Merge branch 'ros2' of https://git.spirirobotics.com/Spiri/spiri-sdk into ros2
This commit is contained in:
commit
bdd55885ad
|
@ -0,0 +1,19 @@
|
|||
DRONE_SYS_ID=1
|
||||
INSTANCE=0
|
||||
SERIAL0_PORT=5760
|
||||
SITL_PORT=5501
|
||||
MAVROS2_PORT=14560
|
||||
MAVROS1_PORT=14561
|
||||
FDM_PORT_IN=9002
|
||||
GSTREAMER_UDP_PORT=5600
|
||||
ROS_MASTER_URI="http://0.0.0.0:11311"
|
||||
|
||||
|
||||
ARDUPILOT_VEHICLE="-v copter -f gazebo-mu --model=JSON -L CitadelHill"
|
||||
WORLD_FILE_NAME="citadel_hill_world.sdf"
|
||||
WORLD_NAME="citadel_hill"
|
||||
DRONE_MODEL="spiri_mu"
|
||||
|
||||
|
||||
SIM_DRONE_COUNT=1
|
||||
GCS_PORT=14550
|
355
README.md
355
README.md
|
@ -1,108 +1,12 @@
|
|||
# Spiri SDK
|
||||
# Spiri SDK - Simulated robot
|
||||
|
||||
|
||||
## Overview
|
||||
The Spiri SDK consists of a number of components. What you're looking at right now
|
||||
is the drone simulation component, which is the core of the SDK.
|
||||
|
||||
Spiri Robots run a number of docker containers to achieve their core functionality,
|
||||
we try to keep these essential docker containers in one docker compose file. The
|
||||
docker compose file you'll find in this repository starts an ardupilot-based UAV simulation
|
||||
as well as a ROS master, and mavproxy to tie it together, mirroring the core deployment of
|
||||
a spiri robot.
|
||||
|
||||
|
||||
## Prerequisites
|
||||
|
||||
This SDK was tested using Ubuntu 22.04 and an Nvidia GPU.
|
||||
|
||||
UI features like 3D worlds (gazebo simulation) were tested with Nvidia GPUs using CDI passthrough.
|
||||
Machine-learning features like image recognition are expected to only work with NVIDIA GPUs.
|
||||
|
||||
We use VSCode as the default IDE, and we use Copier to manage project templates.
|
||||
|
||||
### Ensure nvidia drivers are working
|
||||
|
||||
Ensuring nvidia drivers are installed is outside of the scope of
|
||||
this document, but you can confirm they working are using the `nvidia-smi` command.
|
||||
If the command is present and shows output relevent to your GPU, the drivers are installed.
|
||||
|
||||
You can find the official ubuntu documentation for install nvidia drivers [here](https://ubuntu.com/server/docs/nvidia-drivers-installation).
|
||||
|
||||
You can use the following command to let ubuntu try to install the appropriete drivers automatically:
|
||||
|
||||
```bash
|
||||
sudo ubuntu-drivers install --gpgpu
|
||||
```
|
||||
|
||||
### Installing Docker
|
||||
|
||||
As per the [official Docker documentation](https://docs.docker.com/engine/install/).
|
||||
|
||||
```bash
|
||||
#Uninstall any older docker packages
|
||||
for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done
|
||||
|
||||
# Add Docker's official GPG key:
|
||||
sudo apt-get update
|
||||
sudo apt-get install ca-certificates curl
|
||||
sudo install -m 0755 -d /etc/apt/keyrings
|
||||
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
|
||||
sudo chmod a+r /etc/apt/keyrings/docker.asc
|
||||
|
||||
# Add the repository to Apt sources:
|
||||
echo \
|
||||
"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \
|
||||
$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
|
||||
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
|
||||
sudo apt-get update
|
||||
|
||||
#Install latest docker
|
||||
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
|
||||
|
||||
#Allow current user to use docker without sudo
|
||||
sudo groupadd docker
|
||||
sudo usermod -aG docker $USER
|
||||
#Reload the group
|
||||
newgrp docker
|
||||
```
|
||||
|
||||
### Installing Copier
|
||||
|
||||
As per the [official Copier documentation](https://copier.readthedocs.io/en/stable/#installation)
|
||||
|
||||
```bash
|
||||
python3 -m pip install --user pipx
|
||||
python3 -m pipx ensurepath
|
||||
pipx install copier
|
||||
```
|
||||
|
||||
### Installing VSCode
|
||||
|
||||
As per the [official VSCode documentation](https://code.visualstudio.com/docs/setup/linux)
|
||||
|
||||
```bash
|
||||
sudo apt-get install wget gpg
|
||||
wget https://code.visualstudio.com/sha/download?build=stable&os=linux-deb-x64 -O /tmp/vscode.deb
|
||||
sudo dpkg -i /tmp/vscode.deb
|
||||
```
|
||||
|
||||
### Installing nvidia-container-toolkit
|
||||
|
||||
|
||||
As per the [offical nvidia-container-toolkit guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html).
|
||||
|
||||
```bash
|
||||
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
|
||||
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
|
||||
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
|
||||
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y nvidia-container-toolkit
|
||||
sudo nvidia-ctk runtime configure --runtime=docker
|
||||
sudo nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml
|
||||
nvidia-ctk cdi list
|
||||
```
|
||||
|
||||
## Quickstart
|
||||
as well as a ROS master, and mavproxy to tie it together.
|
||||
|
||||
To get started you can simply clone this repository and run `docker compose --profile uav-sim up`.
|
||||
|
||||
|
@ -111,7 +15,7 @@ MavLink compatible software. We expose the UAVs Mavlink conenction on tcp port 5
|
|||
|
||||
There is experimental GUI support you can enable by running `docker compose --profile uav-sim --profile ui up`.
|
||||
|
||||
### Creating a new project
|
||||
## Creating a new project
|
||||
|
||||
We provide project templates you can use for development that integrate seamlessly into
|
||||
our simulated robots.
|
||||
|
@ -121,16 +25,261 @@ These templates are intended to be used with VSCode.
|
|||
To get started with our project templates install the [copier](https://copier.readthedocs.io/en/stable/) project
|
||||
templating utility.
|
||||
|
||||
* [template-service-ros1-catkin](https://git.spirirobotics.com/Spiri/template-service-ros1-catkin)
|
||||
- [template-service-ros1-catkin](https://git.spirirobotics.com/Spiri/template-service-ros1-catkin)
|
||||
|
||||
This template uses the last stable release of ROS1 (ros noetic) and supports python and c++ programming
|
||||
languages.
|
||||
|
||||
ROS1 is considered end of life. It's recomended to use a ROS2 template instead
|
||||
|
||||
* ROS2 template
|
||||
- ROS2 template
|
||||
|
||||
We're working on it...
|
||||
|
||||
## NVIDIA Container Toolkit
|
||||
|
||||
[Source](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
|
||||
### Installing with Apt
|
||||
|
||||
```bash
|
||||
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
|
||||
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
|
||||
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
|
||||
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
||||
```
|
||||
|
||||
```bash
|
||||
sudo apt-get update
|
||||
```
|
||||
|
||||
```bash
|
||||
sudo apt-get install -y nvidia-container-toolkit
|
||||
```
|
||||
|
||||
#### Configuration
|
||||
|
||||
##### Prerequisites
|
||||
|
||||
- You installed a supported container engine (Docker, Containerd, CRI-O, Podman).
|
||||
- You installed the NVIDIA Container Toolkit.
|
||||
|
||||
```bash
|
||||
sudo nvidia-ctk runtime configure --runtime=docker --cdi.enabled
|
||||
```
|
||||
|
||||
```bash
|
||||
sudo systemctl restart docker
|
||||
```
|
||||
|
||||
##### Rootless Mode
|
||||
|
||||
To configure the container runtime for Docker running in [Rootless mode](https://docs.docker.com/engine/security/rootless/), follow these steps:
|
||||
|
||||
1. Configure the container runtime by using the nvidia-ctk command:
|
||||
|
||||
```bash
|
||||
nvidia-ctk runtime configure --runtime=docker --config=$HOME/.config/docker/daemon.json
|
||||
```
|
||||
|
||||
2. Restart the Rootless Docker daemon
|
||||
|
||||
```bash
|
||||
systemctl --user restart docker
|
||||
```
|
||||
|
||||
3. Configure /etc/nvidia-container-runtime/config.toml by using the sudo nvidia-ctk command:
|
||||
|
||||
```bash
|
||||
sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place
|
||||
```
|
||||
|
||||
### Sample Workload
|
||||
|
||||
After you install and configure the toolkit and install an NVIDIA GPU Driver, you can verify your installation by running a sample workload.
|
||||
|
||||
```bash
|
||||
sudo docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
|
||||
```
|
||||
|
||||
Expected output:
|
||||
|
||||
```console
|
||||
+-----------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 535.86.10 Driver Version: 535.86.10 CUDA Version: 12.2 |
|
||||
|-------------------------------+----------------------+----------------------+
|
||||
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
|
||||
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|
||||
| | | MIG M. |
|
||||
|===============================+======================+======================|
|
||||
| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
|
||||
| N/A 34C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
|
||||
| | | N/A |
|
||||
+-------------------------------+----------------------+----------------------+
|
||||
|
||||
+-----------------------------------------------------------------------------+
|
||||
| Processes: |
|
||||
| GPU GI CI PID Type Process name GPU Memory |
|
||||
| ID ID Usage |
|
||||
|=============================================================================|
|
||||
| No running processes found |
|
||||
+-----------------------------------------------------------------------------+
|
||||
```
|
||||
|
||||
## Support for Container Device Interface(CDI)
|
||||
|
||||
[Source](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html)
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- You installed either the NVIDIA Container Toolkit or you installed the `nvidia-container-toolkit-base` package.
|
||||
The base package includes the container runtime and the `nvidia-ctk` command-line interface, but avoids installing the container runtime hook and transitive dependencies.
|
||||
The hook and dependencies are not needed on machines that use CDI exclusively
|
||||
- You installed an NVIDIA GPU Driver.
|
||||
|
||||
Two common locations for CDI specifications are `/etc/cdi/` and `/var/run/cdi/`. The contents of the `/var/run/cdi/` directory are cleared on boot.
|
||||
|
||||
1. Generate the CDI specification file:
|
||||
|
||||
```bash
|
||||
sudo nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml
|
||||
```
|
||||
|
||||
Example output
|
||||
|
||||
```console
|
||||
INFO[0000] Auto-detected mode as "nvml"
|
||||
INFO[0000] Selecting /dev/nvidia0 as /dev/nvidia0
|
||||
INFO[0000] Selecting /dev/dri/card1 as /dev/dri/card1
|
||||
INFO[0000] Selecting /dev/dri/renderD128 as /dev/dri/renderD128
|
||||
INFO[0000] Using driver version xxx.xxx.xx
|
||||
...
|
||||
```
|
||||
|
||||
2. (Optional) Check the names of the generated devices:
|
||||
|
||||
```bash
|
||||
nvidia-ctk cdi list
|
||||
```
|
||||
|
||||
Output
|
||||
|
||||
```console
|
||||
INFO[0000] Found 9 CDI devices
|
||||
nvidia.com/gpu=all
|
||||
nvidia.com/gpu=0
|
||||
```
|
||||
|
||||
### Sample Workload
|
||||
|
||||
```bash
|
||||
docker run --rm -ti --runtime=nvidia \
|
||||
-e NVIDIA_VISIBLE_DEVICES=nvidia.com/gpu=all \
|
||||
ubuntu nvidia-smi -L
|
||||
```
|
||||
|
||||
Output
|
||||
|
||||
```console
|
||||
GPU 0: NVIDIA GeForce RTX 3080 Laptop GPU (UUID: GPU-17c2b9a6-6be2-3857-f8e0-88143e2e621b)
|
||||
```
|
||||
|
||||
## Technologies
|
||||
|
||||
* Ubuntu 22.04.1 amd64
|
||||
* Docker Compose version v2.29.7
|
||||
* Python 3.10.12
|
||||
* pip 22.0.2
|
||||
* NVIDIA Container Toolkit CLI version 1.16.2
|
||||
* NVIDIA Driver 550.120
|
||||
* CUDA Version 12.4
|
||||
|
||||
## How to Run
|
||||
|
||||
Ensure variables in the `.env` file are correct.
|
||||
|
||||
Install the required libraries in the python script.
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### First Terminal
|
||||
|
||||
1. Start the user interface with the following command.
|
||||
|
||||
```bash
|
||||
docker compose --profile ui up
|
||||
```
|
||||
|
||||
2. Click `Launch Gazebo` on the menu.
|
||||
|
||||
Simulated world and the drone model should be up and running in a Gazebo instance.
|
||||
|
||||
### Second Terminal
|
||||
|
||||
This will launch ardupilot, mavproxy and mavros services, and will scale up by the `SIM_DRONE_COUNT` env variable.
|
||||
|
||||
1. Start the docker services with the following python script.
|
||||
|
||||
```bash
|
||||
python3 sim_drone.py
|
||||
```
|
||||
|
||||
### QGroundControl
|
||||
|
||||
Simulated vehicle(s) should be connected to QGroundControl. `SIM_DRONE_COUNT` value should match the detected vehicle count on GCS.
|
||||
|
||||
## Simulation Environment Variables
|
||||
|
||||
`DRONE_SYS_ID` and `INSTANCE` environment variables are incremented by 1 for each additional simulated vehicle. `SERIAL0_PORT`, `SITL_PORT`, `MAVROS2_PORT`, `MAVROS1_PORT`,`FDM_PORT_IN` and `GSTREAMER_UDP_PORT` are incremented by 10. Without in-depth knowledge, changing the default value for these ports are not recommended.
|
||||
|
||||
| Variable | Type | Default | Description |
|
||||
| :----------------: | :----: | :--------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------- |
|
||||
| DRONE_SYS_ID | int | 1 | System-ID for the simulated drone. |
|
||||
| INSTANCE | int | 0 | Instance of simulator. |
|
||||
| SERIAL0_PORT | int | 5760 | Mavproxy master port the simulation communicating on. |
|
||||
| SITL_PORT | int | 5501 | Mavproxy Software in the Loop(SITL) port to send simulated RC input for the simulator. |
|
||||
| MAVROS2_PORT | int | 14560 | MAVROS ROS 2 UDP port |
|
||||
| MAVROS1_PORT | int | 14561 | MAVROS ROS 1 UDP port |
|
||||
| FDM_PORT_IN | int | 9002 | Gazebo Flight Dynamics Model (FDM) UDP port |
|
||||
| GSTREAMER_UDP_PORT | int | 5600 | UDP Video Streaming port |
|
||||
| ROS_MASTER_URI | string | "http://0.0.0.0:11311" | This tells ROS 1 nodes where they can locate the master |
|
||||
| ARDUPILOT_VEHICLE | string | "-v copter -f gazebo-mu --model=JSON -L CitadelHill" | "-v" is vehicle type,"-L" start location, "-f" is vehicle frame type, "--model" overrides simulation model to use |
|
||||
| WORLD_FILE_NAME | string | "citadel_hill_world.sdf" | Name of the file that exists in the worlds folder. |
|
||||
| WORLD_NAME | string | "citadel_hill" | Name of the world defined in the world file. |
|
||||
| DRONE_MODEL | string | "spiri_mu" | Drone model that exists in the models folder. |
|
||||
| SIM_DRONE_COUNT | int | 1 | Number of drones to be simulated. |
|
||||
| GCS_PORT | int | 14550 | Ground Control Station(GCS) UDP connection port. |
|
||||
|
||||
### Understanding Multi-Vehicle Simulation Parameters
|
||||
|
||||
For instance, if `SIM_DRONE_COUNT` is 2, each additional vehicle's ports are incremented by 10.
|
||||
|
||||
First simulated vehicle would have these following values,
|
||||
|
||||
| Variable | Value |
|
||||
| :----------------: | :---: |
|
||||
| DRONE_SYS_ID | 1 |
|
||||
| INSTANCE | 0 |
|
||||
| SERIAL0_PORT | 5760 |
|
||||
| SITL_PORT | 5501 |
|
||||
| MAVROS2_PORT | 14560 |
|
||||
| MAVROS1_PORT | 14561 |
|
||||
| FDM_PORT_IN | 9002 |
|
||||
| GSTREAMER_UDP_PORT | 5600 |
|
||||
|
||||
Second Vehicle,
|
||||
|
||||
| Variable | Value |
|
||||
| :----------------: | :---: |
|
||||
| DRONE_SYS_ID | 2 |
|
||||
| INSTANCE | 1 |
|
||||
| SERIAL0_PORT | 5770 |
|
||||
| SITL_PORT | 5511 |
|
||||
| MAVROS2_PORT | 14570 |
|
||||
| MAVROS1_PORT | 14571 |
|
||||
| FDM_PORT_IN | 9012 |
|
||||
| GSTREAMER_UDP_PORT | 5610 |
|
||||
|
||||
Video stream would be available on UDP port on 5610 for the second vehicle after enabling streaming.
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
version: '3.8'
|
||||
version: "3.8"
|
||||
|
||||
services:
|
||||
|
||||
gui-tools:
|
||||
env_file:
|
||||
- .env
|
||||
build:
|
||||
context: ./guiTools/
|
||||
|
||||
|
@ -14,23 +15,26 @@ services:
|
|||
# If running with Wayland
|
||||
- XDG_RUNTIME_DIR=${XDG_RUNTIME_DIR}
|
||||
- ROS_MASTER_URI=http://ros-master:11311
|
||||
# - NVIDIA_DRIVER_CAPABILITIES=compute,video,utility
|
||||
# - NVIDIA_VISIBLE_DEVICES=all
|
||||
volumes:
|
||||
# X11 socket
|
||||
- /tmp/.X11-unix:/tmp/.X11-unix
|
||||
- ${XAUTHORITY:-~/.Xauthority}:/root/.Xauthority
|
||||
# Wayland socket
|
||||
- ${XDG_RUNTIME_DIR}/wayland-0:${XDG_RUNTIME_DIR}/wayland-0
|
||||
#- ${XDG_RUNTIME_DIR}/wayland-0:${XDG_RUNTIME_DIR}/wayland-0
|
||||
# Allow access to the host's GPU
|
||||
# - /dev/dri:/dev/dri
|
||||
# devices:
|
||||
# # Provide access to GPU devices
|
||||
# - /dev/dri:/dev/dri
|
||||
# network_mode: host
|
||||
- /dev/dri:/dev/dri
|
||||
devices:
|
||||
# Provide access to GPU devices
|
||||
- /dev/dri:/dev/dri
|
||||
network_mode: host
|
||||
ipc: host
|
||||
#user: "${UID}:${GID}"
|
||||
privileged: true # Allow privileged access if necessary (e.g., for GPU access)
|
||||
# restart: unless-stopped
|
||||
# command: /bin/bash -c "source /opt/ros/foxy/setup.bash && rvis2" # Replace with the actual command to run Gazebo Ignition
|
||||
profiles: [ui,]
|
||||
profiles: [ui]
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
|
@ -40,36 +44,73 @@ services:
|
|||
- nvidia.com/gpu=all
|
||||
|
||||
ardupilot:
|
||||
env_file:
|
||||
- .env
|
||||
image: git.spirirobotics.com/spiri/ardupilot:spiri-master
|
||||
command: >
|
||||
./Tools/autotest/sim_vehicle.py -v copter --no-rebuild
|
||||
--out=udpin:0.0.0.0:5000
|
||||
--enable-dds
|
||||
command:
|
||||
- /bin/bash
|
||||
- -c
|
||||
- |
|
||||
./Tools/autotest/sim_vehicle.py $ARDUPILOT_VEHICLE --no-rebuild \
|
||||
--no-mavproxy --enable-dds --sysid $DRONE_SYS_ID -I$INSTANCE
|
||||
profiles:
|
||||
- uav-sim
|
||||
stdin_open: true
|
||||
tty: true
|
||||
network_mode: host
|
||||
|
||||
mavproxy:
|
||||
env_file:
|
||||
- .env
|
||||
image: git.spirirobotics.com/spiri/services-mavproxy:main
|
||||
command: >
|
||||
mavproxy.py --non-interactive
|
||||
--out=tcpin:0.0.0.0:5760
|
||||
--master=udpout:ardupilot:5000
|
||||
--master tcp:127.0.0.1:$SERIAL0_PORT
|
||||
--out udpout:0.0.0.0:$MAVROS2_PORT
|
||||
--out udpout:0.0.0.0:$MAVROS1_PORT
|
||||
--sitl 127.0.0.1:$SITL_PORT
|
||||
--out udp:0.0.0.0:$GCS_PORT
|
||||
profiles:
|
||||
- uav-sim
|
||||
ipc: host
|
||||
network_mode: host
|
||||
restart: always
|
||||
ports:
|
||||
- 5760:5760
|
||||
|
||||
mavros2:
|
||||
env_file:
|
||||
- .env
|
||||
image: git.spirirobotics.com/spiri/services-ros2-mavros:main
|
||||
command: ros2 launch mavros apm.launch fcu_url:="udp://0.0.0.0:$MAVROS2_PORT@:14555" namespace:="spiri$DRONE_SYS_ID" tgt_system:="$DRONE_SYS_ID"
|
||||
profiles:
|
||||
- uav-sim
|
||||
ipc: host
|
||||
network_mode: host
|
||||
restart: always
|
||||
depends_on:
|
||||
ardupilot:
|
||||
condition: service_started
|
||||
mavproxy:
|
||||
condition: service_started
|
||||
deploy:
|
||||
resources:
|
||||
limits:
|
||||
# cpus: '0.01'
|
||||
memory: 200M
|
||||
ulimits:
|
||||
nofile:
|
||||
soft: 1024
|
||||
hard: 524288
|
||||
mavros:
|
||||
#This service bridges our mavlink-based robot-coprosessor into ROS
|
||||
#In this example it connects to a simulated coprocessor.
|
||||
env_file:
|
||||
- .env
|
||||
image: git.spirirobotics.com/spiri/services-ros1-mavros:master
|
||||
command: roslaunch mavros px4.launch fcu_url:="udp://:14555@mavproxy:14550" tgt_system:="1"
|
||||
environment:
|
||||
- "ROS_MASTER_URI=http://ros-master:11311"
|
||||
depends_on:
|
||||
ros-master:
|
||||
condition: service_healthy
|
||||
mavproxy:
|
||||
condition: service_started
|
||||
command: rosrun mavros mavros_node __name:=spiri$DRONE_SYS_ID _fcu_url:="udp://0.0.0.0:$MAVROS1_PORT@:14559" _target_system_id:="$DRONE_SYS_ID"
|
||||
profiles:
|
||||
- uav-sim
|
||||
ipc: host
|
||||
network_mode: host
|
||||
restart: always
|
||||
deploy:
|
||||
resources:
|
||||
|
@ -82,13 +123,15 @@ services:
|
|||
hard: 524288
|
||||
|
||||
ros-master:
|
||||
env_file:
|
||||
- .env
|
||||
image: git.spirirobotics.com/spiri/services-ros1-core:main
|
||||
command: stdbuf -o L roscore
|
||||
environment:
|
||||
- "ROS_MASTER_URI=http://localhost:11311"
|
||||
profiles:
|
||||
- ros-master
|
||||
ipc: host
|
||||
network_mode: host
|
||||
restart: always
|
||||
ports:
|
||||
- "127.0.0.1:11311:11311"
|
||||
deploy:
|
||||
resources:
|
||||
limits:
|
||||
|
@ -99,4 +142,3 @@ services:
|
|||
nofile:
|
||||
soft: 1024
|
||||
hard: 524288
|
||||
|
||||
|
|
|
@ -1,8 +1,27 @@
|
|||
FROM osrf/ros:jazzy-desktop-full
|
||||
|
||||
RUN apt-get update
|
||||
RUN apt-get install qterminal mesa-utils -y
|
||||
RUN apt-get -y install qterminal mesa-utils \
|
||||
libgstreamer1.0-dev \
|
||||
libgstreamer-plugins-base1.0-dev \
|
||||
gstreamer1.0-libav \
|
||||
gstreamer1.0-gl \
|
||||
gstreamer1.0-plugins-good \
|
||||
gstreamer1.0-plugins-bad \
|
||||
gstreamer1.0-plugins-ugly
|
||||
|
||||
COPY --from=git.spirirobotics.com/spiri/gazebo-resources:main /plugins /ardupilot_gazebo/plugins
|
||||
COPY --from=git.spirirobotics.com/spiri/gazebo-resources:main /models /ardupilot_gazebo/models
|
||||
COPY --from=git.spirirobotics.com/spiri/gazebo-resources:main /worlds /ardupilot_gazebo/worlds
|
||||
|
||||
ENV GZ_SIM_SYSTEM_PLUGIN_PATH=/ardupilot_gazebo/plugins
|
||||
ENV GZ_SIM_RESOURCE_PATH=/ardupilot_gazebo/models:/ardupilot_gazebo/worlds
|
||||
|
||||
COPY ./spawn_drones.sh /spawn_drones.sh
|
||||
RUN chmod +x /spawn_drones.sh
|
||||
|
||||
COPY ./launcher.py /launcher.py
|
||||
CMD python3 /launcher.py
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -3,21 +3,24 @@ import subprocess
|
|||
|
||||
# Dictionary of applications: key is the button text, value is the command to execute
|
||||
applications = {
|
||||
"Terminal": ['qterminal'],
|
||||
"rqt": ["rqt"],
|
||||
"rviz2": ["rviz2"],
|
||||
"Gazebo": "gz sim -v4 -g".split(),
|
||||
"Gazebo Standalone": "gz sim -v4".split(),
|
||||
"glxgears (GPU test)": ["glxgears"],
|
||||
"Launch Terminal": ["qterminal"],
|
||||
"Launch rqt": ["rqt"],
|
||||
"Launch rviz2": ["rviz2"],
|
||||
"Launch Gazebo": ["/spawn_drones.sh"],
|
||||
"Launch Gazebo Standalone": "gz sim -v4".split(),
|
||||
# Add more applications here if needed
|
||||
}
|
||||
|
||||
|
||||
# Function to launch an application
|
||||
def launch_app(command):
|
||||
try:
|
||||
subprocess.Popen(command)
|
||||
except FileNotFoundError:
|
||||
print(f"{command[0]} not found. Make sure it's installed and accessible in the PATH.")
|
||||
print(
|
||||
f"{command[0]} not found. Make sure it's installed and accessible in the PATH."
|
||||
)
|
||||
|
||||
|
||||
# Create the main application window
|
||||
root = tk.Tk()
|
||||
|
@ -28,9 +31,14 @@ label.pack(pady=10)
|
|||
|
||||
# Create and place buttons dynamically based on the dictionary
|
||||
for app_name, command in applications.items():
|
||||
button = tk.Button(root, text=app_name, command=lambda cmd=command: launch_app(cmd), width=20, height=2)
|
||||
button = tk.Button(
|
||||
root,
|
||||
text=app_name,
|
||||
command=lambda cmd=command: launch_app(cmd),
|
||||
width=20,
|
||||
height=2,
|
||||
)
|
||||
button.pack()
|
||||
|
||||
# Run the Tkinter main loop
|
||||
root.mainloop()
|
||||
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
#!/bin/bash
|
||||
set -e #PR #6
|
||||
source /opt/ros/$ROS_DISTRO/setup.bash
|
||||
|
||||
if [[ -z $SIM_DRONE_COUNT ]]
|
||||
then
|
||||
echo "SIM_DRONE_COUNT environment variable is not set."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
gz sim -v -r $WORLD_FILE_NAME &
|
||||
while true
|
||||
do
|
||||
topics=$(gz topic -l)
|
||||
if [[ $topics == *"/world/$WORLD_NAME"* ]]
|
||||
then
|
||||
break
|
||||
fi
|
||||
sleep 1
|
||||
done
|
||||
|
||||
cd /ardupilot_gazebo/models/$DRONE_MODEL
|
||||
for (( j=0; j<$SIM_DRONE_COUNT; j++ ));
|
||||
do
|
||||
xacro -v gstreamer_udp_port:=$(($GSTREAMER_UDP_PORT + ($j * 10))) fdm_port_in:=$(($FDM_PORT_IN + ($j * 10))) model.xacro.sdf -o model.sdf
|
||||
#! string is better than using -file option. File is not up to date in the next iteration.
|
||||
value=$(</ardupilot_gazebo/models/$DRONE_MODEL/model.sdf)
|
||||
gz_drone_name=spiri-$(($j + 1))
|
||||
#? Maybe read from text file for formation of drones? x y z r p y
|
||||
ros2 run ros_gz_sim create -world $WORLD_NAME -string "$value" -name $gz_drone_name -x $j -y 0 -z 0.195
|
||||
done
|
||||
exec "$@"
|
|
@ -0,0 +1,4 @@
|
|||
typer==0.12.5
|
||||
loguru==0.7.2
|
||||
sh==2.1.0
|
||||
python-dotenv==1.0.1
|
|
@ -0,0 +1,167 @@
|
|||
#!/bin/env python3
|
||||
import typer
|
||||
import os
|
||||
import sys
|
||||
import contextlib
|
||||
from dotenv import load_dotenv
|
||||
from typing import List
|
||||
from loguru import logger
|
||||
import sh
|
||||
import atexit
|
||||
|
||||
load_dotenv()
|
||||
logger.remove()
|
||||
logger.add(
|
||||
sys.stdout, format="<green>{time}</green> <level>{level}</level> {extra} {message}"
|
||||
)
|
||||
|
||||
# px4Path = os.environ.get("SPIRI_SIM_PX4_PATH", "/opt/spiri-sdk/PX4-Autopilot/")
|
||||
# logger.info(f"SPIRI_SIM_PX4_PATH={px4Path}")
|
||||
|
||||
app = typer.Typer()
|
||||
|
||||
# This is a list of processes that we need to .kill and .wait for on exit
|
||||
processes = []
|
||||
|
||||
|
||||
class outputLogger:
|
||||
"""
|
||||
Logs command output to loguru
|
||||
"""
|
||||
|
||||
def __init__(self, name, instance):
|
||||
self.name = name
|
||||
self.instance = instance
|
||||
|
||||
def __call__(self, message):
|
||||
with logger.contextualize(cmd=self.name, instance=self.instance):
|
||||
if message.endswith("\n"):
|
||||
message = message[:-1]
|
||||
# ToDo, this doesn't work because the output is coloured
|
||||
if message.startswith("INFO"):
|
||||
message = message.lstrip("INFO")
|
||||
logger.info(message)
|
||||
elif message.startswith("WARN"):
|
||||
message = message.lstrip("WARN")
|
||||
logger.warning(message)
|
||||
elif message.startswith("ERROR"):
|
||||
message = message.lstrip("ERROR")
|
||||
logger.error(message)
|
||||
elif message.startswith("DEBUG"):
|
||||
message = message.lstrip("DEBUG")
|
||||
logger.debug(message)
|
||||
else:
|
||||
logger.info(message)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def modified_environ(*remove, **update):
|
||||
"""
|
||||
Temporarily updates the ``os.environ`` dictionary in-place.
|
||||
|
||||
The ``os.environ`` dictionary is updated in-place so that the modification
|
||||
is sure to work in all situations.
|
||||
|
||||
:param remove: Environment variables to remove.
|
||||
:param update: Dictionary of environment variables and values to add/update.
|
||||
"""
|
||||
env = os.environ
|
||||
update = update or {}
|
||||
remove = remove or []
|
||||
|
||||
# List of environment variables being updated or removed.
|
||||
stomped = (set(update.keys()) | set(remove)) & set(env.keys())
|
||||
# Environment variables and values to restore on exit.
|
||||
update_after = {k: env[k] for k in stomped}
|
||||
# Environment variables and values to remove on exit.
|
||||
remove_after = frozenset(k for k in update if k not in env)
|
||||
|
||||
try:
|
||||
env.update(update)
|
||||
[env.pop(k, None) for k in remove]
|
||||
yield
|
||||
finally:
|
||||
env.update(update_after)
|
||||
[env.pop(k) for k in remove_after]
|
||||
|
||||
|
||||
# @app.command()
|
||||
def start(instance: int = 0, sys_id: int = 1):
|
||||
"""Starts the simulated drone with a given sys_id,
|
||||
each drone must have it's own unique ID.
|
||||
"""
|
||||
if sys_id < 1 or sys_id > 254:
|
||||
logger.error("sys_id must be between 1 and 254")
|
||||
raise typer.Exit(code=1)
|
||||
with logger.contextualize(syd_id=sys_id):
|
||||
env = os.environ
|
||||
with modified_environ(
|
||||
SERIAL0_PORT=str(int(env["SERIAL0_PORT"]) + 10 * instance),
|
||||
MAVROS2_PORT=str(int(env["MAVROS2_PORT"]) + 10 * instance),
|
||||
MAVROS1_PORT=str(int(env["MAVROS1_PORT"]) + 10 * instance),
|
||||
FDM_PORT_IN=str(int(env["FDM_PORT_IN"]) + 10 * instance),
|
||||
SITL_PORT=str(int(env["SITL_PORT"]) + 10 * instance),
|
||||
INSTANCE=str(instance),
|
||||
DRONE_SYS_ID=str(sys_id),
|
||||
):
|
||||
logger.info("Starting drone stack, this may take some time")
|
||||
docker_stack = sh.docker.compose(
|
||||
"--profile",
|
||||
"uav-sim",
|
||||
"-p",
|
||||
f"spiri-sdk-{sys_id}",
|
||||
"up",
|
||||
_out=outputLogger("docker_stack", sys_id),
|
||||
_err=sys.stderr,
|
||||
_bg=True,
|
||||
)
|
||||
processes.append(docker_stack)
|
||||
|
||||
|
||||
@app.command()
|
||||
def start_group():
|
||||
env = os.environ
|
||||
sim_drone_count = int(env["SIM_DRONE_COUNT"])
|
||||
start_ros_master()
|
||||
"""Start a group of robots"""
|
||||
for i in range(sim_drone_count):
|
||||
logger.info(f"start robot {i}")
|
||||
start(instance=i, sys_id=i + 1)
|
||||
# if i == 0:
|
||||
# wait_for_gazebo()
|
||||
|
||||
|
||||
def start_ros_master():
|
||||
docker_stack = sh.docker.compose(
|
||||
"--profile",
|
||||
"ros-master",
|
||||
"up",
|
||||
_out=outputLogger("docker_stack", "ros-master"),
|
||||
_err=sys.stderr,
|
||||
_bg=True,
|
||||
)
|
||||
processes.append(docker_stack)
|
||||
|
||||
|
||||
def cleanup():
|
||||
# Wait for all subprocesses to exit
|
||||
logger.info("Waiting for commands to exit")
|
||||
try:
|
||||
if processes:
|
||||
print(processes)
|
||||
for waitable in processes:
|
||||
waitable.kill()
|
||||
waitable.wait()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
|
||||
atexit.register(cleanup)
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
app()
|
||||
except KeyboardInterrupt:
|
||||
logger.info("KeyboardInterrupt caught, exiting...")
|
||||
cleanup()
|
||||
sys.exit(0)
|
Loading…
Reference in New Issue