Ardupilot2/libraries/AP_InertialSensor/AP_InertialSensor_ADIS1647x.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

623 lines
18 KiB
C++
Raw Normal View History

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <utility>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_HAL/utility/sparse-endian.h>
#include "AP_InertialSensor_ADIS1647x.h"
/*
device registers
*/
#define REG_PROD_ID 0x72
#define PROD_ID_16470 0x4056
#define PROD_ID_16477 0x405d
#define PROD_ID_16507 0x407b
#define REG_GLOB_CMD 0x68
#define GLOB_CMD_SW_RESET 0x80
#define REG_RANG_MDL 0x5E // 16477 only
#define REG_DATA_CNTR 0x22
#define REG_MSC_CTRL 0x60
# define REG_MSC_CTRL_BURST32 0x200
# define REG_MSC_CTRL_BURSTSEL 0x100
# define REG_MSC_CTRL_GCOMP 0x080
# define REG_MSC_CTRL_PCOMP 0x040
# define REG_MSC_CTRL_SENSBW 0x010
# define REG_MSC_CTRL_DRPOL 0x001
#define REG_DEC_RATE 0x64
# define REG_DEC_RATE_2000Hz 0
# define REG_DEC_RATE_1000Hz 1
# define REG_DEC_RATE_666Hz 2
# define REG_DEC_RATE_500Hz 3
# define REG_DEC_RATE_400Hz 4
#define REG_FILT_CTRL 0x5c
/*
timings
*/
#define T_STALL_US 20U
#define T_RESET_MS 500U
#define TIMING_DEBUG 0
#if TIMING_DEBUG
#define DEBUG_SET_PIN(n,v) hal.gpio->write(52+n, v)
#define DEBUG_TOGGLE_PIN(n) hal.gpio->toggle(52+n)
#else
#define DEBUG_SET_PIN(n,v)
#define DEBUG_TOGGLE_PIN(n)
#endif
extern const AP_HAL::HAL& hal;
AP_InertialSensor_ADIS1647x::AP_InertialSensor_ADIS1647x(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> _dev,
enum Rotation _rotation,
uint8_t drdy_gpio)
: AP_InertialSensor_Backend(imu)
, dev(std::move(_dev))
, rotation(_rotation)
, drdy_pin(drdy_gpio)
{
}
AP_InertialSensor_Backend *
AP_InertialSensor_ADIS1647x::probe(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> dev,
enum Rotation rotation,
uint8_t drdy_gpio)
{
if (!dev) {
return nullptr;
}
auto sensor = new AP_InertialSensor_ADIS1647x(imu, std::move(dev), rotation, drdy_gpio);
if (!sensor) {
return nullptr;
}
if (!sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
void AP_InertialSensor_ADIS1647x::start()
{
if (!_imu.register_accel(accel_instance, expected_sample_rate_hz, dev->get_bus_id_devtype(DEVTYPE_INS_ADIS1647X)) ||
!_imu.register_gyro(gyro_instance, expected_sample_rate_hz, dev->get_bus_id_devtype(DEVTYPE_INS_ADIS1647X))) {
return;
}
// setup sensor rotations from probe()
set_gyro_orientation(gyro_instance, rotation);
set_accel_orientation(accel_instance, rotation);
/*
as the sensor does not have a FIFO we need to jump through some
hoops to ensure we don't lose any samples. This creates a thread
to do the capture, running at very high priority
*/
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_ADIS1647x::loop, void),
"ADIS1647x",
1024, AP_HAL::Scheduler::PRIORITY_BOOST, 1)) {
AP_HAL::panic("Failed to create ADIS1647x thread");
}
}
/*
check product ID
*/
bool AP_InertialSensor_ADIS1647x::check_product_id(uint16_t &prod_id)
{
prod_id = read_reg16(REG_PROD_ID);
switch (prod_id) {
case PROD_ID_16470:
// can do up to 40G
opmode = OpMode::Basic;
accel_scale = 1.25 * GRAVITY_MSS * 0.001;
_clip_limit = 39.5f * GRAVITY_MSS;
gyro_scale = radians(0.1);
expected_sample_rate_hz = 2000;
return true;
case PROD_ID_16477: {
// can do up to 40G
opmode = OpMode::Basic;
accel_scale = 1.25 * GRAVITY_MSS * 0.001;
_clip_limit = 39.5f * GRAVITY_MSS;
expected_sample_rate_hz = 2000;
// RANG_MDL register used for gyro range
uint16_t rang_mdl = read_reg16(REG_RANG_MDL);
switch ((rang_mdl >> 2) & 3) {
case 0:
gyro_scale = radians(1.0/160);
break;
case 1:
gyro_scale = radians(1.0/40);
break;
case 3:
gyro_scale = radians(1.0/10);
break;
default:
return false;
}
return true;
}
case PROD_ID_16507: {
opmode = OpMode::Delta32;
expected_sample_rate_hz = 1200;
accel_scale = 392.0 / 2097152000.0;
dvel_scale = 400.0 / 0x7FFFFFFF;
_clip_limit = 39.5f * GRAVITY_MSS;
// RANG_MDL register used for gyro range
uint16_t rang_mdl = read_reg16(REG_RANG_MDL);
switch ((rang_mdl >> 2) & 3) {
case 0:
gyro_scale = radians(125) / 0x4E200000;
dangle_scale = radians(360.0 / 0x7FFFFFFF);
break;
case 1:
gyro_scale = radians(500) / 0x4E200000;
dangle_scale = radians(720.0 / 0x7FFFFFFF);
break;
case 3:
gyro_scale = radians(2000) / 0x4E200000;
dangle_scale = radians(2160.0 / 0x7FFFFFFF);
break;
default:
return false;
}
if (opmode == OpMode::Basic) {
accel_scale *= 0x10000;
gyro_scale *= 0x10000;
}
return true;
}
}
return false;
}
bool AP_InertialSensor_ADIS1647x::init()
{
WITH_SEMAPHORE(dev->get_semaphore());
uint8_t tries = 10;
uint16_t prod_id = 0;
do {
// perform software reset
write_reg16(REG_GLOB_CMD, GLOB_CMD_SW_RESET);
hal.scheduler->delay(100);
} while (!check_product_id(prod_id) && --tries);
if (tries == 0) {
return false;
}
// bring rate down
if (expected_sample_rate_hz < 450) {
if (!write_reg16(REG_DEC_RATE, REG_DEC_RATE_400Hz, true)) {
return false;
}
} else if (expected_sample_rate_hz < 600) {
if (!write_reg16(REG_DEC_RATE, REG_DEC_RATE_500Hz, true)) {
return false;
}
} else if (expected_sample_rate_hz < 700) {
if (!write_reg16(REG_DEC_RATE, REG_DEC_RATE_666Hz, true)) {
return false;
}
} else if (expected_sample_rate_hz < 1500) {
if (!write_reg16(REG_DEC_RATE, REG_DEC_RATE_1000Hz, true)) {
return false;
}
}
if (!write_reg16(REG_FILT_CTRL, 0, true)) {
return false;
}
// choose burst type and compensation
uint16_t msc_ctrl = REG_MSC_CTRL_GCOMP | REG_MSC_CTRL_PCOMP | REG_MSC_CTRL_DRPOL;
if (opmode == OpMode::Delta32) {
msc_ctrl |= REG_MSC_CTRL_BURST32 | REG_MSC_CTRL_BURSTSEL;
} else if (opmode == OpMode::AG32) {
msc_ctrl |= REG_MSC_CTRL_BURST32;
}
if (!write_reg16(REG_MSC_CTRL, msc_ctrl, true)) {
return true;
}
#if TIMING_DEBUG
// useful for debugging scheduling of transfers
hal.gpio->pinMode(52, HAL_GPIO_OUTPUT);
hal.gpio->pinMode(53, HAL_GPIO_OUTPUT);
hal.gpio->pinMode(54, HAL_GPIO_OUTPUT);
hal.gpio->pinMode(55, HAL_GPIO_OUTPUT);
#endif
// we need to use low speed for burst transfers
dev->set_speed(AP_HAL::Device::SPEED_LOW);
return true;
}
/*
read a 16 bit register value
*/
uint16_t AP_InertialSensor_ADIS1647x::read_reg16(uint8_t regnum) const
{
uint8_t req[2] = {regnum, 0};
uint8_t reply[2] {};
dev->transfer(req, sizeof(req), nullptr, 0);
hal.scheduler->delay_microseconds(T_STALL_US);
dev->transfer(nullptr, 0, reply, sizeof(reply));
uint16_t ret = (reply[0]<<8U) | reply[1];
return ret;
}
/*
write a 16 bit register value
*/
bool AP_InertialSensor_ADIS1647x::write_reg16(uint8_t regnum, uint16_t value, bool confirm) const
{
const uint8_t retries = 16;
for (uint8_t i=0; i<retries; i++) {
uint8_t req[2];
req[0] = (regnum | 0x80);
req[1] = value & 0xFF;
dev->transfer(req, sizeof(req), nullptr, 0);
hal.scheduler->delay_microseconds(T_STALL_US);
req[0] = ((regnum+1) | 0x80);
req[1] = (value>>8) & 0xFF;
dev->transfer(req, sizeof(req), nullptr, 0);
hal.scheduler->delay_microseconds(T_STALL_US);
if (!confirm || read_reg16(regnum) == value) {
return true;
}
}
return false;
}
/*
read the sensor using 16 bit burst transfer of gyro/accel data
*/
void AP_InertialSensor_ADIS1647x::read_sensor16(void)
{
struct adis_data {
uint8_t cmd[2];
uint16_t diag_stat;
int16_t gx;
int16_t gy;
int16_t gz;
int16_t ax;
int16_t ay;
int16_t az;
int16_t temp;
uint16_t counter;
uint8_t pad;
uint8_t checksum;
} data {};
do {
WITH_SEMAPHORE(dev->get_semaphore());
data.cmd[0] = REG_GLOB_CMD;
DEBUG_SET_PIN(2, 1);
if (!dev->transfer((const uint8_t *)&data, sizeof(data), (uint8_t *)&data, sizeof(data))) {
break;
}
DEBUG_SET_PIN(2, 0);
} while (be16toh(data.counter) == last_counter);
DEBUG_SET_PIN(1, 1);
/*
check the 8 bit checksum of the packet
*/
uint8_t sum = 0;
const uint8_t *b = (const uint8_t *)&data.diag_stat;
for (uint8_t i=0; i<offsetof(adis_data, pad) - offsetof(adis_data, diag_stat); i++) {
sum += b[i];
}
if (sum != data.checksum) {
DEBUG_TOGGLE_PIN(3);
DEBUG_TOGGLE_PIN(3);
DEBUG_TOGGLE_PIN(3);
DEBUG_TOGGLE_PIN(3);
// corrupt data
return;
}
/*
check if we have lost a sample
*/
uint16_t counter = be16toh(data.counter);
if (done_first_read && uint16_t(last_counter+1) != counter) {
DEBUG_TOGGLE_PIN(3);
}
done_first_read = true;
last_counter = counter;
Vector3f accel{float(int16_t(be16toh(data.ax))), float(int16_t(be16toh(data.ay))), float(int16_t(be16toh(data.az)))};
Vector3f gyro{float(int16_t(be16toh(data.gx))), float(int16_t(be16toh(data.gy))), float(int16_t(be16toh(data.gz)))};
accel *= accel_scale;
gyro *= gyro_scale;
_rotate_and_correct_accel(accel_instance, accel);
_notify_new_accel_raw_sample(accel_instance, accel);
_rotate_and_correct_gyro(gyro_instance, gyro);
_notify_new_gyro_raw_sample(gyro_instance, gyro);
/*
publish average temperature at 20Hz
*/
temp_sum += float(int16_t(be16toh(data.temp))*0.1);
temp_count++;
if (temp_count == 100) {
_publish_temperature(accel_instance, temp_sum/temp_count);
temp_sum = 0;
temp_count = 0;
}
DEBUG_SET_PIN(1, 0);
}
/*
read the sensor using 32 bit burst transfer of accel/gyro
*/
void AP_InertialSensor_ADIS1647x::read_sensor32(void)
{
struct adis_data {
uint8_t cmd[2];
uint16_t diag_stat;
uint16_t gx_low;
uint16_t gx_high;
uint16_t gy_low;
uint16_t gy_high;
uint16_t gz_low;
uint16_t gz_high;
uint16_t ax_low;
uint16_t ax_high;
uint16_t ay_low;
uint16_t ay_high;
uint16_t az_low;
uint16_t az_high;
uint16_t temp;
uint16_t counter;
uint8_t pad;
uint8_t checksum;
} data {};
do {
WITH_SEMAPHORE(dev->get_semaphore());
data.cmd[0] = REG_GLOB_CMD;
DEBUG_SET_PIN(2, 1);
if (!dev->transfer((const uint8_t *)&data, sizeof(data), (uint8_t *)&data, sizeof(data))) {
break;
}
DEBUG_SET_PIN(2, 0);
} while (be16toh(data.counter) == last_counter);
DEBUG_SET_PIN(1, 1);
/*
check the 8 bit checksum of the packet
*/
uint8_t sum = 0;
const uint8_t *b = (const uint8_t *)&data.diag_stat;
for (uint8_t i=0; i<offsetof(adis_data, pad) - offsetof(adis_data, diag_stat); i++) {
sum += b[i];
}
if (sum != data.checksum) {
DEBUG_TOGGLE_PIN(3);
DEBUG_TOGGLE_PIN(3);
DEBUG_TOGGLE_PIN(3);
DEBUG_TOGGLE_PIN(3);
// corrupt data
return;
}
/*
check if we have lost a sample
*/
uint16_t counter = be16toh(data.counter);
if (done_first_read && uint16_t(last_counter+1) != counter) {
DEBUG_TOGGLE_PIN(3);
}
done_first_read = true;
last_counter = counter;
Vector3f accel{float(accel_scale*int32_t(be16toh(data.ax_low) | (be16toh(data.ax_high)<<16))),
-float(accel_scale*int32_t(be16toh(data.ay_low) | (be16toh(data.ay_high)<<16))),
-float(accel_scale*int32_t(be16toh(data.az_low) | (be16toh(data.az_high)<<16)))};
Vector3f gyro{float(gyro_scale*int32_t(be16toh(data.gx_low) | (be16toh(data.gx_high)<<16))),
-float(gyro_scale*int32_t(be16toh(data.gy_low) | (be16toh(data.gy_high)<<16))),
-float(gyro_scale*int32_t(be16toh(data.gz_low) | (be16toh(data.gz_high)<<16)))};
_rotate_and_correct_accel(accel_instance, accel);
_notify_new_accel_raw_sample(accel_instance, accel);
_rotate_and_correct_gyro(gyro_instance, gyro);
_notify_new_gyro_raw_sample(gyro_instance, gyro);
/*
publish average temperature at 20Hz
*/
temp_sum += float(int16_t(be16toh(data.temp))*0.1);
temp_count++;
if (temp_count == 100) {
_publish_temperature(accel_instance, temp_sum/temp_count);
temp_sum = 0;
temp_count = 0;
}
DEBUG_SET_PIN(1, 0);
}
/*
read the sensor using 32 bit burst transfer of delta-angle/delta-velocity
*/
void AP_InertialSensor_ADIS1647x::read_sensor32_delta(void)
{
struct adis_data {
uint8_t cmd[2];
uint16_t diag_stat;
uint16_t dax_low;
uint16_t dax_high;
uint16_t day_low;
uint16_t day_high;
uint16_t daz_low;
uint16_t daz_high;
uint16_t dvx_low;
uint16_t dvx_high;
uint16_t dvy_low;
uint16_t dvy_high;
uint16_t dvz_low;
uint16_t dvz_high;
uint16_t temp;
uint16_t counter;
uint8_t pad;
uint8_t checksum;
} data {};
do {
WITH_SEMAPHORE(dev->get_semaphore());
data.cmd[0] = REG_GLOB_CMD;
DEBUG_SET_PIN(2, 1);
if (!dev->transfer((const uint8_t *)&data, sizeof(data), (uint8_t *)&data, sizeof(data))) {
break;
}
DEBUG_SET_PIN(2, 0);
} while (be16toh(data.counter) == last_counter);
DEBUG_SET_PIN(1, 1);
/*
check the 8 bit checksum of the packet
*/
uint8_t sum = 0;
const uint8_t *b = (const uint8_t *)&data.diag_stat;
for (uint8_t i=0; i<offsetof(adis_data, pad) - offsetof(adis_data, diag_stat); i++) {
sum += b[i];
}
if (sum != data.checksum) {
DEBUG_TOGGLE_PIN(3);
DEBUG_TOGGLE_PIN(3);
DEBUG_TOGGLE_PIN(3);
DEBUG_TOGGLE_PIN(3);
// corrupt data
return;
}
/*
check if we have lost a sample
*/
uint16_t counter = be16toh(data.counter);
if (done_first_read && uint16_t(last_counter+1) != counter) {
DEBUG_TOGGLE_PIN(3);
}
done_first_read = true;
last_counter = counter;
Vector3f dvel{float(dvel_scale*int32_t(be16toh(data.dvx_low) | (be16toh(data.dvx_high)<<16))),
-float(dvel_scale*int32_t(be16toh(data.dvy_low) | (be16toh(data.dvy_high)<<16))),
-float(dvel_scale*int32_t(be16toh(data.dvz_low) | (be16toh(data.dvz_high)<<16)))};
Vector3f dangle{float(dangle_scale*int32_t(be16toh(data.dax_low) | (be16toh(data.dax_high)<<16))),
-float(dangle_scale*int32_t(be16toh(data.day_low) | (be16toh(data.day_high)<<16))),
-float(dangle_scale*int32_t(be16toh(data.daz_low) | (be16toh(data.daz_high)<<16)))};
// compensate for clock errors, see "DELTA ANGLES" in datasheet
dangle *= expected_sample_rate_hz / _gyro_raw_sample_rate(gyro_instance);
dvel *= expected_sample_rate_hz / _accel_raw_sample_rate(gyro_instance);
_notify_new_delta_velocity(accel_instance, dvel);
_notify_new_delta_angle(gyro_instance, dangle);
/*
publish average temperature at 20Hz
*/
temp_sum += float(int16_t(be16toh(data.temp))*0.1);
temp_count++;
if (temp_count == 100) {
_publish_temperature(accel_instance, temp_sum/temp_count);
temp_sum = 0;
temp_count = 0;
}
DEBUG_SET_PIN(1, 0);
}
/*
sensor read loop
*/
void AP_InertialSensor_ADIS1647x::loop(void)
{
while (true) {
uint32_t tstart = AP_HAL::micros();
// we deliberately set the period a bit fast to ensure we
// don't lose a sample
const uint32_t period_us = (1000000UL / expected_sample_rate_hz) - 20U;
bool wait_ok = false;
if (drdy_pin != 0) {
// when we have a DRDY pin then wait for it to go high
DEBUG_SET_PIN(0, 1);
wait_ok = hal.gpio->wait_pin(drdy_pin, AP_HAL::GPIO::INTERRUPT_RISING, 2100);
DEBUG_SET_PIN(0, 0);
}
if (opmode == OpMode::Delta32) {
read_sensor32_delta();
} else if (opmode == OpMode::AG32) {
read_sensor32();
} else {
read_sensor16();
}
uint32_t dt = AP_HAL::micros() - tstart;
if (dt < period_us) {
uint32_t wait_us = period_us - dt;
if (!wait_ok || wait_us > period_us/2) {
DEBUG_SET_PIN(3, 1);
hal.scheduler->delay_microseconds(wait_us);
DEBUG_SET_PIN(3, 0);
}
}
}
}
bool AP_InertialSensor_ADIS1647x::update()
{
update_accel(accel_instance);
update_gyro(gyro_instance);
return true;
}