ROSBuzz_MISTLab/buzz_scripts/tree_centroid.bzz
2017-08-10 20:38:26 -04:00

537 lines
14 KiB
Plaintext

# Include files
include "string.bzz"
include "vec2.bzz"
include "utilities.bzz"
include "barrier.bzz"
############################################
# Global variables
RANGE = 200 # rab range in cm, get from argos file
N_SONS = 10 # Maximum number of sons
TRIGGER_VSTIG = 101 # ID of trigger virtual stigmergy
BARRIER_VSTIG = 102 # ID of barrier virtual stigmergy
################################################################
################################################################
# Tree utility functions
function parent_select() {
# Selects potential parents
var candidates = {}
candidates = neighbors.filter(function(rid, data) {
return ((knowledge.level[rid] > 0) and (data.distance < (RANGE - 10.0)) and (knowledge.free[rid] == 1))})
# and (data.distance > 10.0)
# Selects closest parent candidate as parent
var temp = {}
temp = candidates.reduce(function(rid, data, accum) {
accum.min = math.min(accum.min, data.distance)
return accum
}, {.min = RANGE})
var min = temp.min
var flag = 0
foreach(knowledge.distance, function(key, value) {
if ((flag == 0) and (candidates.data[key] != nil)) {
if (value == min) {
tree.parent.id = key
tree.parent.distance = value
tree.parent.azimuth = knowledge.azimuth[key]
flag = 1
}
}
#break (when implemented)
})
}
####################################
function count() {
if (nb_sons == 0) {
eq_level = level
}
else if (nb_sons >= 1) {
var temp = {}
temp = sons.reduce(function(rid, data, accum) {
accum.sum = accum.sum + tree.sons[rid].eq_level
return accum
}, {.sum = 0})
eq_level = temp.sum - (nb_sons - 1) * level
}
}
####################################
function change_frame(p01, p1, theta) {
var p0 = {
.x = math.cos(theta) * p1.x + math.sin(theta) * p1.y + p01.x,
.y = -math.sin(theta) * p1.x + math.cos(theta) * p1.y + p01.y
}
return p0
}
####################################
transform_accum = function(rid, data) {
# Son contribution in frame F1
var p1 = {
.x = tree.sons[rid].accum_x,
.y = tree.sons[rid].accum_y
}
# Rotation angle between F0 and F1
var theta = tree.sons[rid].angle_parent - data.azimuth - math.pi
# Translation vector from F0 to F1
var p01 = {
.x = 0,
.y = 0
}
var p0 = {}
if (tree.sons[rid].angle_parent != nil) {
var rot_angle = radians_interval(theta)
p0 = change_frame(p01, p1, rot_angle)
}
else {
p0.x = p1.x
p0.y = p1.y
}
return p0
}
####################################
function centroid() {
# If the robot has a parent
if ((tree.parent != nil) or (root == 1)) {
var sum_F1 = { .x = 0, .y = 0}
# If the robot has at least one son
if (nb_sons > 0) {
var temp = {}
# Expresses son contrib (in F1) in its own reference frame (F0)
temp = sons.map(transform_accum)
# Sums son contributions expressed in F0 frame
sum_F1 = temp.reduce(function(rid, data, accum) {
accum.x = accum.x + data.x
accum.y = accum.y + data.y
#log("id ", rid, " sum_x ", accum.x, " sum_y ", accum.y)
return accum
}, {.x = 0, .y = 0})
}
# If the robot is not the root
if ((root == 0) and (tree.parent.id != nil)) {
#var nb_descendants = eq_level - level
var p0 = knowledge.distance[tree.parent.id]#tree.parent.distance
var theta = knowledge.azimuth[tree.parent.id]#tree.parent.azimuth
# Adds current robot contribution to centroid sum
accum_x = sum_F1.x - (nb_descendants + 1) * p0 * math.cos(theta)
accum_y = sum_F1.y - (nb_descendants + 1) * p0 * math.sin(theta)
}
# If the robot is the root
else if ((root == 1) and (robot_count != 0)) {
# Centroid coordinates in root ref frame
accum_x = sum_F1.x / robot_count
accum_y = sum_F1.y / robot_count
}
}
}
################################################################
################################################################
# Tree reconfiguration functions
function tree_config() {
statef()
}
function end_fun() {
if (root == 1) {
log("centroid X: ", accum_x, " Y ", accum_y)
}
}
####################################
function root_select() {
log(id," root_select")
if (tree.parent.id != nil) {
if(neighbors.data[tree.parent.id] != nil) {
angle_parent = neighbors.data[tree.parent.id].azimuth
}
}
if (root == 1) {
# Listens for new root acknowledgment
foreach(knowledge.ackn, function(key, value) {
if (value == better_root) {
#log(id, " got it")
root = 0
level = 0
setleds(0,0,0)
}
})
if (ack == 1) {
# Triggers transition to new state
trigger.put("a", 1)
}
else if ((root == 1) and (better_root != id) and (trigger.get("a") != 1)) {
setleds(255,0,0)
better_root = id
# Centroid position in root reference frame (F0)
var c0 = math.vec2.new(accum_x, accum_y)
# Distance from current root to centroid
var dist_rc = math.vec2.length(c0)
#log("root ", id, " dist_centr ", dist_rc)
# Distances from neighbors to centroid
var dist_centroid = {}
dist_centroid = neighbors.map(function(rid, data) {
# Neighbour position in frame F0
var p0 = math.vec2.newp(data.distance, data.azimuth)
# Difference vector between p0 and c0
var v = math.vec2.sub(p0, c0)
# Distance between robot and centroid
return math.vec2.length(v)
})
# Minimal distance to centroid
var temp = {}
temp = dist_centroid.reduce(function(rid, data, accum) {
accum.min = math.min(accum.min, data)
return accum
}, {.min = dist_rc})
var min = temp.min
#log("min ", min)
# If the current root is the closest to the centroid
if(dist_rc == min) {
ack = 1
}
# Otherwise
else {
var flag = 0
# Selects closest robot to centroid as better root
foreach(dist_centroid.data, function(key, value) {
if(flag == 0) {
if(value == min) {
better_root = key
flag = 1
}
# break (when implemented)
}
})
#log(id, " better root : ", better_root)
#log("X : ", accum_x, "Y : ", accum_y)
var angle = neighbors.data[better_root].azimuth
# Broadcasts
var message = {
.better_root = better_root,
.centroid_x = accum_x,
.centroid_y = accum_y,
.angle_old_root = angle
}
neighbors.broadcast("msg1", message)
}
}
}
else if (better_root == nil) {
# Listen for old root message
foreach(knowledge.better_root, function(rid, value) {
if(value == id) {
var theta = neighbors.data[rid].azimuth
var p1 = {
.x = knowledge.centroid_x[rid],
.y = knowledge.centroid_y[rid]
}
var p01 = {
.x = neighbors.data[rid].distance * math.cos(theta),
.y = neighbors.data[rid].distance * math.sin(theta)
}
var p0 = {}
if (knowledge.angle_old_root[rid] != nil) {
var rot_angle = radians_interval(knowledge.angle_old_root[rid] - theta - math.pi)
p0 = change_frame(p01, p1, rot_angle)
}
else {
p0.x = p1.x
p0.y = p1.y
}
accum_x = p0.x
accum_y = p0.y
centroid_x = accum_x
centroid_y = accum_y
root = 1
neighbors.broadcast("got_it", id)
}
})
}
# Transitions to new state when all robots are ready
if (trigger.get("a") == 1) {
barrier_set(ROBOTS, end_fun)
barrier_ready()
}
}
####################################
function tree_select() {
log(id, " tree_select")
neighbors.map(function(rid, data) {
knowledge.distance[rid] = data.distance
knowledge.azimuth[rid] = data.azimuth
return 1
})
if (level == 0) {
# Finds a parent
parent_select()
# Updates robot level
if (tree.parent.id != nil) {
#log(" ")
#log("selected")
#log("son ", id)
#log("parent ", tree.parent.id)
#log(" ")
level = knowledge.level[tree.parent.id] + 1
angle_parent = neighbors.data[tree.parent.id].azimuth
}
}
else {
# Updates list of sons
foreach(knowledge.parent, function(key, value) {
if(value == id) {
#log(value)
if(tree.sons[key] == nil) {
# Updates robot nb_sons
nb_sons = nb_sons + 1
# Updates robot free status
if (nb_sons >= N_SONS) {
free = 0
}
}
tree.sons[key] = {
.distance = knowledge.distance[key],
.azimuth = knowledge.azimuth[key],
.eq_level = knowledge.eq_level[key],
.accum_x = knowledge.accum_x[key],
.accum_y = knowledge.accum_y[key],
.angle_parent = knowledge.angle_parent[key]
}
}
})
}
# Creates a subset of neighbors to get the sons
# and parent
sons = {}
sons = neighbors.filter(function(rid, data) {
return (tree.sons[rid] != nil)
})
parent = {}
parent = neighbors.filter(function(rid, data) {
return (tree.parent.id == rid)
})
# Counts robots (updates eq_level)
count()
# Updates count of robots in the tree
if (root == 1) {
robot_count = eq_level
}
nb_descendants = eq_level - level
# Computes centroid (updates accum_x, accum_y)
centroid()
# Broadcast information to other robots
var message = {
.level = level,
.parent = tree.parent.id,
.eq_level = eq_level,
.free = free,
.accum_x = accum_x,
.accum_y = accum_y,
.angle_parent = angle_parent
}
neighbors.broadcast("msg2", message)
# Triggers transition to new state if root count = ROBOTS
if (root == 1) {
if(robot_count == ROBOTS) {
log("centroid X: ", accum_x, " Y ", accum_y)
trigger.put("b", 1)
}
}
# Transitions to new state when all robots are ready
if (trigger.get("b") == 1) {
barrier_set(ROBOTS, root_select)
barrier_ready()
}
}
################################################################
################################################################
# This function is executed every time you press the 'execute' button
function init() {
trigger = stigmergy.create(TRIGGER_VSTIG)
barrier = stigmergy.create(BARRIER_VSTIG)
# Trees
old_tree = {}
tree = old_tree
old_tree.parent = {}
old_tree.sons = {}
# Boolean variables
root = 0 # Root status
free = 1 # Node status (true if accepts sons)
ack = 0
# Tree variables
level = 0
eq_level = 0
nb_sons = 0
nb_descendants = 0
# Update root status
if (id == 0) {
root = 1 # True if robot is the ro ot
level = 1
robot_count = 0
}
statef = tree_select
knowledge = {
.level = {},
.parent = {},
.eq_level = {},
.free = {},
.accum_x = {},
.accum_y = {},
.angle_parent = {},
.distance = {},
.azimuth = {},
.better_root = {},
.centroid_x = {},
.centroid_y = {},
.angle_old_root = {},
.ackn = {}
}
# Broadcast information to other robots
var message = {
.level = level,
.parent = old_tree.parent.id,
.eq_level = eq_level,
.free = free,
.accum_x = accum_x,
.accum_y = accum_y,
.angle_parent = 0.0
}
neighbors.broadcast("msg2", message)
# Listen to information from other robots for root_select
neighbors.listen("msg1", function(vid, value, rid) {
knowledge.better_root[rid] = value.better_root
knowledge.centroid_x[rid] = value.centroid_x
knowledge.centroid_y[rid] = value.centroid_y
knowledge.angle_old_root[rid] = value.angle_old_root
knowledge.angle_parent[rid] = value.angle_parent
})
# Listen to information from other robots for tree_select
neighbors.listen("msg2", function(vid, value, rid) {
knowledge.level[rid] = value.level
knowledge.parent[rid] = value.parent
knowledge.eq_level[rid] = value.eq_level
knowledge.free[rid] = value.free
knowledge.accum_x[rid] = value.accum_x
knowledge.accum_y[rid] = value.accum_y
knowledge.angle_parent[rid] = value.angle_parent
})
neighbors.listen("got_it", function(vid, value, rid) {
knowledge.ackn[rid] = value
})
}
############################################
# This function is executed at each time step
function step() {
tree_config()
goal = math.vec2.new(0.0, 0.0)
}
############################################
# This function is executed every time you press the 'reset'
# button in the GUI.
function reset() {
# put your code here
}
############################################
# This function is executed only once, when the robot is removed
# from the simulation
function destroy() {
# put your code here
}
################