Ardupilot2/libraries/AP_Baro/AP_Baro_MS5611.cpp

298 lines
8.7 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* APM_MS5611.cpp - Arduino Library for MS5611-01BA01 absolute pressure sensor
* Code by Jose Julio, Pat Hickey and Jordi Muñoz. DIYDrones.com
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Sensor is conected to standard SPI port
* Chip Select pin: Analog2 (provisional until Jordi defines the pin)!!
*
* Variables:
* Temp : Calculated temperature (in Celsius degrees * 100)
* Press : Calculated pressure (in mbar units * 100)
*
*
* Methods:
* init() : Initialization and sensor reset
* read() : Read sensor data and _calculate Temperature, Pressure
* This function is optimized so the main host don´t need to wait
* You can call this function in your main loop
* Maximum data output frequency 100Hz - this allows maximum oversampling in the chip ADC
* It returns a 1 if there are new data.
* get_pressure() : return pressure in mbar*100 units
* get_temperature() : return temperature in celsius degrees*100 units
*
* Internal functions:
* _calculate() : Calculate Temperature and Pressure (temperature compensated) in real units
*
*
*/
#include <FastSerial.h>
#include <SPI.h>
#include "AP_Baro_MS5611.h"
/* on APM v.24 MS5661_CS is PG1 (Arduino pin 40) */
#define MS5611_CS 40
#define CMD_MS5611_RESET 0x1E
#define CMD_MS5611_PROM_Setup 0xA0
#define CMD_MS5611_PROM_C1 0xA2
#define CMD_MS5611_PROM_C2 0xA4
#define CMD_MS5611_PROM_C3 0xA6
#define CMD_MS5611_PROM_C4 0xA8
#define CMD_MS5611_PROM_C5 0xAA
#define CMD_MS5611_PROM_C6 0xAC
#define CMD_MS5611_PROM_CRC 0xAE
#define CMD_CONVERT_D1_OSR4096 0x48 // Maximum resolution (oversampling)
#define CMD_CONVERT_D2_OSR4096 0x58 // Maximum resolution (oversampling)
uint32_t volatile AP_Baro_MS5611::_s_D1;
uint32_t volatile AP_Baro_MS5611::_s_D2;
uint8_t volatile AP_Baro_MS5611::_d1_count;
uint8_t volatile AP_Baro_MS5611::_d2_count;
uint8_t AP_Baro_MS5611::_state;
uint32_t AP_Baro_MS5611::_timer;
bool AP_Baro_MS5611::_sync_access;
bool volatile AP_Baro_MS5611::_updated;
uint8_t AP_Baro_MS5611::_spi_read(uint8_t reg)
{
uint8_t return_value;
uint8_t addr = reg; // | 0x80; // Set most significant bit
digitalWrite(MS5611_CS, LOW);
SPI.transfer(addr); // discarded
return_value = SPI.transfer(0);
digitalWrite(MS5611_CS, HIGH);
return return_value;
}
uint16_t AP_Baro_MS5611::_spi_read_16bits(uint8_t reg)
{
uint8_t byteH, byteL;
uint16_t return_value;
uint8_t addr = reg; // | 0x80; // Set most significant bit
digitalWrite(MS5611_CS, LOW);
SPI.transfer(addr); // discarded
byteH = SPI.transfer(0);
byteL = SPI.transfer(0);
digitalWrite(MS5611_CS, HIGH);
return_value = ((uint16_t)byteH<<8) | (byteL);
return return_value;
}
uint32_t AP_Baro_MS5611::_spi_read_adc()
{
uint8_t byteH,byteM,byteL;
uint32_t return_value;
uint8_t addr = 0x00;
digitalWrite(MS5611_CS, LOW);
SPI.transfer(addr); // discarded
byteH = SPI.transfer(0);
byteM = SPI.transfer(0);
byteL = SPI.transfer(0);
digitalWrite(MS5611_CS, HIGH);
return_value = (((uint32_t)byteH)<<16) | (((uint32_t)byteM)<<8) | (byteL);
return return_value;
}
void AP_Baro_MS5611::_spi_write(uint8_t reg)
{
digitalWrite(MS5611_CS, LOW);
SPI.transfer(reg); // discarded
digitalWrite(MS5611_CS, HIGH);
}
// Public Methods //////////////////////////////////////////////////////////////
// SPI should be initialized externally
bool AP_Baro_MS5611::init( AP_PeriodicProcess *scheduler )
{
2012-04-30 03:11:55 -03:00
scheduler->suspend_timer();
pinMode(MS5611_CS, OUTPUT); // Chip select Pin
digitalWrite(MS5611_CS, HIGH);
delay(1);
2012-02-14 12:55:32 -04:00
_spi_write(CMD_MS5611_RESET);
delay(4);
// We read the factory calibration
// The on-chip CRC is not used
C1 = _spi_read_16bits(CMD_MS5611_PROM_C1);
C2 = _spi_read_16bits(CMD_MS5611_PROM_C2);
C3 = _spi_read_16bits(CMD_MS5611_PROM_C3);
C4 = _spi_read_16bits(CMD_MS5611_PROM_C4);
C5 = _spi_read_16bits(CMD_MS5611_PROM_C5);
C6 = _spi_read_16bits(CMD_MS5611_PROM_C6);
//Send a command to read Temp first
_spi_write(CMD_CONVERT_D2_OSR4096);
_timer = micros();
_state = 0;
Temp=0;
Press=0;
2012-02-14 12:55:32 -04:00
_s_D1 = 0;
_s_D2 = 0;
_d1_count = 0;
_d2_count = 0;
2012-04-30 03:11:55 -03:00
scheduler->resume_timer();
scheduler->register_process( AP_Baro_MS5611::_update );
// wait for at least one value to be read
while (!_updated) ;
healthy = true;
return true;
}
// Read the sensor. This is a state machine
// We read one time Temperature (state=1) and then 4 times Pressure (states 2-5)
// temperature does not change so quickly...
void AP_Baro_MS5611::_update(uint32_t tnow)
{
if (_sync_access) return;
// Throttle read rate to 100hz maximum.
// note we use 9500us here not 10000us
// the read rate will end up at exactly 100hz because the Periodic Timer fires at 1khz
if (tnow - _timer < 9500) {
return;
}
_timer = tnow;
2012-02-14 12:55:32 -04:00
if (_state == 0) {
_s_D2 += _spi_read_adc(); // On state 0 we read temp
_d2_count++;
if (_d2_count == 32) {
// we have summed 32 values. This only happens
// when we stop reading the barometer for a long time
// (more than 1.2 seconds)
_s_D2 >>= 1;
_d2_count = 16;
}
_state++;
_spi_write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
} else {
_s_D1 += _spi_read_adc();
_d1_count++;
if (_d1_count == 128) {
// we have summed 128 values. This only happens
// when we stop reading the barometer for a long time
// (more than 1.2 seconds)
_s_D1 >>= 1;
_d1_count = 64;
}
_state++;
_updated = true; // New pressure reading
if (_state == 5) {
_spi_write(CMD_CONVERT_D2_OSR4096); // Command to read temperature
_state = 0;
} else {
_spi_write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
}
}
}
uint8_t AP_Baro_MS5611::read()
{
_sync_access = true;
bool updated = _updated;
if (updated) {
uint32_t sD1, sD2;
uint8_t d1count, d2count;
// we need to disable interrupts to access
// _s_D1 and _s_D2 as they are not atomic
cli();
sD1 = _s_D1; _s_D1 = 0;
sD2 = _s_D2; _s_D2 = 0;
d1count = _d1_count; _d1_count = 0;
d2count = _d2_count; _d2_count = 0;
_updated = false;
sei();
if (d1count != 0) {
D1 = ((float)sD1) / d1count;
}
if (d2count != 0) {
D2 = ((float)sD2) / d2count;
}
_pressure_samples = d1count;
_raw_press = D1;
_raw_temp = D2;
}
_sync_access = false;
_calculate();
if (updated) {
_last_update = millis();
}
return updated ? 1 : 0;
}
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
void AP_Baro_MS5611::_calculate()
{
float dT;
float TEMP;
float OFF;
float SENS;
float P;
// Formulas from manufacturer datasheet
// sub -20c temperature compensation is not included
// we do the calculations using floating point
// as this is much faster on an AVR2560, and also allows
// us to take advantage of the averaging of D1 and D1 over
// multiple samples, giving us more precision
dT = D2-(((uint32_t)C5)<<8);
TEMP = (dT * C6)/8388608;
OFF = C2 * 65536.0 + (C4 * dT) / 128;
SENS = C1 * 32768.0 + (C3 * dT) / 256;
if (TEMP < 0) {
// second order temperature compensation when under 20 degrees C
float T2 = (dT*dT) / 0x80000000;
float Aux = TEMP*TEMP;
float OFF2 = 2.5*Aux;
float SENS2 = 1.25*Aux;
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
P = (D1*SENS/2097152 - OFF)/32768;
Temp = TEMP + 2000;
Press = P;
}
float AP_Baro_MS5611::get_pressure()
{
return Press;
}
float AP_Baro_MS5611::get_temperature()
{
// callers want the temperature in 0.1C units
return Temp/10;
}
int32_t AP_Baro_MS5611::get_raw_pressure() {
return _raw_press;
}
int32_t AP_Baro_MS5611::get_raw_temp() {
return _raw_temp;
}