||
|
|
||
|
#endif
|
||
|
|
||
|
APM_RC.OutputCh(CH_ROLL, radio_trim(CH_ROLL)); // Initialization of servo outputs
|
||
|
APM_RC.OutputCh(CH_PITCH, radio_trim(CH_PITCH));
|
||
|
APM_RC.OutputCh(CH_THROTTLE, radio_trim(CH_THROTTLE));
|
||
|
APM_RC.OutputCh(CH_RUDDER, radio_trim(CH_RUDDER));
|
||
|
|
||
|
pinMode(C_LED_PIN, OUTPUT); // GPS status LED
|
||
|
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
|
||
|
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
|
||
|
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode
|
||
|
pinMode(PUSHBUTTON_PIN, INPUT); // unused
|
||
|
DDRL |= B00000100; // Set Port L, pin 2 to output for the relay
|
||
|
|
||
|
// If the switch is in 'menu' mode, run the main menu.
|
||
|
//
|
||
|
// Since we can't be sure that the setup or test mode won't leave
|
||
|
// the system in an odd state, we don't let the user exit the top
|
||
|
// menu; they must reset in order to fly.
|
||
|
//
|
||
|
if (digitalRead(SLIDE_SWITCH_PIN) == 0) {
|
||
|
digitalWrite(A_LED_PIN,HIGH); // turn on setup-mode LED
|
||
|
Serial.printf_P(PSTR("\n"
|
||
|
"Entering interactive setup mode...\n"
|
||
|
"\n"
|
||
|
"If using the Arduino Serial Monitor, ensure Line Ending is set to Carriage Return.\n"
|
||
|
"Type 'help' to list commands, 'exit' to leave a submenu.\n"
|
||
|
"Visit the 'setup' menu for first-time configuration.\n"));
|
||
|
for (;;) {
|
||
|
Serial.printf_P(PSTR("\n"
|
||
|
"Move the slide switch and reset to FLY.\n"
|
||
|
"\n"));
|
||
|
main_menu.run();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
if(get(PARAM_LOG_BITMASK) > 0){
|
||
|
// Here we will check on the length of the last log
|
||
|
// We don't want to create a bunch of little logs due to powering on and off
|
||
|
// XXX: TODO implement for new struct
|
||
|
//last_log_num = eeprom_read_byte((uint8_t *) EE_LAST_LOG_NUM);
|
||
|
//last_log_start = eeprom_read_word((uint16_t *) (EE_LOG_1_START+(last_log_num - 1) * 0x02));
|
||
|
//last_log_end = eeprom_read_word((uint16_t *) EE_LAST_LOG_PAGE);
|
||
|
|
||
|
if(last_log_num == 0) {
|
||
|
// The log space is empty. Start a write session on page 1
|
||
|
DataFlash.StartWrite(1);
|
||
|
eeprom_write_byte((uint8_t *) EE_LAST_LOG_NUM, (1));
|
||
|
eeprom_write_word((uint16_t *) EE_LOG_1_START, (1));
|
||
|
|
||
|
} else if (last_log_end <= last_log_start + 10) {
|
||
|
// The last log is small. We consider it junk. Overwrite it.
|
||
|
DataFlash.StartWrite(last_log_start);
|
||
|
|
||
|
} else {
|
||
|
// The last log is valid. Start a new log
|
||
|
if(last_log_num >= 19) {
|
||
|
Serial.println("Number of log files exceeds max. Log 19 will be overwritten.");
|
||
|
last_log_num --;
|
||
|
}
|
||
|
DataFlash.StartWrite(last_log_end + 1);
|
||
|
eeprom_write_byte((uint8_t *) EE_LAST_LOG_NUM, (last_log_num + 1));
|
||
|
eeprom_write_word((uint16_t *) (EE_LOG_1_START+(last_log_num)*0x02), (last_log_end + 1));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// read in the flight switches
|
||
|
update_servo_switches();
|
||
|
|
||
|
if(DEBUG_SUBSYSTEM > 0){
|
||
|
debug_subsystem();
|
||
|
|
||
|
} else if (ENABLE_AIR_START == 1) {
|
||
|
// Perform an air start and get back to flying
|
||
|
gcs.send_text(SEVERITY_LOW,"<init_ardupilot> AIR START");
|
||
|
|
||
|
// Get necessary data from EEPROM
|
||
|
//----------------
|
||
|
//read_EEPROM_airstart_critical();
|
||
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
||
|
imu.load_gyro_eeprom();
|
||
|
imu.load_accel_eeprom();
|
||
|
#endif
|
||
|
|
||
|
// This delay is important for the APM_RC library to work.
|
||
|
// We need some time for the comm between the 328 and 1280 to be established.
|
||
|
int old_pulse = 0;
|
||
|
while (millis()<=1000 && (abs(old_pulse - APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH))) > 5 ||
|
||
|
APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH)) == 1000 ||
|
||
|
APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH)) == 1200)) {
|
||
|
old_pulse = APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH));
|
||
|
delay(25);
|
||
|
}
|
||
|
if (get(PARAM_LOG_BITMASK) & MASK_LOG_CMD)
|
||
|
Log_Write_Startup(TYPE_AIRSTART_MSG);
|
||
|
reload_commands(); // Get set to resume AUTO from where we left off
|
||
|
|
||
|
}else {
|
||
|
startup_ground();
|
||
|
if (get(PARAM_LOG_BITMASK) & MASK_LOG_CMD)
|
||
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
|
||
|
}
|
||
|
|
||
|
// set the correct flight mode
|
||
|
// ---------------------------
|
||
|
reset_control_switch();
|
||
|
}
|
||
|
|
||
|
//********************************************************************************
|
||
|
//This function does all the calibrations, etc. that we need during a ground start
|
||
|
//********************************************************************************
|
||
|
void startup_ground(void)
|
||
|
{
|
||
|
gcs.send_text(SEVERITY_LOW,"<startup_ground> GROUND START");
|
||
|
|
||
|
#if(GROUND_START_DELAY > 0)
|
||
|
gcs.send_text(SEVERITY_LOW,"<startup_ground> With Delay");
|
||
|
delay(GROUND_START_DELAY * 1000);
|
||
|
#endif
|
||
|
|
||
|
// Output waypoints for confirmation
|
||
|
// --------------------------------
|
||
|
for(int i = 1; i < get(PARAM_WP_TOTAL) + 1; i++) {
|
||
|
gcs.send_message(MSG_COMMAND_LIST, i);
|
||
|
}
|
||
|
|
||
|
// Makes the servos wiggle
|
||
|
// step 1 = 1 wiggle
|
||
|
// -----------------------
|
||
|
demo_servos(1);
|
||
|
|
||
|
//IMU ground start
|
||
|
//------------------------
|
||
|
//
|
||
|
startup_IMU_ground();
|
||
|
|
||
|
// read the radio to set trims
|
||
|
// ---------------------------
|
||
|
trim_radio();
|
||
|
|
||
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
||
|
# if AIRSPEED_SENSOR == ENABLED
|
||
|
// initialize airspeed sensor
|
||
|
// --------------------------
|
||
|
zero_airspeed();
|
||
|
gcs.send_text(SEVERITY_LOW,"<startup_ground> zero airspeed calibrated");
|
||
|
# else
|
||
|
gcs.send_text(SEVERITY_LOW,"<startup_ground> NO airspeed");
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
// Save the settings for in-air restart
|
||
|
// ------------------------------------
|
||
|
//save_EEPROM_groundstart();
|
||
|
|
||
|
// initialize commands
|
||
|
// -------------------
|
||
|
init_commands();
|
||
|
|
||
|
// Makes the servos wiggle - 3 times signals ready to fly
|
||
|
// -----------------------
|
||
|
demo_servos(3);
|
||
|
|
||
|
gcs.send_text(SEVERITY_LOW,"\n\n Ready to FLY.");
|
||
|
}
|
||
|
|
||
|
void set_mode(byte mode)
|
||
|
{
|
||
|
if(control_mode == mode){
|
||
|
// don't switch modes if we are already in the correct mode.
|
||
|
return;
|
||
|
}
|
||
|
if(get(PARAM_TRIM_AUTO) > 0 || control_mode == MANUAL)
|
||
|
trim_control_surfaces();
|
||
|
|
||
|
control_mode = mode;
|
||
|
crash_timer = 0;
|
||
|
|
||
|
switch(control_mode)
|
||
|
{
|
||
|
case MANUAL:
|
||
|
break;
|
||
|
|
||
|
case STABILIZE:
|
||
|
break;
|
||
|
|
||
|
case FLY_BY_WIRE_A:
|
||
|
break;
|
||
|
|
||
|
case FLY_BY_WIRE_B:
|
||
|
break;
|
||
|
|
||
|
case AUTO:
|
||
|
update_auto();
|
||
|
break;
|
||
|
|
||
|
case RTL:
|
||
|
return_to_launch();
|
||
|
break;
|
||
|
|
||
|
case LOITER:
|
||
|
loiter_at_location();
|
||
|
break;
|
||
|
|
||
|
case TAKEOFF:
|
||
|
break;
|
||
|
|
||
|
case LAND:
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return_to_launch();
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// output control mode to the ground station
|
||
|
gcs.send_message(MSG_MODE_CHANGE);
|
||
|
|
||
|
if (get(PARAM_LOG_BITMASK) & MASK_LOG_MODE)
|
||
|
Log_Write_Mode(control_mode);
|
||
|
}
|
||
|
|
||
|
void set_failsafe(boolean mode)
|
||
|
{
|
||
|
// only act on changes
|
||
|
// -------------------
|
||
|
if(failsafe != mode){
|
||
|
|
||
|
// store the value so we don't trip the gate twice
|
||
|
// -----------------------------------------------
|
||
|
failsafe = mode;
|
||
|
|
||
|
if (failsafe == false){
|
||
|
// We're back in radio contact
|
||
|
// ---------------------------
|
||
|
|
||
|
// re-read the switch so we can return to our preferred mode
|
||
|
reset_control_switch();
|
||
|
|
||
|
// Reset control integrators
|
||
|
// ---------------------
|
||
|
reset_I();
|
||
|
|
||
|
}else{
|
||
|
// We've lost radio contact
|
||
|
// ------------------------
|
||
|
// nothing to do right now
|
||
|
}
|
||
|
|
||
|
// Let the user know what's up so they can override the behavior
|
||
|
// -------------------------------------------------------------
|
||
|
failsafe_event();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void startup_IMU_ground(void)
|
||
|
{
|
||
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
||
|
uint16_t store = 0;
|
||
|
int flashcount = 0;
|
||
|
SendDebugln("<startup_IMU_ground> Warming up ADC...");
|
||
|
delay(500);
|
||
|
|
||
|
// Makes the servos wiggle twice - about to begin IMU calibration - HOLD LEVEL AND STILL!!
|
||
|
// -----------------------
|
||
|
demo_servos(2);
|
||
|
SendDebugln("<startup_IMU_ground> Beginning IMU calibration; do not move plane");
|
||
|
delay(1000);
|
||
|
|
||
|
imu.init_accel();
|
||
|
imu.init_gyro();
|
||
|
|
||
|
# if HIL_MODE == HIL_MODE_SENSORS
|
||
|
hil.update(); // look for inbound hil packets for initialization
|
||
|
# endif
|
||
|
|
||
|
pitot.Read(); // Get initial data from absolute pressure sensor
|
||
|
abs_press_gnd = pitot.Press;
|
||
|
ground_temperature = pitot.Temp;
|
||
|
delay(20);
|
||
|
// ***********
|
||
|
|
||
|
for(int i = 0; i < 200; i++){ // We take some readings...
|
||
|
|
||
|
# if HIL_MODE == HIL_MODE_SENSORS
|
||
|
hil.update(); // look for inbound hil packets
|
||
|
# endif
|
||
|
|
||
|
pitot.Read(); // Get initial data from absolute pressure sensor
|
||
|
abs_press_gnd = (abs_press_gnd * 9l + pitot.Press) / 10l;
|
||
|
ground_temperature = (ground_temperature * 9 + pitot.Temp) / 10;
|
||
|
|
||
|
delay(20);
|
||
|
if(flashcount == 5) {
|
||
|
digitalWrite(C_LED_PIN, LOW);
|
||
|
digitalWrite(A_LED_PIN, HIGH);
|
||
|
digitalWrite(B_LED_PIN, LOW);
|
||
|
}
|
||
|
if(flashcount >= 10) {
|
||
|
flashcount = 0;
|
||
|
digitalWrite(C_LED_PIN, HIGH);
|
||
|
digitalWrite(A_LED_PIN, LOW);
|
||
|
digitalWrite(B_LED_PIN, HIGH);
|
||
|
}
|
||
|
flashcount++;
|
||
|
|
||
|
}
|
||
|
SendDebugln(" <startup_IMU_ground> Calibration complete.");
|
||
|
#endif // HIL_MODE_ATTITUDE
|
||
|
|
||
|
digitalWrite(B_LED_PIN, HIGH); // Set LED B high to indicate IMU ready
|
||
|
digitalWrite(A_LED_PIN, LOW);
|
||
|
digitalWrite(C_LED_PIN, LOW);
|
||
|
}
|
||
|
|
||
|
|
||
|
void update_GPS_light(void)
|
||
|
{
|
||
|
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data
|
||
|
// ---------------------------------------------------------------------
|
||
|
switch (gps.status()) {
|
||
|
case(2):
|
||
|
digitalWrite(C_LED_PIN, HIGH); //Turn LED C on when gps has valid fix.
|
||
|
break;
|
||
|
|
||
|
case(1):
|
||
|
if (gps.valid_read == true){
|
||
|
GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock
|
||
|
if (GPS_light){
|
||
|
digitalWrite(C_LED_PIN, LOW);
|
||
|
} else {
|
||
|
digitalWrite(C_LED_PIN, HIGH);
|
||
|
}
|
||
|
gps.valid_read = false;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
digitalWrite(C_LED_PIN, LOW);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void resetPerfData(void) {
|
||
|
mainLoop_count = 0;
|
||
|
G_Dt_max = 0;
|
||
|
gyro_sat_count = 0;
|
||
|
adc_constraints = 0;
|
||
|
renorm_sqrt_count = 0;
|
||
|
renorm_blowup_count = 0;
|
||
|
gps_fix_count = 0;
|
||
|
perf_mon_timer = millis();
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* This function gets the current value of the heap and stack pointers.
|
||
|
* The stack pointer starts at the top of RAM and grows downwards. The heap pointer
|
||
|
* starts just above the static variables etc. and grows upwards. SP should always
|
||
|
* be larger than HP or you'll be in big trouble! The smaller the gap, the more
|
||
|
* careful you need to be. Julian Gall 6 - Feb - 2009.
|
||
|
*/
|
||
|
unsigned long freeRAM() {
|
||
|
uint8_t * heapptr, * stackptr;
|
||
|
stackptr = (uint8_t *)malloc(4); // use stackptr temporarily
|
||
|
heapptr = stackptr; // save value of heap pointer
|
||
|
free(stackptr); // free up the memory again (sets stackptr to 0)
|
||
|
stackptr = (uint8_t *)(SP); // save value of stack pointer
|
||
|
return stackptr - heapptr;
|
||
|
}
|
||
|
|