Ardupilot2/libraries/AP_HAL_ChibiOS/CANFDIface.cpp

1088 lines
35 KiB
C++
Raw Normal View History

/*
* The MIT License (MIT)
*
* Copyright (c) 2014 Pavel Kirienko
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Siddharth Bharat Purohit
*/
#include "AP_HAL_ChibiOS.h"
#if HAL_WITH_UAVCAN
#include <cassert>
#include <cstring>
#include "CANClock.h"
#include "CANInternal.h"
#include "CANSerialRouter.h"
#include <AP_UAVCAN/AP_UAVCAN_SLCAN.h>
#include <AP_Math/AP_Math.h>
# include <hal.h>
# if defined(STM32H7XX)
#include "CANFDIface.h"
#define FDCAN1_IT0_IRQHandler STM32_FDCAN1_IT0_HANDLER
#define FDCAN1_IT1_IRQHandler STM32_FDCAN1_IT1_HANDLER
#define FDCAN2_IT0_IRQHandler STM32_FDCAN2_IT0_HANDLER
#define FDCAN2_IT1_IRQHandler STM32_FDCAN2_IT1_HANDLER
#define FDCAN_FRAME_BUFFER_SIZE 4 // Buffer size for 8 bytes data field
//Message RAM Allocations in Word lengths
#define MAX_FILTER_LIST_SIZE 80U //80 element Standard Filter List elements or 40 element Extended Filter List
#define FDCAN_NUM_RXFIFO0_SIZE 104U //26 Frames
#define FDCAN_TX_FIFO_BUFFER_SIZE 128U //32 Frames
#define MESSAGE_RAM_END_ADDR 0x4000B5FC
extern const AP_HAL::HAL& hal;
namespace ChibiOS_CAN
{
namespace
{
CanIface* ifaces[UAVCAN_STM32_NUM_IFACES] = {
UAVCAN_NULLPTR
#if UAVCAN_STM32_NUM_IFACES > 1
, UAVCAN_NULLPTR
#endif
};
inline void handleInterrupt(uavcan::uint8_t iface_index, uavcan::uint8_t line_index)
{
UAVCAN_ASSERT(iface_index < UAVCAN_STM32_NUM_IFACES);
if (ifaces[iface_index] == UAVCAN_NULLPTR) {
//Just reset all the interrupts and return
ifaces[iface_index]->can_reg()->IR = FDCAN_IR_RF0N;
ifaces[iface_index]->can_reg()->IR = FDCAN_IR_RF1N;
ifaces[iface_index]->can_reg()->IR = FDCAN_IR_TEFN;
UAVCAN_ASSERT(0);
return;
}
if (line_index == 0) {
if ((ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF0N) ||
(ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF0F)) {
ifaces[iface_index]->can_reg()->IR = FDCAN_IR_RF0N | FDCAN_IR_RF0F;
ifaces[iface_index]->handleRxInterrupt(0);
}
if ((ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF1N) ||
(ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF1F)) {
ifaces[iface_index]->can_reg()->IR = FDCAN_IR_RF1N | FDCAN_IR_RF1F;
ifaces[iface_index]->handleRxInterrupt(1);
}
} else {
if (ifaces[iface_index]->can_reg()->IR & FDCAN_IR_TC) {
ifaces[iface_index]->can_reg()->IR = FDCAN_IR_TC;
uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt();
if (utc_usec > 0) {
utc_usec--;
}
ifaces[iface_index]->handleTxCompleteInterrupt(utc_usec);
}
}
ifaces[iface_index]->pollErrorFlagsFromISR();
}
} // namespace
uint32_t CanIface::FDCANMessageRAMOffset_ = 0;
#if AP_UAVCAN_SLCAN_ENABLED
SLCANRouter CanIface::_slcan_router;
#endif
CanIface::CanIface(fdcan::CanType* can, BusEvent& update_event, uavcan::uint8_t self_index,
CanRxItem* rx_queue_buffer, uavcan::uint8_t rx_queue_capacity)
: rx_queue_(rx_queue_buffer, rx_queue_capacity)
, can_(can)
, error_cnt_(0)
, served_aborts_cnt_(0)
, update_event_(update_event)
, peak_tx_mailbox_index_(0)
, self_index_(self_index)
, had_activity_(false)
{
UAVCAN_ASSERT(self_index_ < UAVCAN_STM32_NUM_IFACES);
}
/*
* CanIface::RxQueue
*/
void CanIface::RxQueue::registerOverflow()
{
if (overflow_cnt_ < 0xFFFFFFFF) {
overflow_cnt_++;
}
}
void CanIface::RxQueue::push(const uavcan::CanFrame& frame, const uint64_t& utc_usec, uavcan::CanIOFlags flags)
{
buf_[in_].frame = frame;
buf_[in_].utc_usec = utc_usec;
buf_[in_].flags = flags;
in_++;
if (in_ >= capacity_) {
in_ = 0;
}
len_++;
if (len_ > capacity_) {
len_ = capacity_;
registerOverflow();
out_++;
if (out_ >= capacity_) {
out_ = 0;
}
}
}
void CanIface::RxQueue::pop(uavcan::CanFrame& out_frame, uavcan::uint64_t& out_utc_usec, uavcan::CanIOFlags& out_flags)
{
if (len_ > 0) {
out_frame = buf_[out_].frame;
out_utc_usec = buf_[out_].utc_usec;
out_flags = buf_[out_].flags;
out_++;
if (out_ >= capacity_) {
out_ = 0;
}
len_--;
} else {
UAVCAN_ASSERT(0);
}
}
void CanIface::RxQueue::reset()
{
in_ = 0;
out_ = 0;
len_ = 0;
overflow_cnt_ = 0;
}
int CanIface::computeTimings(const uavcan::uint32_t target_bitrate, Timings& out_timings)
{
if (target_bitrate < 1) {
return -ErrInvalidBitRate;
}
/*
* Hardware configuration
*/
const uavcan::uint32_t pclk = STM32_PLL1_Q_CK;
static const int MaxBS1 = 16;
static const int MaxBS2 = 8;
/*
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG
* CAN in Automation, 2003
*
* According to the source, optimal quanta per bit are:
* Bitrate Optimal Maximum
* 1000 kbps 8 10
* 500 kbps 16 17
* 250 kbps 16 17
* 125 kbps 16 17
*/
const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17;
UAVCAN_ASSERT(max_quanta_per_bit <= (MaxBS1 + MaxBS2));
static const int MaxSamplePointLocation = 900;
/*
* Computing (prescaler * BS):
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified
* let:
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit
* PRESCALER_BS = PRESCALER * BS
* ==>
* PRESCALER_BS = PCLK / BITRATE
*/
const uavcan::uint32_t prescaler_bs = pclk / target_bitrate;
/*
* Searching for such prescaler value so that the number of quanta per bit is highest.
*/
uavcan::uint8_t bs1_bs2_sum = uavcan::uint8_t(max_quanta_per_bit - 1);
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) {
if (bs1_bs2_sum <= 2) {
return -ErrInvalidBitRate; // No solution
}
bs1_bs2_sum--;
}
const uavcan::uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum);
if ((prescaler < 1U) || (prescaler > 1024U)) {
return -ErrInvalidBitRate; // No solution
}
/*
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum.
* We need to find the values so that the sample point is as close as possible to the optimal value.
*
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *)
* {{bs2 -> (1 + bs1)/7}}
*
* Hence:
* bs2 = (1 + bs1) / 7
* bs1 = (7 * bs1_bs2_sum - 1) / 8
*
* Sample point location can be computed as follows:
* Sample point location = (1 + bs1) / (1 + bs1 + bs2)
*
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one:
* - With rounding to nearest
* - With rounding to zero
*/
struct BsPair {
uavcan::uint8_t bs1;
uavcan::uint8_t bs2;
uavcan::uint16_t sample_point_permill;
BsPair() :
bs1(0),
bs2(0),
sample_point_permill(0)
{ }
BsPair(uavcan::uint8_t bs1_bs2_sum, uavcan::uint8_t arg_bs1) :
bs1(arg_bs1),
bs2(uavcan::uint8_t(bs1_bs2_sum - bs1)),
sample_point_permill(uavcan::uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2)))
{
UAVCAN_ASSERT(bs1_bs2_sum > arg_bs1);
}
bool isValid() const
{
return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2);
}
};
// First attempt with rounding to nearest
BsPair solution(bs1_bs2_sum, uavcan::uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8));
if (solution.sample_point_permill > MaxSamplePointLocation) {
// Second attempt with rounding to zero
solution = BsPair(bs1_bs2_sum, uavcan::uint8_t((7 * bs1_bs2_sum - 1) / 8));
}
/*
* Final validation
* Helpful Python:
* def sample_point_from_btr(x):
* assert 0b0011110010000000111111000000000 & x == 0
* ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511
* return (1+ts1+1)/(1+ts1+1+ts2+1)
*
*/
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) {
UAVCAN_ASSERT(0);
return -ErrLogic;
}
UAVCAN_STM32_LOG("Timings: quanta/bit: %d, sample point location: %.1f%%",
int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F);
out_timings.prescaler = uavcan::uint16_t(prescaler - 1U);
out_timings.sjw = 0; // Which means one
out_timings.bs1 = uavcan::uint8_t(solution.bs1 - 1);
out_timings.bs2 = uavcan::uint8_t(solution.bs2 - 1);
return 0;
}
uavcan::int16_t CanIface::send(const uavcan::CanFrame& frame, uavcan::MonotonicTime tx_deadline,
uavcan::CanIOFlags flags)
{
if (frame.isErrorFrame() || frame.dlc > 8) {
return -ErrUnsupportedFrame;
}
/*
* Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because
* it is possible that the highest-priority frame between select() and send() could have been
* replaced with a lower priority one due to TX timeout. But we don't do this check because:
*
* - It is a highly unlikely scenario.
*
* - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new
* frame can only have higher priority, which doesn't break the logic.
*
* - If high-priority frames are timing out in the TX queue, there's probably a lot of other
* issues to take care of before this one becomes relevant.
*
* - It takes CPU time. Not just CPU time, but critical section time, which is expensive.
*/
CriticalSectionLocker lock;
/*
* Seeking for an empty slot
*/
uavcan::uint8_t index;
if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) {
return false; //we don't have free space
}
index = ((can_->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos);
// Copy Frame to RAM
// Calculate Tx element address
uint32_t* buffer = (uint32_t *)(MessageRam_.TxFIFOQSA + (index * FDCAN_FRAME_BUFFER_SIZE * 4));
//Setup Frame ID
if (frame.isExtended()) {
buffer[0] = (fdcan::IDE | frame.id);
} else {
buffer[0] = (frame.id << 18);
}
if (frame.isRemoteTransmissionRequest()) {
buffer[0] |= fdcan::RTR;
}
//Write Data Length Code, and Message Marker
buffer[1] = frame.dlc << 16 | index << 24;
// Write Frame to the message RAM
buffer[2] = (uavcan::uint32_t(frame.data[3]) << 24) |
(uavcan::uint32_t(frame.data[2]) << 16) |
(uavcan::uint32_t(frame.data[1]) << 8) |
(uavcan::uint32_t(frame.data[0]) << 0);
buffer[3] = (uavcan::uint32_t(frame.data[7]) << 24) |
(uavcan::uint32_t(frame.data[6]) << 16) |
(uavcan::uint32_t(frame.data[5]) << 8) |
(uavcan::uint32_t(frame.data[4]) << 0);
//Set Add Request
can_->TXBAR = (1 << index);
//Registering the pending transmission so we can track its deadline and loopback it as needed
pending_tx_[index].deadline = tx_deadline;
pending_tx_[index].frame = frame;
pending_tx_[index].loopback = (flags & uavcan::CanIOFlagLoopback) != 0;
pending_tx_[index].abort_on_error = (flags & uavcan::CanIOFlagAbortOnError) != 0;
pending_tx_[index].index = index;
return 1;
}
uavcan::int16_t CanIface::receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic,
uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags)
{
out_ts_monotonic = clock::getMonotonic(); // High precision is not required for monotonic timestamps
uavcan::uint64_t utc_usec = 0;
{
CriticalSectionLocker lock;
if (rx_queue_.getLength() == 0) {
return 0;
}
rx_queue_.pop(out_frame, utc_usec, out_flags);
}
out_ts_utc = uavcan::UtcTime::fromUSec(utc_usec);
return 1;
}
uavcan::int16_t CanIface::configureFilters(const uavcan::CanFilterConfig* filter_configs,
uavcan::uint16_t num_configs)
{
uint32_t num_extid = 0, num_stdid = 0;
uint32_t total_available_list_size = MAX_FILTER_LIST_SIZE;
uint32_t* filter_ptr;
//count number of frames of each type
for (uint8_t i = 0; i < num_configs; i++) {
const uavcan::CanFilterConfig* const cfg = filter_configs + i;
if ((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF)) {
num_extid++;
} else {
num_stdid++;
}
}
CriticalSectionLocker lock;
can_->CCCR |= FDCAN_CCCR_INIT; // Request init
while ((can_->CCCR & FDCAN_CCCR_INIT) == 0) {}
can_->CCCR |= FDCAN_CCCR_CCE; //Enable Config change
//Allocate Message RAM for Standard ID Filter List
if (num_stdid == 0) { //No Frame with Standard ID is to be accepted
can_->GFC |= 0x2; //Reject All Standard ID Frames
} else if ((num_stdid < total_available_list_size) && (num_stdid <= 128)) {
can_->SIDFC = (FDCANMessageRAMOffset_ << 2) | (num_stdid << 16);
MessageRam_.StandardFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
FDCANMessageRAMOffset_ += num_stdid;
total_available_list_size -= num_stdid;
can_->GFC |= (0x3U << 4); //Reject non matching Standard frames
} else { //The List is too big, return fail
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
return -ErrFilterNumConfigs;
}
if (num_stdid) {
num_stdid = 0; //reset list count
filter_ptr = (uint32_t*)MessageRam_.StandardFilterSA;
//Run through the filter list and setup standard id filter list
for (uint8_t i = 0; i < num_configs; i++) {
uint32_t id = 0;
uint32_t mask = 0;
const uavcan::CanFilterConfig* const cfg = filter_configs + i;
if (!((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF))) {
id = (cfg->id & uavcan::CanFrame::MaskStdID); // Regular std frames, nothing fancy.
mask = (cfg->mask & 0x7F);
filter_ptr[num_stdid] = 0x2U << 30 | //Classic CAN Filter
0x1U << 27 | //Store in Rx FIFO0 if filter matches
id << 16 |
mask;
num_stdid++;
}
}
}
//Allocate Message RAM for Extended ID Filter List
if (num_extid == 0) { //No Frame with Extended ID is to be accepted
can_->GFC |= 0x1; //Reject All Extended ID Frames
} else if ((num_extid < (total_available_list_size/2)) && (num_extid <= 64)) {
can_->XIDFC = (FDCANMessageRAMOffset_ << 2) | (num_extid << 16);
MessageRam_.ExtendedFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
FDCANMessageRAMOffset_ += num_extid*2;
can_->GFC = (0x3U << 2); // Reject non matching Extended frames
} else { //The List is too big, return fail
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
return -ErrFilterNumConfigs;
}
if (num_extid) {
num_extid = 0;
filter_ptr = (uint32_t*)MessageRam_.ExtendedFilterSA;
//Run through the filter list and setup extended id filter list
for (uint8_t i = 0; i < num_configs; i++) {
uint32_t id = 0;
uint32_t mask = 0;
const uavcan::CanFilterConfig* const cfg = filter_configs + i;
if ((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF)) {
id = (cfg->id & uavcan::CanFrame::MaskExtID);
mask = (cfg->mask & uavcan::CanFrame::MaskExtID);
filter_ptr[num_extid*2] = 0x1U << 29 | id; // Classic CAN Filter
filter_ptr[num_extid*2 + 1] = 0x2U << 30 | mask; //Store in Rx FIFO0 if filter matches
num_extid++;
}
}
}
MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) {
//We are overflowing the limit of Allocated Message RAM
AP_HAL::panic("CANFDIface: Message RAM Overflow!");
}
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
return 0;
}
uavcan::uint16_t CanIface::getNumFilters() const
{
return MAX_FILTER_LIST_SIZE;
}
int CanIface::init(const uavcan::uint32_t bitrate, const OperatingMode mode)
{
// Setup FDCAN for configuration mode and disable all interrupts
{
CriticalSectionLocker lock;
can_->CCCR &= ~FDCAN_CCCR_CSR; // Exit sleep mode
while ((can_->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) {} //Wait for wake up ack
can_->CCCR |= FDCAN_CCCR_INIT; // Request init
while ((can_->CCCR & FDCAN_CCCR_INIT) == 0) {}
can_->CCCR |= FDCAN_CCCR_CCE; //Enable Config change
can_->IE = 0; // Disable interrupts while initialization is in progress
}
/*
* Object state - interrupts are disabled, so it's safe to modify it now
*/
rx_queue_.reset();
error_cnt_ = 0;
served_aborts_cnt_ = 0;
uavcan::fill_n(pending_tx_, NumTxMailboxes, TxItem());
peak_tx_mailbox_index_ = 0;
had_activity_ = false;
/*
* CAN timings for this bitrate
*/
Timings timings;
const int timings_res = computeTimings(bitrate, timings);
if (timings_res < 0) {
can_->CCCR &= ~FDCAN_CCCR_INIT;
return timings_res;
}
UAVCAN_STM32_LOG("Timings: presc=%u sjw=%u bs1=%u bs2=%u",
unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2));
//setup timing register
//TODO: Do timing calculations for FDCAN
can_->NBTP = ((timings.sjw << FDCAN_NBTP_NSJW_Pos) |
(timings.bs1 << FDCAN_NBTP_NTSEG1_Pos) |
(timings.bs2 << FDCAN_NBTP_TSEG2_Pos) |
(timings.prescaler << FDCAN_NBTP_NBRP_Pos));
//RX Config
can_->RXESC = 0; //Set for 8Byte Frames
//Setup Message RAM
setupMessageRam();
//Clear all Interrupts
can_->IR = 0x3FFFFFFF;
//Enable Interrupts
can_->IE = FDCAN_IE_TCE | // Transmit Complete interrupt enable
FDCAN_IE_RF0NE | // RX FIFO 0 new message
FDCAN_IE_RF0FE | // Rx FIFO 1 FIFO Full
FDCAN_IE_RF1NE | // RX FIFO 1 new message
FDCAN_IE_RF1FE; // Rx FIFO 1 FIFO Full
can_->ILS = FDCAN_ILS_TCL; //Set Line 1 for Transmit Complete Event Interrupt
can_->TXBTIE = 0xFFFFFFFF;
can_->ILE = 0x3;
//Leave Init
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
return 0;
}
void CanIface::setupMessageRam()
{
uint32_t num_elements = 0;
// Rx FIFO 0 start address and element count
num_elements = MIN((FDCAN_NUM_RXFIFO0_SIZE/FDCAN_FRAME_BUFFER_SIZE), 64U);
if (num_elements) {
can_->RXF0C = (FDCANMessageRAMOffset_ << 2) | (num_elements << 16);
MessageRam_.RxFIFO0SA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE;
}
// Tx FIFO/queue start address and element count
num_elements = MIN((FDCAN_TX_FIFO_BUFFER_SIZE/FDCAN_FRAME_BUFFER_SIZE), 32U);
if (num_elements) {
can_->TXBC = (FDCANMessageRAMOffset_ << 2) | (num_elements << 24);
can_->TXBC |= 1U << 30; //Set Queue mode
MessageRam_.TxFIFOQSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE;
}
MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) {
//We are overflowing the limit of Allocated Message RAM
AP_HAL::panic("CANFDIface: Message RAM Overflow!");
return;
}
}
void CanIface::handleTxCompleteInterrupt(const uavcan::uint64_t utc_usec)
{
for (uint8_t i = 0; i < NumTxMailboxes; i++) {
if ((can_->TXBTO & (1UL << i))) {
if (pending_tx_[i].loopback && had_activity_) {
rx_queue_.push(pending_tx_[i].frame, utc_usec, uavcan::CanIOFlagLoopback);
}
}
}
}
bool CanIface::readRxFIFO(uavcan::uint8_t fifo_index)
{
UAVCAN_ASSERT(fifo_index < 2);
uint32_t *frame_ptr;
uint32_t index;
uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt();
if (fifo_index == 0) {
//Check if RAM allocated to RX FIFO
if ((can_->RXF0C & FDCAN_RXF0C_F0S) == 0) {
UAVCAN_ASSERT(0);
return false;
}
//Register Message Lost as a hardware error
if ((can_->RXF0S & FDCAN_RXF0S_RF0L) != 0) {
error_cnt_++;
}
if ((can_->RXF0S & FDCAN_RXF0S_F0FL) == 0) {
return false; //No More messages in FIFO
} else {
index = ((can_->RXF0S & FDCAN_RXF0S_F0GI) >> 8);
frame_ptr = (uint32_t *)(MessageRam_.RxFIFO0SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4));
}
} else if (fifo_index == 1) {
//Check if RAM allocated to RX FIFO
if ((can_->RXF1C & FDCAN_RXF1C_F1S) == 0) {
UAVCAN_ASSERT(0);
return false;
}
//Register Message Lost as a hardware error
if ((can_->RXF1S & FDCAN_RXF1S_RF1L) != 0) {
error_cnt_++;
}
if ((can_->RXF1S & FDCAN_RXF1S_F1FL) == 0) {
return false;
} else {
index = ((can_->RXF1S & FDCAN_RXF1S_F1GI) >> 8);
frame_ptr = (uint32_t *)(MessageRam_.RxFIFO1SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4));
}
} else {
return false;
}
// Read the frame contents
uavcan::CanFrame frame;
uint32_t id = frame_ptr[0];
if ((id & fdcan::IDE) == 0) {
//Standard ID
frame.id = ((id & fdcan::STID_MASK) >> 18) & uavcan::CanFrame::MaskStdID;
} else {
//Extended ID
frame.id = (id & fdcan::EXID_MASK) & uavcan::CanFrame::MaskExtID;
frame.id |= uavcan::CanFrame::FlagEFF;
}
if ((id & fdcan::RTR) != 0) {
frame.id |= uavcan::CanFrame::FlagRTR;
}
frame.dlc = (frame_ptr[1] & fdcan::DLC_MASK) >> 16;
uint8_t *data = (uint8_t*)&frame_ptr[2];
//We only handle Data Length of 8 Bytes for now
for (uint8_t i = 0; i < 8; i++) {
frame.data[i] = data[i];
}
//Acknowledge the FIFO entry we just read
if (fifo_index == 0) {
can_->RXF0A = index;
} else if (fifo_index == 1) {
can_->RXF1A = index;
}
/*
* Store with timeout into the FIFO buffer and signal update event
*/
rx_queue_.push(frame, utc_usec, 0);
#if AP_UAVCAN_SLCAN_ENABLED
_slcan_router.route_frame_to_slcan(this, frame, utc_usec);
#endif
return true;
}
void CanIface::handleRxInterrupt(uavcan::uint8_t fifo_index)
{
while (readRxFIFO(fifo_index)) {
had_activity_ = true;
}
update_event_.signalFromInterrupt();
}
void CanIface::pollErrorFlagsFromISR()
{
const uavcan::uint8_t cel = can_->ECR >> 16;
if (cel != 0) {
for (int i = 0; i < NumTxMailboxes; i++) {
if (!pending_tx_[i].abort_on_error) {
continue;
}
if (((1 << pending_tx_[i].index) & can_->TXBRP)) {
can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission
error_cnt_++;
served_aborts_cnt_++;
}
}
}
}
void CanIface::discardTimedOutTxMailboxes(uavcan::MonotonicTime current_time)
{
CriticalSectionLocker lock;
for (int i = 0; i < NumTxMailboxes; i++) {
if (((1 << pending_tx_[i].index) & can_->TXBRP) && pending_tx_[i].deadline < current_time) {
can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission
error_cnt_++;
}
}
}
bool CanIface::canAcceptNewTxFrame(const uavcan::CanFrame& frame) const
{
//Check if Tx FIFO is allocated
if ((can_->TXBC & FDCAN_TXBC_TFQS) == 0) {
return false;
}
if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) {
return false; //we don't have free space
}
return true;
}
bool CanIface::isRxBufferEmpty() const
{
CriticalSectionLocker lock;
return rx_queue_.getLength() == 0;
}
uavcan::uint64_t CanIface::getErrorCount() const
{
CriticalSectionLocker lock;
return error_cnt_ + rx_queue_.getOverflowCount();
}
unsigned CanIface::getRxQueueLength() const
{
CriticalSectionLocker lock;
return rx_queue_.getLength();
}
bool CanIface::hadActivity()
{
CriticalSectionLocker lock;
const bool ret = had_activity_;
had_activity_ = false;
return ret;
}
/*
* CanDriver
*/
uavcan::CanSelectMasks CanDriver::makeSelectMasks(const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces]) const
{
uavcan::CanSelectMasks msk;
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) {
CanIface* iface = ifaces[if_int_to_gl_index_[i]];
msk.read |= (iface->isRxBufferEmpty() ? 0 : 1) << i;
if (pending_tx[i] != UAVCAN_NULLPTR) {
msk.write |= (iface->canAcceptNewTxFrame(*pending_tx[i]) ? 1 : 0) << i;
}
}
return msk;
}
bool CanDriver::hasReadableInterfaces() const
{
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) {
if (!ifaces[if_int_to_gl_index_[i]]->isRxBufferEmpty()) {
return true;
}
}
return false;
}
uavcan::int16_t CanDriver::select(uavcan::CanSelectMasks& inout_masks,
const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces],
const uavcan::MonotonicTime blocking_deadline)
{
const uavcan::CanSelectMasks in_masks = inout_masks;
const uavcan::MonotonicTime time = clock::getMonotonic();
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) {
CanIface* iface = ifaces[if_int_to_gl_index_[i]];
iface->discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots
{
CriticalSectionLocker cs_locker;
iface->pollErrorFlagsFromISR();
}
}
inout_masks = makeSelectMasks(pending_tx); // Check if we already have some of the requested events
if ((inout_masks.read & in_masks.read) != 0 ||
(inout_masks.write & in_masks.write) != 0) {
return 1;
}
(void)update_event_.wait(blocking_deadline - time); // Block until timeout expires or any iface updates
inout_masks = makeSelectMasks(pending_tx); // Return what we got even if none of the requested events are set
return 1; // Return value doesn't matter as long as it is non-negative
}
void CanDriver::initOnce()
{
{
CriticalSectionLocker lock;
RCC->APB1HRSTR |= RCC_APB1HRSTR_FDCANRST;
RCC->APB1HRSTR &= ~RCC_APB1HRSTR_FDCANRST;
RCC->APB1HENR |= RCC_APB1HENR_FDCANEN;
}
/*
* IRQ
*/
{
CriticalSectionLocker lock;
nvicEnableVector(FDCAN1_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(FDCAN1_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
# if UAVCAN_STM32_NUM_IFACES > 1
nvicEnableVector(FDCAN2_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(FDCAN2_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
# endif
}
}
int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode)
{
int res = 0;
UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode));
static bool initialized_once = false;
if (!initialized_once) {
initialized_once = true;
UAVCAN_STM32_LOG("First initialization");
initOnce();
}
/*
* CAN1
*/
UAVCAN_STM32_LOG("Initing iface 0...");
ifaces[0] = &if0_; // This link must be initialized first,
res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet;
if (res < 0) { // a typical race condition.
UAVCAN_STM32_LOG("Iface 0 init failed %i", res);
ifaces[0] = UAVCAN_NULLPTR;
goto fail;
}
/*
* CAN2
*/
#if UAVCAN_STM32_NUM_IFACES > 1
UAVCAN_STM32_LOG("Initing iface 1...");
ifaces[1] = &if1_; // Same thing here.
res = if1_.init(bitrate, mode);
if (res < 0) {
UAVCAN_STM32_LOG("Iface 1 init failed %i", res);
ifaces[1] = UAVCAN_NULLPTR;
goto fail;
}
#endif
UAVCAN_STM32_LOG("CAN drv init OK");
UAVCAN_ASSERT(res >= 0);
return res;
fail:
UAVCAN_STM32_LOG("CAN drv init failed %i", res);
UAVCAN_ASSERT(res < 0);
return res;
}
bool CanDriver::clock_init_ = false;
void CanDriver::initOnce(uavcan::uint8_t can_number, bool enable_irqs)
{
//Only do it once
//Doing it second time will reset the previously initialised bus
if (!clock_init_) {
CriticalSectionLocker lock;
RCC->APB1HENR |= RCC_APB1HENR_FDCANEN;
RCC->APB1HRSTR |= RCC_APB1HRSTR_FDCANRST;
RCC->APB1HRSTR &= ~RCC_APB1HRSTR_FDCANRST;
clock_init_ = true;
}
if (!enable_irqs) {
return;
}
/*
* IRQ
*/
{
CriticalSectionLocker lock;
if (can_number == 0) {
nvicEnableVector(FDCAN1_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(FDCAN1_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
}
# if UAVCAN_STM32_NUM_IFACES > 1
else if (can_number == 1) {
nvicEnableVector(FDCAN2_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(FDCAN2_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
}
# endif
}
}
int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode, uavcan::uint8_t can_number)
{
int res = 0;
UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode));
if (can_number > UAVCAN_STM32_NUM_IFACES) {
res = -1;
goto fail;
}
static bool initialized_once[UAVCAN_STM32_NUM_IFACES] = {false};
if (!initialized_once[can_number]) {
initialized_once[can_number] = true;
initialized_by_me_[can_number] = true;
if (can_number == 1 && !initialized_once[0]) {
UAVCAN_STM32_LOG("Iface 0 is not initialized yet but we need it for Iface 1, trying to init it");
UAVCAN_STM32_LOG("Enabling CAN iface 0");
initOnce(0, false);
UAVCAN_STM32_LOG("Initing iface 0...");
res = if0_.init(bitrate, mode);
if (res < 0) {
UAVCAN_STM32_LOG("Iface 0 init failed %i", res);
goto fail;
}
}
UAVCAN_STM32_LOG("Enabling CAN iface %d", can_number);
initOnce(can_number, true);
} else if (!initialized_by_me_[can_number]) {
UAVCAN_STM32_LOG("CAN iface %d initialized in another CANDriver!", can_number);
res = -2;
goto fail;
}
if (can_number == 0) {
/*
* CAN1
*/
UAVCAN_STM32_LOG("Initing iface 0...");
ifaces[0] = &if0_; // This link must be initialized first,
res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet;
if (res < 0) { // a typical race condition.
UAVCAN_STM32_LOG("Iface 0 init failed %i", res);
ifaces[0] = UAVCAN_NULLPTR;
goto fail;
}
} else if (can_number == 1) {
/*
* CAN2
*/
#if UAVCAN_STM32_NUM_IFACES > 1
UAVCAN_STM32_LOG("Initing iface 1...");
ifaces[1] = &if1_; // Same thing here.
res = if1_.init(bitrate, mode);
if (res < 0) {
UAVCAN_STM32_LOG("Iface 1 init failed %i", res);
ifaces[1] = UAVCAN_NULLPTR;
goto fail;
}
#endif
}
if_int_to_gl_index_[num_ifaces_++] = can_number;
UAVCAN_STM32_LOG("CAN drv init OK");
UAVCAN_ASSERT(res >= 0);
return res;
fail:
UAVCAN_STM32_LOG("CAN drv init failed %i", res);
UAVCAN_ASSERT(res < 0);
return res;
}
CanIface* CanDriver::getIface(uavcan::uint8_t iface_index)
{
if (iface_index < num_ifaces_) {
return ifaces[if_int_to_gl_index_[iface_index]];
}
return UAVCAN_NULLPTR;
}
bool CanDriver::hadActivity()
{
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) {
if (ifaces[if_int_to_gl_index_[i]]->hadActivity()) {
return true;
}
}
return false;
}
} // namespace uavcan_stm32
/*
* Interrupt handlers
*/
extern "C"
{
UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT0_IRQHandler);
UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT0_IRQHandler)
{
UAVCAN_STM32_IRQ_PROLOGUE();
ChibiOS_CAN::handleInterrupt(0, 0);
UAVCAN_STM32_IRQ_EPILOGUE();
}
UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT1_IRQHandler);
UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT1_IRQHandler)
{
UAVCAN_STM32_IRQ_PROLOGUE();
ChibiOS_CAN::handleInterrupt(0, 1);
UAVCAN_STM32_IRQ_EPILOGUE();
}
# if UAVCAN_STM32_NUM_IFACES > 1
UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT0_IRQHandler);
UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT0_IRQHandler)
{
UAVCAN_STM32_IRQ_PROLOGUE();
ChibiOS_CAN::handleInterrupt(1, 0);
UAVCAN_STM32_IRQ_EPILOGUE();
}
UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT1_IRQHandler);
UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT1_IRQHandler)
{
UAVCAN_STM32_IRQ_PROLOGUE();
ChibiOS_CAN::handleInterrupt(1, 1);
UAVCAN_STM32_IRQ_EPILOGUE();
}
# endif
} // extern "C"
#endif //defined(STM32H7XX)
#endif //HAL_WITH_UAVCAN