2016-07-14 02:08:43 -03:00
# include <AP_HAL/AP_HAL.h>
# if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
# include "AP_NavEKF3.h"
# include "AP_NavEKF3_core.h"
# include <AP_AHRS/AP_AHRS.h>
# include <AP_Vehicle/AP_Vehicle.h>
2017-03-16 02:59:19 -03:00
# include <GCS_MAVLink/GCS.h>
2016-07-14 02:08:43 -03:00
extern const AP_HAL : : HAL & hal ;
/********************************************************
* RESET FUNCTIONS *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/********************************************************
* FUSE MEASURED_DATA *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
// select fusion of optical flow measurements
void NavEKF3_core : : SelectFlowFusion ( )
{
2016-12-17 18:02:38 -04:00
// start performance timer
hal . util - > perf_begin ( _perf_FuseOptFlow ) ;
// Check for data at the fusion time horizon
flowDataToFuse = storedOF . recall ( ofDataDelayed , imuDataDelayed . time_ms ) ;
2016-07-14 02:08:43 -03:00
// Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz
// If so, don't fuse measurements on this time step to reduce frame over-runs
// Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements
if ( magFusePerformed & & dtIMUavg < 0.005f & & ! optFlowFusionDelayed ) {
optFlowFusionDelayed = true ;
return ;
} else {
optFlowFusionDelayed = false ;
}
// Perform Data Checks
// Check if the optical flow data is still valid
flowDataValid = ( ( imuSampleTime_ms - flowValidMeaTime_ms ) < 1000 ) ;
2017-04-27 22:04:20 -03:00
// check is the terrain offset estimate is still valid - if we are using range finder as the main height reference, the ground is assumed to be at 0
gndOffsetValid = ( ( imuSampleTime_ms - gndHgtValidTime_ms ) < 5000 ) | | ( activeHgtSource = = HGT_SOURCE_RNG ) ;
2016-07-14 02:08:43 -03:00
// Perform tilt check
bool tiltOK = ( prevTnb . c . z > frontend - > DCM33FlowMin ) ;
// Constrain measurements to zero if takeoff is not detected and the height above ground
// is insuffient to achieve acceptable focus. This allows the vehicle to be picked up
// and carried to test optical flow operation
if ( ! takeOffDetected & & ( ( terrainState - stateStruct . position . z ) < 0.5f ) ) {
ofDataDelayed . flowRadXYcomp . zero ( ) ;
ofDataDelayed . flowRadXY . zero ( ) ;
flowDataValid = true ;
}
// if we do have valid flow measurements, fuse data into a 1-state EKF to estimate terrain height
// we don't do terrain height estimation in optical flow only mode as the ground becomes our zero height reference
if ( ( flowDataToFuse | | rangeDataToFuse ) & & tiltOK ) {
// fuse optical flow data into the terrain estimator if available and if there is no range data (range data is better)
fuseOptFlowData = ( flowDataToFuse & & ! rangeDataToFuse ) ;
// Estimate the terrain offset (runs a one state EKF)
EstimateTerrainOffset ( ) ;
}
// Fuse optical flow data into the main filter
if ( flowDataToFuse & & tiltOK )
{
// Set the flow noise used by the fusion processes
R_LOS = sq ( MAX ( frontend - > _flowNoise , 0.05f ) ) ;
// Fuse the optical flow X and Y axis data into the main filter sequentially
FuseOptFlow ( ) ;
// reset flag to indicate that no new flow data is available for fusion
flowDataToFuse = false ;
}
// stop the performance timer
hal . util - > perf_end ( _perf_FuseOptFlow ) ;
}
/*
Estimation of terrain offset using a single state EKF
The filter can fuse motion compensated optiocal flow rates and range finder measurements
*/
void NavEKF3_core : : EstimateTerrainOffset ( )
{
// start performance timer
hal . util - > perf_begin ( _perf_TerrainOffset ) ;
// constrain height above ground to be above range measured on ground
float heightAboveGndEst = MAX ( ( terrainState - stateStruct . position . z ) , rngOnGnd ) ;
// calculate a predicted LOS rate squared
float velHorizSq = sq ( stateStruct . velocity . x ) + sq ( stateStruct . velocity . y ) ;
float losRateSq = velHorizSq / sq ( heightAboveGndEst ) ;
// don't update terrain offset state if there is no range finder
// don't update terrain state if not generating enough LOS rate, or without GPS, as it is poorly observable
// don't update terrain state if we are using it as a height reference in the main filter
bool cantFuseFlowData = ( gpsNotAvailable | | PV_AidingMode = = AID_RELATIVE | | velHorizSq < 25.0f | | losRateSq < 0.01f ) ;
if ( ( ! rangeDataToFuse & & cantFuseFlowData ) | | ( activeHgtSource = = HGT_SOURCE_RNG ) ) {
// skip update
inhibitGndState = true ;
} else {
inhibitGndState = false ;
// record the time we last updated the terrain offset state
gndHgtValidTime_ms = imuSampleTime_ms ;
// propagate ground position state noise each time this is called using the difference in position since the last observations and an RMS gradient assumption
// limit distance to prevent intialisation afer bad gps causing bad numerical conditioning
float distanceTravelledSq = sq ( stateStruct . position [ 0 ] - prevPosN ) + sq ( stateStruct . position [ 1 ] - prevPosE ) ;
distanceTravelledSq = MIN ( distanceTravelledSq , 100.0f ) ;
prevPosN = stateStruct . position [ 0 ] ;
prevPosE = stateStruct . position [ 1 ] ;
// in addition to a terrain gradient error model, we also have the growth in uncertainty due to the copters vertical velocity
float timeLapsed = MIN ( 0.001f * ( imuSampleTime_ms - timeAtLastAuxEKF_ms ) , 1.0f ) ;
float Pincrement = ( distanceTravelledSq * sq ( 0.01f * float ( frontend - > gndGradientSigma ) ) ) + sq ( timeLapsed ) * P [ 6 ] [ 6 ] ;
Popt + = Pincrement ;
timeAtLastAuxEKF_ms = imuSampleTime_ms ;
// fuse range finder data
if ( rangeDataToFuse ) {
// predict range
float predRngMeas = MAX ( ( terrainState - stateStruct . position [ 2 ] ) , rngOnGnd ) / prevTnb . c . z ;
// Copy required states to local variable names
float q0 = stateStruct . quat [ 0 ] ; // quaternion at optical flow measurement time
float q1 = stateStruct . quat [ 1 ] ; // quaternion at optical flow measurement time
float q2 = stateStruct . quat [ 2 ] ; // quaternion at optical flow measurement time
float q3 = stateStruct . quat [ 3 ] ; // quaternion at optical flow measurement time
// Set range finder measurement noise variance. TODO make this a function of range and tilt to allow for sensor, alignment and AHRS errors
float R_RNG = frontend - > _rngNoise ;
// calculate Kalman gain
float SK_RNG = sq ( q0 ) - sq ( q1 ) - sq ( q2 ) + sq ( q3 ) ;
float K_RNG = Popt / ( SK_RNG * ( R_RNG + Popt / sq ( SK_RNG ) ) ) ;
// Calculate the innovation variance for data logging
varInnovRng = ( R_RNG + Popt / sq ( SK_RNG ) ) ;
// constrain terrain height to be below the vehicle
terrainState = MAX ( terrainState , stateStruct . position [ 2 ] + rngOnGnd ) ;
// Calculate the measurement innovation
innovRng = predRngMeas - rangeDataDelayed . rng ;
// calculate the innovation consistency test ratio
auxRngTestRatio = sq ( innovRng ) / ( sq ( MAX ( 0.01f * ( float ) frontend - > _rngInnovGate , 1.0f ) ) * varInnovRng ) ;
// Check the innovation for consistency and don't fuse if > 5Sigma
if ( ( sq ( innovRng ) * SK_RNG ) < 25.0f )
{
// correct the state
terrainState - = K_RNG * innovRng ;
// constrain the state
terrainState = MAX ( terrainState , stateStruct . position [ 2 ] + rngOnGnd ) ;
// correct the covariance
Popt = Popt - sq ( Popt ) / ( SK_RNG * ( R_RNG + Popt / sq ( SK_RNG ) ) * ( sq ( q0 ) - sq ( q1 ) - sq ( q2 ) + sq ( q3 ) ) ) ;
// prevent the state variance from becoming negative
Popt = MAX ( Popt , 0.0f ) ;
}
}
if ( fuseOptFlowData & & ! cantFuseFlowData ) {
Vector3f relVelSensor ; // velocity of sensor relative to ground in sensor axes
float losPred ; // predicted optical flow angular rate measurement
float q0 = stateStruct . quat [ 0 ] ; // quaternion at optical flow measurement time
float q1 = stateStruct . quat [ 1 ] ; // quaternion at optical flow measurement time
float q2 = stateStruct . quat [ 2 ] ; // quaternion at optical flow measurement time
float q3 = stateStruct . quat [ 3 ] ; // quaternion at optical flow measurement time
float K_OPT ;
float H_OPT ;
// predict range to centre of image
float flowRngPred = MAX ( ( terrainState - stateStruct . position [ 2 ] ) , rngOnGnd ) / prevTnb . c . z ;
// constrain terrain height to be below the vehicle
terrainState = MAX ( terrainState , stateStruct . position [ 2 ] + rngOnGnd ) ;
// calculate relative velocity in sensor frame
relVelSensor = prevTnb * stateStruct . velocity ;
// divide velocity by range, subtract body rates and apply scale factor to
// get predicted sensed angular optical rates relative to X and Y sensor axes
losPred = relVelSensor . length ( ) / flowRngPred ;
// calculate innovations
auxFlowObsInnov = losPred - sqrtf ( sq ( flowRadXYcomp [ 0 ] ) + sq ( flowRadXYcomp [ 1 ] ) ) ;
// calculate observation jacobian
float t3 = sq ( q0 ) ;
float t4 = sq ( q1 ) ;
float t5 = sq ( q2 ) ;
float t6 = sq ( q3 ) ;
float t10 = q0 * q3 * 2.0f ;
float t11 = q1 * q2 * 2.0f ;
float t14 = t3 + t4 - t5 - t6 ;
float t15 = t14 * stateStruct . velocity . x ;
float t16 = t10 + t11 ;
float t17 = t16 * stateStruct . velocity . y ;
float t18 = q0 * q2 * 2.0f ;
float t19 = q1 * q3 * 2.0f ;
float t20 = t18 - t19 ;
float t21 = t20 * stateStruct . velocity . z ;
float t2 = t15 + t17 - t21 ;
float t7 = t3 - t4 - t5 + t6 ;
float t8 = stateStruct . position [ 2 ] - terrainState ;
float t9 = 1.0f / sq ( t8 ) ;
float t24 = t3 - t4 + t5 - t6 ;
float t25 = t24 * stateStruct . velocity . y ;
float t26 = t10 - t11 ;
float t27 = t26 * stateStruct . velocity . x ;
float t28 = q0 * q1 * 2.0f ;
float t29 = q2 * q3 * 2.0f ;
float t30 = t28 + t29 ;
float t31 = t30 * stateStruct . velocity . z ;
float t12 = t25 - t27 + t31 ;
float t13 = sq ( t7 ) ;
float t22 = sq ( t2 ) ;
float t23 = 1.0f / ( t8 * t8 * t8 ) ;
float t32 = sq ( t12 ) ;
H_OPT = 0.5f * ( t13 * t22 * t23 * 2.0f + t13 * t23 * t32 * 2.0f ) / sqrtf ( t9 * t13 * t22 + t9 * t13 * t32 ) ;
// calculate innovation variances
auxFlowObsInnovVar = H_OPT * Popt * H_OPT + R_LOS ;
// calculate Kalman gain
K_OPT = Popt * H_OPT / auxFlowObsInnovVar ;
// calculate the innovation consistency test ratio
auxFlowTestRatio = sq ( auxFlowObsInnov ) / ( sq ( MAX ( 0.01f * ( float ) frontend - > _flowInnovGate , 1.0f ) ) * auxFlowObsInnovVar ) ;
// don't fuse if optical flow data is outside valid range
if ( MAX ( flowRadXY [ 0 ] , flowRadXY [ 1 ] ) < frontend - > _maxFlowRate ) {
// correct the state
terrainState - = K_OPT * auxFlowObsInnov ;
// constrain the state
terrainState = MAX ( terrainState , stateStruct . position [ 2 ] + rngOnGnd ) ;
// correct the covariance
Popt = Popt - K_OPT * H_OPT * Popt ;
// prevent the state variances from becoming negative
Popt = MAX ( Popt , 0.0f ) ;
}
}
}
// stop the performance timer
hal . util - > perf_end ( _perf_TerrainOffset ) ;
}
/*
* Fuse angular motion compensated optical flow rates using explicit algebraic equations generated with Matlab symbolic toolbox .
* The script file used to generate these and other equations in this filter can be found here :
2017-04-10 02:24:45 -03:00
* https : //github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
2016-07-14 02:08:43 -03:00
* Requires a valid terrain height estimate .
*/
void NavEKF3_core : : FuseOptFlow ( )
{
Vector24 H_LOS ;
Vector3f relVelSensor ;
Vector14 SH_LOS ;
Vector2 losPred ;
// Copy required states to local variable names
float q0 = stateStruct . quat [ 0 ] ;
float q1 = stateStruct . quat [ 1 ] ;
float q2 = stateStruct . quat [ 2 ] ;
float q3 = stateStruct . quat [ 3 ] ;
float vn = stateStruct . velocity . x ;
float ve = stateStruct . velocity . y ;
float vd = stateStruct . velocity . z ;
float pd = stateStruct . position . z ;
// constrain height above ground to be above range measured on ground
float heightAboveGndEst = MAX ( ( terrainState - pd ) , rngOnGnd ) ;
float ptd = pd + heightAboveGndEst ;
// Calculate common expressions for observation jacobians
SH_LOS [ 0 ] = sq ( q0 ) - sq ( q1 ) - sq ( q2 ) + sq ( q3 ) ;
SH_LOS [ 1 ] = vn * ( sq ( q0 ) + sq ( q1 ) - sq ( q2 ) - sq ( q3 ) ) - vd * ( 2 * q0 * q2 - 2 * q1 * q3 ) + ve * ( 2 * q0 * q3 + 2 * q1 * q2 ) ;
SH_LOS [ 2 ] = ve * ( sq ( q0 ) - sq ( q1 ) + sq ( q2 ) - sq ( q3 ) ) + vd * ( 2 * q0 * q1 + 2 * q2 * q3 ) - vn * ( 2 * q0 * q3 - 2 * q1 * q2 ) ;
SH_LOS [ 3 ] = 1 / ( pd - ptd ) ;
SH_LOS [ 4 ] = vd * SH_LOS [ 0 ] - ve * ( 2 * q0 * q1 - 2 * q2 * q3 ) + vn * ( 2 * q0 * q2 + 2 * q1 * q3 ) ;
SH_LOS [ 5 ] = 2.0f * q0 * q2 - 2.0f * q1 * q3 ;
SH_LOS [ 6 ] = 2.0f * q0 * q1 + 2.0f * q2 * q3 ;
SH_LOS [ 7 ] = q0 * q0 ;
SH_LOS [ 8 ] = q1 * q1 ;
SH_LOS [ 9 ] = q2 * q2 ;
SH_LOS [ 10 ] = q3 * q3 ;
SH_LOS [ 11 ] = q0 * q3 * 2.0f ;
SH_LOS [ 12 ] = pd - ptd ;
SH_LOS [ 13 ] = 1.0f / ( SH_LOS [ 12 ] * SH_LOS [ 12 ] ) ;
// Fuse X and Y axis measurements sequentially assuming observation errors are uncorrelated
for ( uint8_t obsIndex = 0 ; obsIndex < = 1 ; obsIndex + + ) { // fuse X axis data first
// calculate range from ground plain to centre of sensor fov assuming flat earth
float range = constrain_float ( ( heightAboveGndEst / prevTnb . c . z ) , rngOnGnd , 1000.0f ) ;
// correct range for flow sensor offset body frame position offset
// the corrected value is the predicted range from the sensor focal point to the
// centre of the image on the ground assuming flat terrain
Vector3f posOffsetBody = ( * ofDataDelayed . body_offset ) - accelPosOffset ;
if ( ! posOffsetBody . is_zero ( ) ) {
Vector3f posOffsetEarth = prevTnb . mul_transpose ( posOffsetBody ) ;
range - = posOffsetEarth . z / prevTnb . c . z ;
}
// calculate relative velocity in sensor frame including the relative motion due to rotation
relVelSensor = ( prevTnb * stateStruct . velocity ) + ( ofDataDelayed . bodyRadXYZ % posOffsetBody ) ;
// divide velocity by range to get predicted angular LOS rates relative to X and Y axes
losPred [ 0 ] = relVelSensor . y / range ;
losPred [ 1 ] = - relVelSensor . x / range ;
// calculate observation jacobians and Kalman gains
memset ( & H_LOS [ 0 ] , 0 , sizeof ( H_LOS ) ) ;
if ( obsIndex = = 0 ) {
// calculate X axis observation Jacobian
float t2 = 1.0f / range ;
H_LOS [ 0 ] = t2 * ( q1 * vd * 2.0f + q0 * ve * 2.0f - q3 * vn * 2.0f ) ;
H_LOS [ 1 ] = t2 * ( q0 * vd * 2.0f - q1 * ve * 2.0f + q2 * vn * 2.0f ) ;
H_LOS [ 2 ] = t2 * ( q3 * vd * 2.0f + q2 * ve * 2.0f + q1 * vn * 2.0f ) ;
H_LOS [ 3 ] = - t2 * ( q2 * vd * - 2.0f + q3 * ve * 2.0f + q0 * vn * 2.0f ) ;
H_LOS [ 4 ] = - t2 * ( q0 * q3 * 2.0f - q1 * q2 * 2.0f ) ;
H_LOS [ 5 ] = t2 * ( q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3 ) ;
H_LOS [ 6 ] = t2 * ( q0 * q1 * 2.0f + q2 * q3 * 2.0f ) ;
// calculate intermediate variables for the X observaton innovatoin variance and Kalman gains
float t3 = q1 * vd * 2.0f ;
float t4 = q0 * ve * 2.0f ;
float t11 = q3 * vn * 2.0f ;
float t5 = t3 + t4 - t11 ;
float t6 = q0 * q3 * 2.0f ;
float t29 = q1 * q2 * 2.0f ;
float t7 = t6 - t29 ;
float t8 = q0 * q1 * 2.0f ;
float t9 = q2 * q3 * 2.0f ;
float t10 = t8 + t9 ;
float t12 = P [ 0 ] [ 0 ] * t2 * t5 ;
float t13 = q0 * vd * 2.0f ;
float t14 = q2 * vn * 2.0f ;
float t28 = q1 * ve * 2.0f ;
float t15 = t13 + t14 - t28 ;
float t16 = q3 * vd * 2.0f ;
float t17 = q2 * ve * 2.0f ;
float t18 = q1 * vn * 2.0f ;
float t19 = t16 + t17 + t18 ;
float t20 = q3 * ve * 2.0f ;
float t21 = q0 * vn * 2.0f ;
float t30 = q2 * vd * 2.0f ;
float t22 = t20 + t21 - t30 ;
float t23 = q0 * q0 ;
float t24 = q1 * q1 ;
float t25 = q2 * q2 ;
float t26 = q3 * q3 ;
float t27 = t23 - t24 + t25 - t26 ;
float t31 = P [ 1 ] [ 1 ] * t2 * t15 ;
float t32 = P [ 6 ] [ 0 ] * t2 * t10 ;
float t33 = P [ 1 ] [ 0 ] * t2 * t15 ;
float t34 = P [ 2 ] [ 0 ] * t2 * t19 ;
float t35 = P [ 5 ] [ 0 ] * t2 * t27 ;
float t79 = P [ 4 ] [ 0 ] * t2 * t7 ;
float t80 = P [ 3 ] [ 0 ] * t2 * t22 ;
float t36 = t12 + t32 + t33 + t34 + t35 - t79 - t80 ;
float t37 = t2 * t5 * t36 ;
float t38 = P [ 6 ] [ 1 ] * t2 * t10 ;
float t39 = P [ 0 ] [ 1 ] * t2 * t5 ;
float t40 = P [ 2 ] [ 1 ] * t2 * t19 ;
float t41 = P [ 5 ] [ 1 ] * t2 * t27 ;
float t81 = P [ 4 ] [ 1 ] * t2 * t7 ;
float t82 = P [ 3 ] [ 1 ] * t2 * t22 ;
float t42 = t31 + t38 + t39 + t40 + t41 - t81 - t82 ;
float t43 = t2 * t15 * t42 ;
float t44 = P [ 6 ] [ 2 ] * t2 * t10 ;
float t45 = P [ 0 ] [ 2 ] * t2 * t5 ;
float t46 = P [ 1 ] [ 2 ] * t2 * t15 ;
float t47 = P [ 2 ] [ 2 ] * t2 * t19 ;
float t48 = P [ 5 ] [ 2 ] * t2 * t27 ;
float t83 = P [ 4 ] [ 2 ] * t2 * t7 ;
float t84 = P [ 3 ] [ 2 ] * t2 * t22 ;
float t49 = t44 + t45 + t46 + t47 + t48 - t83 - t84 ;
float t50 = t2 * t19 * t49 ;
float t51 = P [ 6 ] [ 3 ] * t2 * t10 ;
float t52 = P [ 0 ] [ 3 ] * t2 * t5 ;
float t53 = P [ 1 ] [ 3 ] * t2 * t15 ;
float t54 = P [ 2 ] [ 3 ] * t2 * t19 ;
float t55 = P [ 5 ] [ 3 ] * t2 * t27 ;
float t85 = P [ 4 ] [ 3 ] * t2 * t7 ;
float t86 = P [ 3 ] [ 3 ] * t2 * t22 ;
float t56 = t51 + t52 + t53 + t54 + t55 - t85 - t86 ;
float t57 = P [ 6 ] [ 5 ] * t2 * t10 ;
float t58 = P [ 0 ] [ 5 ] * t2 * t5 ;
float t59 = P [ 1 ] [ 5 ] * t2 * t15 ;
float t60 = P [ 2 ] [ 5 ] * t2 * t19 ;
float t61 = P [ 5 ] [ 5 ] * t2 * t27 ;
float t88 = P [ 4 ] [ 5 ] * t2 * t7 ;
float t89 = P [ 3 ] [ 5 ] * t2 * t22 ;
float t62 = t57 + t58 + t59 + t60 + t61 - t88 - t89 ;
float t63 = t2 * t27 * t62 ;
float t64 = P [ 6 ] [ 4 ] * t2 * t10 ;
float t65 = P [ 0 ] [ 4 ] * t2 * t5 ;
float t66 = P [ 1 ] [ 4 ] * t2 * t15 ;
float t67 = P [ 2 ] [ 4 ] * t2 * t19 ;
float t68 = P [ 5 ] [ 4 ] * t2 * t27 ;
float t90 = P [ 4 ] [ 4 ] * t2 * t7 ;
float t91 = P [ 3 ] [ 4 ] * t2 * t22 ;
float t69 = t64 + t65 + t66 + t67 + t68 - t90 - t91 ;
float t70 = P [ 6 ] [ 6 ] * t2 * t10 ;
float t71 = P [ 0 ] [ 6 ] * t2 * t5 ;
float t72 = P [ 1 ] [ 6 ] * t2 * t15 ;
float t73 = P [ 2 ] [ 6 ] * t2 * t19 ;
float t74 = P [ 5 ] [ 6 ] * t2 * t27 ;
float t93 = P [ 4 ] [ 6 ] * t2 * t7 ;
float t94 = P [ 3 ] [ 6 ] * t2 * t22 ;
float t75 = t70 + t71 + t72 + t73 + t74 - t93 - t94 ;
float t76 = t2 * t10 * t75 ;
float t87 = t2 * t22 * t56 ;
float t92 = t2 * t7 * t69 ;
float t77 = R_LOS + t37 + t43 + t50 + t63 + t76 - t87 - t92 ;
float t78 ;
// calculate innovation variance for X axis observation and protect against a badly conditioned calculation
if ( t77 > R_LOS ) {
t78 = 1.0f / t77 ;
faultStatus . bad_xflow = false ;
} else {
t77 = R_LOS ;
t78 = 1.0f / R_LOS ;
faultStatus . bad_xflow = true ;
return ;
}
varInnovOptFlow [ 0 ] = t77 ;
// calculate innovation for X axis observation
innovOptFlow [ 0 ] = losPred [ 0 ] - ofDataDelayed . flowRadXYcomp . x ;
// calculate Kalman gains for X-axis observation
Kfusion [ 0 ] = t78 * ( t12 - P [ 0 ] [ 4 ] * t2 * t7 + P [ 0 ] [ 1 ] * t2 * t15 + P [ 0 ] [ 6 ] * t2 * t10 + P [ 0 ] [ 2 ] * t2 * t19 - P [ 0 ] [ 3 ] * t2 * t22 + P [ 0 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 1 ] = t78 * ( t31 + P [ 1 ] [ 0 ] * t2 * t5 - P [ 1 ] [ 4 ] * t2 * t7 + P [ 1 ] [ 6 ] * t2 * t10 + P [ 1 ] [ 2 ] * t2 * t19 - P [ 1 ] [ 3 ] * t2 * t22 + P [ 1 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 2 ] = t78 * ( t47 + P [ 2 ] [ 0 ] * t2 * t5 - P [ 2 ] [ 4 ] * t2 * t7 + P [ 2 ] [ 1 ] * t2 * t15 + P [ 2 ] [ 6 ] * t2 * t10 - P [ 2 ] [ 3 ] * t2 * t22 + P [ 2 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 3 ] = t78 * ( - t86 + P [ 3 ] [ 0 ] * t2 * t5 - P [ 3 ] [ 4 ] * t2 * t7 + P [ 3 ] [ 1 ] * t2 * t15 + P [ 3 ] [ 6 ] * t2 * t10 + P [ 3 ] [ 2 ] * t2 * t19 + P [ 3 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 4 ] = t78 * ( - t90 + P [ 4 ] [ 0 ] * t2 * t5 + P [ 4 ] [ 1 ] * t2 * t15 + P [ 4 ] [ 6 ] * t2 * t10 + P [ 4 ] [ 2 ] * t2 * t19 - P [ 4 ] [ 3 ] * t2 * t22 + P [ 4 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 5 ] = t78 * ( t61 + P [ 5 ] [ 0 ] * t2 * t5 - P [ 5 ] [ 4 ] * t2 * t7 + P [ 5 ] [ 1 ] * t2 * t15 + P [ 5 ] [ 6 ] * t2 * t10 + P [ 5 ] [ 2 ] * t2 * t19 - P [ 5 ] [ 3 ] * t2 * t22 ) ;
Kfusion [ 6 ] = t78 * ( t70 + P [ 6 ] [ 0 ] * t2 * t5 - P [ 6 ] [ 4 ] * t2 * t7 + P [ 6 ] [ 1 ] * t2 * t15 + P [ 6 ] [ 2 ] * t2 * t19 - P [ 6 ] [ 3 ] * t2 * t22 + P [ 6 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 7 ] = t78 * ( P [ 7 ] [ 0 ] * t2 * t5 - P [ 7 ] [ 4 ] * t2 * t7 + P [ 7 ] [ 1 ] * t2 * t15 + P [ 7 ] [ 6 ] * t2 * t10 + P [ 7 ] [ 2 ] * t2 * t19 - P [ 7 ] [ 3 ] * t2 * t22 + P [ 7 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 8 ] = t78 * ( P [ 8 ] [ 0 ] * t2 * t5 - P [ 8 ] [ 4 ] * t2 * t7 + P [ 8 ] [ 1 ] * t2 * t15 + P [ 8 ] [ 6 ] * t2 * t10 + P [ 8 ] [ 2 ] * t2 * t19 - P [ 8 ] [ 3 ] * t2 * t22 + P [ 8 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 9 ] = t78 * ( P [ 9 ] [ 0 ] * t2 * t5 - P [ 9 ] [ 4 ] * t2 * t7 + P [ 9 ] [ 1 ] * t2 * t15 + P [ 9 ] [ 6 ] * t2 * t10 + P [ 9 ] [ 2 ] * t2 * t19 - P [ 9 ] [ 3 ] * t2 * t22 + P [ 9 ] [ 5 ] * t2 * t27 ) ;
2017-05-09 19:31:55 -03:00
if ( ! inhibitDelAngBiasStates ) {
Kfusion [ 10 ] = t78 * ( P [ 10 ] [ 0 ] * t2 * t5 - P [ 10 ] [ 4 ] * t2 * t7 + P [ 10 ] [ 1 ] * t2 * t15 + P [ 10 ] [ 6 ] * t2 * t10 + P [ 10 ] [ 2 ] * t2 * t19 - P [ 10 ] [ 3 ] * t2 * t22 + P [ 10 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 11 ] = t78 * ( P [ 11 ] [ 0 ] * t2 * t5 - P [ 11 ] [ 4 ] * t2 * t7 + P [ 11 ] [ 1 ] * t2 * t15 + P [ 11 ] [ 6 ] * t2 * t10 + P [ 11 ] [ 2 ] * t2 * t19 - P [ 11 ] [ 3 ] * t2 * t22 + P [ 11 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 12 ] = t78 * ( P [ 12 ] [ 0 ] * t2 * t5 - P [ 12 ] [ 4 ] * t2 * t7 + P [ 12 ] [ 1 ] * t2 * t15 + P [ 12 ] [ 6 ] * t2 * t10 + P [ 12 ] [ 2 ] * t2 * t19 - P [ 12 ] [ 3 ] * t2 * t22 + P [ 12 ] [ 5 ] * t2 * t27 ) ;
} else {
// zero indexes 10 to 12 = 3*4 bytes
memset ( & Kfusion [ 10 ] , 0 , 12 ) ;
}
if ( ! inhibitDelVelBiasStates ) {
Kfusion [ 13 ] = t78 * ( P [ 13 ] [ 0 ] * t2 * t5 - P [ 13 ] [ 4 ] * t2 * t7 + P [ 13 ] [ 1 ] * t2 * t15 + P [ 13 ] [ 6 ] * t2 * t10 + P [ 13 ] [ 2 ] * t2 * t19 - P [ 13 ] [ 3 ] * t2 * t22 + P [ 13 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 14 ] = t78 * ( P [ 14 ] [ 0 ] * t2 * t5 - P [ 14 ] [ 4 ] * t2 * t7 + P [ 14 ] [ 1 ] * t2 * t15 + P [ 14 ] [ 6 ] * t2 * t10 + P [ 14 ] [ 2 ] * t2 * t19 - P [ 14 ] [ 3 ] * t2 * t22 + P [ 14 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 15 ] = t78 * ( P [ 15 ] [ 0 ] * t2 * t5 - P [ 15 ] [ 4 ] * t2 * t7 + P [ 15 ] [ 1 ] * t2 * t15 + P [ 15 ] [ 6 ] * t2 * t10 + P [ 15 ] [ 2 ] * t2 * t19 - P [ 15 ] [ 3 ] * t2 * t22 + P [ 15 ] [ 5 ] * t2 * t27 ) ;
2016-07-14 02:08:43 -03:00
} else {
2017-05-09 19:31:55 -03:00
// zero indexes 13 to 15 = 3*4 bytes
memset ( & Kfusion [ 13 ] , 0 , 12 ) ;
2016-07-14 02:08:43 -03:00
}
2017-05-09 19:31:55 -03:00
2016-07-14 02:08:43 -03:00
if ( ! inhibitMagStates ) {
Kfusion [ 16 ] = t78 * ( P [ 16 ] [ 0 ] * t2 * t5 - P [ 16 ] [ 4 ] * t2 * t7 + P [ 16 ] [ 1 ] * t2 * t15 + P [ 16 ] [ 6 ] * t2 * t10 + P [ 16 ] [ 2 ] * t2 * t19 - P [ 16 ] [ 3 ] * t2 * t22 + P [ 16 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 17 ] = t78 * ( P [ 17 ] [ 0 ] * t2 * t5 - P [ 17 ] [ 4 ] * t2 * t7 + P [ 17 ] [ 1 ] * t2 * t15 + P [ 17 ] [ 6 ] * t2 * t10 + P [ 17 ] [ 2 ] * t2 * t19 - P [ 17 ] [ 3 ] * t2 * t22 + P [ 17 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 18 ] = t78 * ( P [ 18 ] [ 0 ] * t2 * t5 - P [ 18 ] [ 4 ] * t2 * t7 + P [ 18 ] [ 1 ] * t2 * t15 + P [ 18 ] [ 6 ] * t2 * t10 + P [ 18 ] [ 2 ] * t2 * t19 - P [ 18 ] [ 3 ] * t2 * t22 + P [ 18 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 19 ] = t78 * ( P [ 19 ] [ 0 ] * t2 * t5 - P [ 19 ] [ 4 ] * t2 * t7 + P [ 19 ] [ 1 ] * t2 * t15 + P [ 19 ] [ 6 ] * t2 * t10 + P [ 19 ] [ 2 ] * t2 * t19 - P [ 19 ] [ 3 ] * t2 * t22 + P [ 19 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 20 ] = t78 * ( P [ 20 ] [ 0 ] * t2 * t5 - P [ 20 ] [ 4 ] * t2 * t7 + P [ 20 ] [ 1 ] * t2 * t15 + P [ 20 ] [ 6 ] * t2 * t10 + P [ 20 ] [ 2 ] * t2 * t19 - P [ 20 ] [ 3 ] * t2 * t22 + P [ 20 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 21 ] = t78 * ( P [ 21 ] [ 0 ] * t2 * t5 - P [ 21 ] [ 4 ] * t2 * t7 + P [ 21 ] [ 1 ] * t2 * t15 + P [ 21 ] [ 6 ] * t2 * t10 + P [ 21 ] [ 2 ] * t2 * t19 - P [ 21 ] [ 3 ] * t2 * t22 + P [ 21 ] [ 5 ] * t2 * t27 ) ;
} else {
2017-05-09 19:31:55 -03:00
// zero indexes 16 to 21 = 6*4 bytes
memset ( & Kfusion [ 16 ] , 0 , 24 ) ;
}
if ( ! inhibitWindStates ) {
Kfusion [ 22 ] = t78 * ( P [ 22 ] [ 0 ] * t2 * t5 - P [ 22 ] [ 4 ] * t2 * t7 + P [ 22 ] [ 1 ] * t2 * t15 + P [ 22 ] [ 6 ] * t2 * t10 + P [ 22 ] [ 2 ] * t2 * t19 - P [ 22 ] [ 3 ] * t2 * t22 + P [ 22 ] [ 5 ] * t2 * t27 ) ;
Kfusion [ 23 ] = t78 * ( P [ 23 ] [ 0 ] * t2 * t5 - P [ 23 ] [ 4 ] * t2 * t7 + P [ 23 ] [ 1 ] * t2 * t15 + P [ 23 ] [ 6 ] * t2 * t10 + P [ 23 ] [ 2 ] * t2 * t19 - P [ 23 ] [ 3 ] * t2 * t22 + P [ 23 ] [ 5 ] * t2 * t27 ) ;
} else {
// zero indexes 22 to 23 = 2*4 bytes
memset ( & Kfusion [ 22 ] , 0 , 8 ) ;
2016-07-14 02:08:43 -03:00
}
} else {
// calculate Y axis observation Jacobian
float t2 = 1.0f / range ;
H_LOS [ 0 ] = - t2 * ( q2 * vd * - 2.0f + q3 * ve * 2.0f + q0 * vn * 2.0f ) ;
H_LOS [ 1 ] = - t2 * ( q3 * vd * 2.0f + q2 * ve * 2.0f + q1 * vn * 2.0f ) ;
H_LOS [ 2 ] = t2 * ( q0 * vd * 2.0f - q1 * ve * 2.0f + q2 * vn * 2.0f ) ;
H_LOS [ 3 ] = - t2 * ( q1 * vd * 2.0f + q0 * ve * 2.0f - q3 * vn * 2.0f ) ;
H_LOS [ 4 ] = - t2 * ( q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3 ) ;
H_LOS [ 5 ] = - t2 * ( q0 * q3 * 2.0f + q1 * q2 * 2.0f ) ;
H_LOS [ 6 ] = t2 * ( q0 * q2 * 2.0f - q1 * q3 * 2.0f ) ;
// calculate intermediate variables for the Y observaton innovatoin variance and Kalman gains
float t3 = q3 * ve * 2.0f ;
float t4 = q0 * vn * 2.0f ;
float t11 = q2 * vd * 2.0f ;
float t5 = t3 + t4 - t11 ;
float t6 = q0 * q3 * 2.0f ;
float t7 = q1 * q2 * 2.0f ;
float t8 = t6 + t7 ;
float t9 = q0 * q2 * 2.0f ;
float t28 = q1 * q3 * 2.0f ;
float t10 = t9 - t28 ;
float t12 = P [ 0 ] [ 0 ] * t2 * t5 ;
float t13 = q3 * vd * 2.0f ;
float t14 = q2 * ve * 2.0f ;
float t15 = q1 * vn * 2.0f ;
float t16 = t13 + t14 + t15 ;
float t17 = q0 * vd * 2.0f ;
float t18 = q2 * vn * 2.0f ;
float t29 = q1 * ve * 2.0f ;
float t19 = t17 + t18 - t29 ;
float t20 = q1 * vd * 2.0f ;
float t21 = q0 * ve * 2.0f ;
float t30 = q3 * vn * 2.0f ;
float t22 = t20 + t21 - t30 ;
float t23 = q0 * q0 ;
float t24 = q1 * q1 ;
float t25 = q2 * q2 ;
float t26 = q3 * q3 ;
float t27 = t23 + t24 - t25 - t26 ;
float t31 = P [ 1 ] [ 1 ] * t2 * t16 ;
float t32 = P [ 5 ] [ 0 ] * t2 * t8 ;
float t33 = P [ 1 ] [ 0 ] * t2 * t16 ;
float t34 = P [ 3 ] [ 0 ] * t2 * t22 ;
float t35 = P [ 4 ] [ 0 ] * t2 * t27 ;
float t80 = P [ 6 ] [ 0 ] * t2 * t10 ;
float t81 = P [ 2 ] [ 0 ] * t2 * t19 ;
float t36 = t12 + t32 + t33 + t34 + t35 - t80 - t81 ;
float t37 = t2 * t5 * t36 ;
float t38 = P [ 5 ] [ 1 ] * t2 * t8 ;
float t39 = P [ 0 ] [ 1 ] * t2 * t5 ;
float t40 = P [ 3 ] [ 1 ] * t2 * t22 ;
float t41 = P [ 4 ] [ 1 ] * t2 * t27 ;
float t82 = P [ 6 ] [ 1 ] * t2 * t10 ;
float t83 = P [ 2 ] [ 1 ] * t2 * t19 ;
float t42 = t31 + t38 + t39 + t40 + t41 - t82 - t83 ;
float t43 = t2 * t16 * t42 ;
float t44 = P [ 5 ] [ 2 ] * t2 * t8 ;
float t45 = P [ 0 ] [ 2 ] * t2 * t5 ;
float t46 = P [ 1 ] [ 2 ] * t2 * t16 ;
float t47 = P [ 3 ] [ 2 ] * t2 * t22 ;
float t48 = P [ 4 ] [ 2 ] * t2 * t27 ;
float t79 = P [ 2 ] [ 2 ] * t2 * t19 ;
float t84 = P [ 6 ] [ 2 ] * t2 * t10 ;
float t49 = t44 + t45 + t46 + t47 + t48 - t79 - t84 ;
float t50 = P [ 5 ] [ 3 ] * t2 * t8 ;
float t51 = P [ 0 ] [ 3 ] * t2 * t5 ;
float t52 = P [ 1 ] [ 3 ] * t2 * t16 ;
float t53 = P [ 3 ] [ 3 ] * t2 * t22 ;
float t54 = P [ 4 ] [ 3 ] * t2 * t27 ;
float t86 = P [ 6 ] [ 3 ] * t2 * t10 ;
float t87 = P [ 2 ] [ 3 ] * t2 * t19 ;
float t55 = t50 + t51 + t52 + t53 + t54 - t86 - t87 ;
float t56 = t2 * t22 * t55 ;
float t57 = P [ 5 ] [ 4 ] * t2 * t8 ;
float t58 = P [ 0 ] [ 4 ] * t2 * t5 ;
float t59 = P [ 1 ] [ 4 ] * t2 * t16 ;
float t60 = P [ 3 ] [ 4 ] * t2 * t22 ;
float t61 = P [ 4 ] [ 4 ] * t2 * t27 ;
float t88 = P [ 6 ] [ 4 ] * t2 * t10 ;
float t89 = P [ 2 ] [ 4 ] * t2 * t19 ;
float t62 = t57 + t58 + t59 + t60 + t61 - t88 - t89 ;
float t63 = t2 * t27 * t62 ;
float t64 = P [ 5 ] [ 5 ] * t2 * t8 ;
float t65 = P [ 0 ] [ 5 ] * t2 * t5 ;
float t66 = P [ 1 ] [ 5 ] * t2 * t16 ;
float t67 = P [ 3 ] [ 5 ] * t2 * t22 ;
float t68 = P [ 4 ] [ 5 ] * t2 * t27 ;
float t90 = P [ 6 ] [ 5 ] * t2 * t10 ;
float t91 = P [ 2 ] [ 5 ] * t2 * t19 ;
float t69 = t64 + t65 + t66 + t67 + t68 - t90 - t91 ;
float t70 = t2 * t8 * t69 ;
float t71 = P [ 5 ] [ 6 ] * t2 * t8 ;
float t72 = P [ 0 ] [ 6 ] * t2 * t5 ;
float t73 = P [ 1 ] [ 6 ] * t2 * t16 ;
float t74 = P [ 3 ] [ 6 ] * t2 * t22 ;
float t75 = P [ 4 ] [ 6 ] * t2 * t27 ;
float t92 = P [ 6 ] [ 6 ] * t2 * t10 ;
float t93 = P [ 2 ] [ 6 ] * t2 * t19 ;
float t76 = t71 + t72 + t73 + t74 + t75 - t92 - t93 ;
float t85 = t2 * t19 * t49 ;
float t94 = t2 * t10 * t76 ;
float t77 = R_LOS + t37 + t43 + t56 + t63 + t70 - t85 - t94 ;
float t78 ;
// calculate innovation variance for X axis observation and protect against a badly conditioned calculation
// calculate innovation variance for X axis observation and protect against a badly conditioned calculation
if ( t77 > R_LOS ) {
t78 = 1.0f / t77 ;
faultStatus . bad_yflow = false ;
} else {
t77 = R_LOS ;
t78 = 1.0f / R_LOS ;
faultStatus . bad_yflow = true ;
return ;
}
varInnovOptFlow [ 1 ] = t77 ;
// calculate innovation for Y observation
innovOptFlow [ 1 ] = losPred [ 1 ] - ofDataDelayed . flowRadXYcomp . y ;
// calculate Kalman gains for the Y-axis observation
Kfusion [ 0 ] = - t78 * ( t12 + P [ 0 ] [ 5 ] * t2 * t8 - P [ 0 ] [ 6 ] * t2 * t10 + P [ 0 ] [ 1 ] * t2 * t16 - P [ 0 ] [ 2 ] * t2 * t19 + P [ 0 ] [ 3 ] * t2 * t22 + P [ 0 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 1 ] = - t78 * ( t31 + P [ 1 ] [ 0 ] * t2 * t5 + P [ 1 ] [ 5 ] * t2 * t8 - P [ 1 ] [ 6 ] * t2 * t10 - P [ 1 ] [ 2 ] * t2 * t19 + P [ 1 ] [ 3 ] * t2 * t22 + P [ 1 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 2 ] = - t78 * ( - t79 + P [ 2 ] [ 0 ] * t2 * t5 + P [ 2 ] [ 5 ] * t2 * t8 - P [ 2 ] [ 6 ] * t2 * t10 + P [ 2 ] [ 1 ] * t2 * t16 + P [ 2 ] [ 3 ] * t2 * t22 + P [ 2 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 3 ] = - t78 * ( t53 + P [ 3 ] [ 0 ] * t2 * t5 + P [ 3 ] [ 5 ] * t2 * t8 - P [ 3 ] [ 6 ] * t2 * t10 + P [ 3 ] [ 1 ] * t2 * t16 - P [ 3 ] [ 2 ] * t2 * t19 + P [ 3 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 4 ] = - t78 * ( t61 + P [ 4 ] [ 0 ] * t2 * t5 + P [ 4 ] [ 5 ] * t2 * t8 - P [ 4 ] [ 6 ] * t2 * t10 + P [ 4 ] [ 1 ] * t2 * t16 - P [ 4 ] [ 2 ] * t2 * t19 + P [ 4 ] [ 3 ] * t2 * t22 ) ;
Kfusion [ 5 ] = - t78 * ( t64 + P [ 5 ] [ 0 ] * t2 * t5 - P [ 5 ] [ 6 ] * t2 * t10 + P [ 5 ] [ 1 ] * t2 * t16 - P [ 5 ] [ 2 ] * t2 * t19 + P [ 5 ] [ 3 ] * t2 * t22 + P [ 5 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 6 ] = - t78 * ( - t92 + P [ 6 ] [ 0 ] * t2 * t5 + P [ 6 ] [ 5 ] * t2 * t8 + P [ 6 ] [ 1 ] * t2 * t16 - P [ 6 ] [ 2 ] * t2 * t19 + P [ 6 ] [ 3 ] * t2 * t22 + P [ 6 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 7 ] = - t78 * ( P [ 7 ] [ 0 ] * t2 * t5 + P [ 7 ] [ 5 ] * t2 * t8 - P [ 7 ] [ 6 ] * t2 * t10 + P [ 7 ] [ 1 ] * t2 * t16 - P [ 7 ] [ 2 ] * t2 * t19 + P [ 7 ] [ 3 ] * t2 * t22 + P [ 7 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 8 ] = - t78 * ( P [ 8 ] [ 0 ] * t2 * t5 + P [ 8 ] [ 5 ] * t2 * t8 - P [ 8 ] [ 6 ] * t2 * t10 + P [ 8 ] [ 1 ] * t2 * t16 - P [ 8 ] [ 2 ] * t2 * t19 + P [ 8 ] [ 3 ] * t2 * t22 + P [ 8 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 9 ] = - t78 * ( P [ 9 ] [ 0 ] * t2 * t5 + P [ 9 ] [ 5 ] * t2 * t8 - P [ 9 ] [ 6 ] * t2 * t10 + P [ 9 ] [ 1 ] * t2 * t16 - P [ 9 ] [ 2 ] * t2 * t19 + P [ 9 ] [ 3 ] * t2 * t22 + P [ 9 ] [ 4 ] * t2 * t27 ) ;
2017-05-09 19:31:55 -03:00
if ( ! inhibitDelAngBiasStates ) {
Kfusion [ 10 ] = - t78 * ( P [ 10 ] [ 0 ] * t2 * t5 + P [ 10 ] [ 5 ] * t2 * t8 - P [ 10 ] [ 6 ] * t2 * t10 + P [ 10 ] [ 1 ] * t2 * t16 - P [ 10 ] [ 2 ] * t2 * t19 + P [ 10 ] [ 3 ] * t2 * t22 + P [ 10 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 11 ] = - t78 * ( P [ 11 ] [ 0 ] * t2 * t5 + P [ 11 ] [ 5 ] * t2 * t8 - P [ 11 ] [ 6 ] * t2 * t10 + P [ 11 ] [ 1 ] * t2 * t16 - P [ 11 ] [ 2 ] * t2 * t19 + P [ 11 ] [ 3 ] * t2 * t22 + P [ 11 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 12 ] = - t78 * ( P [ 12 ] [ 0 ] * t2 * t5 + P [ 12 ] [ 5 ] * t2 * t8 - P [ 12 ] [ 6 ] * t2 * t10 + P [ 12 ] [ 1 ] * t2 * t16 - P [ 12 ] [ 2 ] * t2 * t19 + P [ 12 ] [ 3 ] * t2 * t22 + P [ 12 ] [ 4 ] * t2 * t27 ) ;
} else {
// zero indexes 10 to 12 = 3*4 bytes
memset ( & Kfusion [ 10 ] , 0 , 12 ) ;
}
if ( ! inhibitDelVelBiasStates ) {
Kfusion [ 13 ] = - t78 * ( P [ 13 ] [ 0 ] * t2 * t5 + P [ 13 ] [ 5 ] * t2 * t8 - P [ 13 ] [ 6 ] * t2 * t10 + P [ 13 ] [ 1 ] * t2 * t16 - P [ 13 ] [ 2 ] * t2 * t19 + P [ 13 ] [ 3 ] * t2 * t22 + P [ 13 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 14 ] = - t78 * ( P [ 14 ] [ 0 ] * t2 * t5 + P [ 14 ] [ 5 ] * t2 * t8 - P [ 14 ] [ 6 ] * t2 * t10 + P [ 14 ] [ 1 ] * t2 * t16 - P [ 14 ] [ 2 ] * t2 * t19 + P [ 14 ] [ 3 ] * t2 * t22 + P [ 14 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 15 ] = - t78 * ( P [ 15 ] [ 0 ] * t2 * t5 + P [ 15 ] [ 5 ] * t2 * t8 - P [ 15 ] [ 6 ] * t2 * t10 + P [ 15 ] [ 1 ] * t2 * t16 - P [ 15 ] [ 2 ] * t2 * t19 + P [ 15 ] [ 3 ] * t2 * t22 + P [ 15 ] [ 4 ] * t2 * t27 ) ;
2016-07-14 02:08:43 -03:00
} else {
2017-05-09 19:31:55 -03:00
// zero indexes 13 to 15 = 3*4 bytes
memset ( & Kfusion [ 13 ] , 0 , 12 ) ;
2016-07-14 02:08:43 -03:00
}
2017-05-09 19:31:55 -03:00
2016-07-14 02:08:43 -03:00
if ( ! inhibitMagStates ) {
Kfusion [ 16 ] = - t78 * ( P [ 16 ] [ 0 ] * t2 * t5 + P [ 16 ] [ 5 ] * t2 * t8 - P [ 16 ] [ 6 ] * t2 * t10 + P [ 16 ] [ 1 ] * t2 * t16 - P [ 16 ] [ 2 ] * t2 * t19 + P [ 16 ] [ 3 ] * t2 * t22 + P [ 16 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 17 ] = - t78 * ( P [ 17 ] [ 0 ] * t2 * t5 + P [ 17 ] [ 5 ] * t2 * t8 - P [ 17 ] [ 6 ] * t2 * t10 + P [ 17 ] [ 1 ] * t2 * t16 - P [ 17 ] [ 2 ] * t2 * t19 + P [ 17 ] [ 3 ] * t2 * t22 + P [ 17 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 18 ] = - t78 * ( P [ 18 ] [ 0 ] * t2 * t5 + P [ 18 ] [ 5 ] * t2 * t8 - P [ 18 ] [ 6 ] * t2 * t10 + P [ 18 ] [ 1 ] * t2 * t16 - P [ 18 ] [ 2 ] * t2 * t19 + P [ 18 ] [ 3 ] * t2 * t22 + P [ 18 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 19 ] = - t78 * ( P [ 19 ] [ 0 ] * t2 * t5 + P [ 19 ] [ 5 ] * t2 * t8 - P [ 19 ] [ 6 ] * t2 * t10 + P [ 19 ] [ 1 ] * t2 * t16 - P [ 19 ] [ 2 ] * t2 * t19 + P [ 19 ] [ 3 ] * t2 * t22 + P [ 19 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 20 ] = - t78 * ( P [ 20 ] [ 0 ] * t2 * t5 + P [ 20 ] [ 5 ] * t2 * t8 - P [ 20 ] [ 6 ] * t2 * t10 + P [ 20 ] [ 1 ] * t2 * t16 - P [ 20 ] [ 2 ] * t2 * t19 + P [ 20 ] [ 3 ] * t2 * t22 + P [ 20 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 21 ] = - t78 * ( P [ 21 ] [ 0 ] * t2 * t5 + P [ 21 ] [ 5 ] * t2 * t8 - P [ 21 ] [ 6 ] * t2 * t10 + P [ 21 ] [ 1 ] * t2 * t16 - P [ 21 ] [ 2 ] * t2 * t19 + P [ 21 ] [ 3 ] * t2 * t22 + P [ 21 ] [ 4 ] * t2 * t27 ) ;
} else {
2017-05-09 19:31:55 -03:00
// zero indexes 16 to 21 = 6*4 bytes
memset ( & Kfusion [ 16 ] , 0 , 24 ) ;
}
if ( ! inhibitWindStates ) {
Kfusion [ 22 ] = - t78 * ( P [ 22 ] [ 0 ] * t2 * t5 + P [ 22 ] [ 5 ] * t2 * t8 - P [ 22 ] [ 6 ] * t2 * t10 + P [ 22 ] [ 1 ] * t2 * t16 - P [ 22 ] [ 2 ] * t2 * t19 + P [ 22 ] [ 3 ] * t2 * t22 + P [ 22 ] [ 4 ] * t2 * t27 ) ;
Kfusion [ 23 ] = - t78 * ( P [ 23 ] [ 0 ] * t2 * t5 + P [ 23 ] [ 5 ] * t2 * t8 - P [ 23 ] [ 6 ] * t2 * t10 + P [ 23 ] [ 1 ] * t2 * t16 - P [ 23 ] [ 2 ] * t2 * t19 + P [ 23 ] [ 3 ] * t2 * t22 + P [ 23 ] [ 4 ] * t2 * t27 ) ;
} else {
// zero indexes 22 to 23 = 2*4 bytes
memset ( & Kfusion [ 22 ] , 0 , 8 ) ;
2016-07-14 02:08:43 -03:00
}
}
// calculate the innovation consistency test ratio
flowTestRatio [ obsIndex ] = sq ( innovOptFlow [ obsIndex ] ) / ( sq ( MAX ( 0.01f * ( float ) frontend - > _flowInnovGate , 1.0f ) ) * varInnovOptFlow [ obsIndex ] ) ;
// Check the innovation for consistency and don't fuse if out of bounds or flow is too fast to be reliable
if ( ( flowTestRatio [ obsIndex ] ) < 1.0f & & ( ofDataDelayed . flowRadXY . x < frontend - > _maxFlowRate ) & & ( ofDataDelayed . flowRadXY . y < frontend - > _maxFlowRate ) ) {
// record the last time observations were accepted for fusion
prevFlowFuseTime_ms = imuSampleTime_ms ;
2017-03-16 02:59:19 -03:00
// notify first time only
if ( ! flowFusionActive ) {
flowFusionActive = true ;
GCS_MAVLINK : : send_statustext_all ( MAV_SEVERITY_INFO , " EKF3 IMU%u fusing optical flow " , ( unsigned ) imu_index ) ;
}
2016-07-14 02:08:43 -03:00
// correct the covariance P = (I - K*H)*P
// take advantage of the empty columns in KH to reduce the
// number of operations
for ( unsigned i = 0 ; i < = stateIndexLim ; i + + ) {
for ( unsigned j = 0 ; j < = 6 ; j + + ) {
KH [ i ] [ j ] = Kfusion [ i ] * H_LOS [ j ] ;
}
for ( unsigned j = 7 ; j < = stateIndexLim ; j + + ) {
KH [ i ] [ j ] = 0.0f ;
}
}
for ( unsigned j = 0 ; j < = stateIndexLim ; j + + ) {
for ( unsigned i = 0 ; i < = stateIndexLim ; i + + ) {
ftype res = 0 ;
res + = KH [ i ] [ 0 ] * P [ 0 ] [ j ] ;
res + = KH [ i ] [ 1 ] * P [ 1 ] [ j ] ;
res + = KH [ i ] [ 2 ] * P [ 2 ] [ j ] ;
res + = KH [ i ] [ 3 ] * P [ 3 ] [ j ] ;
res + = KH [ i ] [ 4 ] * P [ 4 ] [ j ] ;
res + = KH [ i ] [ 5 ] * P [ 5 ] [ j ] ;
res + = KH [ i ] [ 6 ] * P [ 6 ] [ j ] ;
KHP [ i ] [ j ] = res ;
}
}
// Check that we are not going to drive any variances negative and skip the update if so
bool healthyFusion = true ;
for ( uint8_t i = 0 ; i < = stateIndexLim ; i + + ) {
if ( KHP [ i ] [ i ] > P [ i ] [ i ] ) {
healthyFusion = false ;
}
}
if ( healthyFusion ) {
// update the covariance matrix
for ( uint8_t i = 0 ; i < = stateIndexLim ; i + + ) {
for ( uint8_t j = 0 ; j < = stateIndexLim ; j + + ) {
P [ i ] [ j ] = P [ i ] [ j ] - KHP [ i ] [ j ] ;
}
}
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning.
ForceSymmetry ( ) ;
ConstrainVariances ( ) ;
// correct the state vector
for ( uint8_t j = 0 ; j < = stateIndexLim ; j + + ) {
statesArray [ j ] = statesArray [ j ] - Kfusion [ j ] * innovOptFlow [ obsIndex ] ;
}
stateStruct . quat . normalize ( ) ;
} else {
// record bad axis
if ( obsIndex = = 0 ) {
faultStatus . bad_xflow = true ;
} else if ( obsIndex = = 1 ) {
faultStatus . bad_yflow = true ;
}
}
}
}
}
/********************************************************
* MISC FUNCTIONS *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# endif // HAL_CPU_CLASS