Ardupilot2/libraries/AP_HAL_QURT/RCInput.cpp

194 lines
4.7 KiB
C++
Raw Normal View History

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_QURT
#include <stdio.h>
#include <sys/time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdint.h>
#include <dev_fs_lib_serial.h>
#include "RCInput.h"
#include <AP_HAL/utility/dsm.h>
extern const AP_HAL::HAL& hal;
using namespace QURT;
RCInput::RCInput(const char *_device_path) :
device_path(_device_path),
new_rc_input(false)
{
}
extern "C" {
static void read_callback_trampoline(void *, char *, size_t );
}
void RCInput::init()
{
if (device_path == nullptr) {
return;
}
fd = open(device_path, O_RDONLY|O_NONBLOCK);
if (fd == -1) {
AP_HAL::panic("Unable to open RC input %s", device_path);
}
struct dspal_serial_ioctl_data_rate rate;
rate.bit_rate = DSPAL_SIO_BITRATE_115200;
int ret = ioctl(fd, SERIAL_IOCTL_SET_DATA_RATE, (void *)&rate);
struct dspal_serial_ioctl_receive_data_callback callback;
callback.context = this;
callback.rx_data_callback_func_ptr = read_callback_trampoline;
ret = ioctl(fd, SERIAL_IOCTL_SET_RECEIVE_DATA_CALLBACK, (void *)&callback);
}
static void read_callback_trampoline(void *ctx, char *buf, size_t size)
{
((RCInput *)ctx)->read_callback(buf, size);
}
/*
callback for incoming data
*/
void RCInput::read_callback(char *buf, size_t size)
{
add_dsm_input((const uint8_t *)buf, size);
}
bool RCInput::new_input()
{
return new_rc_input;
}
uint8_t RCInput::num_channels()
{
return _num_channels;
}
uint16_t RCInput::read(uint8_t ch)
{
new_rc_input = false;
if (_override[ch]) {
return _override[ch];
}
if (ch >= _num_channels) {
return 0;
}
return _pwm_values[ch];
}
uint8_t RCInput::read(uint16_t* periods, uint8_t len)
{
uint8_t i;
for (i=0; i<len; i++) {
if((periods[i] = read(i))){
continue;
}
else{
break;
}
}
return (i+1);
}
bool RCInput::set_overrides(int16_t *overrides, uint8_t len)
{
bool res = false;
if(len > QURT_RC_INPUT_NUM_CHANNELS){
len = QURT_RC_INPUT_NUM_CHANNELS;
}
for (uint8_t i = 0; i < len; i++) {
res |= set_override(i, overrides[i]);
}
return res;
}
bool RCInput::set_override(uint8_t channel, int16_t override)
{
if (override < 0) return false; /* -1: no change. */
if (channel < QURT_RC_INPUT_NUM_CHANNELS) {
_override[channel] = override;
if (override != 0) {
new_rc_input = true;
return true;
}
}
return false;
}
void RCInput::clear_overrides()
{
for (uint8_t i = 0; i < QURT_RC_INPUT_NUM_CHANNELS; i++) {
_override[i] = 0;
}
}
/*
add some bytes of input in DSM serial stream format, coping with partial packets
*/
void RCInput::add_dsm_input(const uint8_t *bytes, size_t nbytes)
{
if (nbytes == 0) {
return;
}
const uint8_t dsm_frame_size = sizeof(dsm.frame);
uint32_t now = AP_HAL::millis();
if (now - dsm.last_input_ms > 5) {
// resync based on time
dsm.partial_frame_count = 0;
}
dsm.last_input_ms = now;
while (nbytes > 0) {
size_t n = nbytes;
if (dsm.partial_frame_count + n > dsm_frame_size) {
n = dsm_frame_size - dsm.partial_frame_count;
}
if (n > 0) {
memcpy(&dsm.frame[dsm.partial_frame_count], bytes, n);
dsm.partial_frame_count += n;
nbytes -= n;
bytes += n;
}
if (dsm.partial_frame_count == dsm_frame_size) {
dsm.partial_frame_count = 0;
uint16_t values[16] {};
uint16_t num_values=0;
if (dsm_decode(AP_HAL::micros64(), dsm.frame, values, &num_values, 16) &&
num_values >= 5) {
for (uint8_t i=0; i<num_values; i++) {
if (values[i] != 0) {
_pwm_values[i] = values[i];
}
}
/*
the apparent number of channels can change on DSM,
as they are spread across multiple frames. We just
use the max num_values we get
*/
if (num_values > _num_channels) {
_num_channels = num_values;
}
new_rc_input = true;
#if 0
HAP_PRINTF("Decoded DSM %u channels %u %u %u %u %u %u %u %u\n",
(unsigned)num_values,
values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7]);
#endif
}
}
}
}
#endif // CONFIG_HAL_BOARD