ROSBuzz_MISTLab/src/test1.bzz
2017-02-17 17:29:42 -05:00

161 lines
3.5 KiB
Plaintext

# We need this for 2D vectors
# Make sure you pass the correct include path to "bzzc -I <path1:path2> ..."
include "/home/ivan/dev/buzz/src/include/vec2.bzz"
####################################################################################################
# Updater related
# This should be here for the updater to work, changing position of code will crash the updater
####################################################################################################
updated="update_ack"
update_no=0
function updated_neigh(){
neighbors.broadcast(updated, update_no)
}
TARGET_ALTITUDE = 10.0
# Lennard-Jones parameters
TARGET = 50.0 #0.000001001
EPSILON = 0.5 #0.001
# Lennard-Jones interaction magnitude
function lj_magnitude(dist, target, epsilon) {
return -(epsilon / dist) * ((target / dist)^4 - (target / dist)^2)
}
# Neighbor data to LJ interaction vector
function lj_vector(rid, data) {
return math.vec2.newp(lj_magnitude(data.distance, TARGET, EPSILON), data.azimuth)
}
# Accumulator of neighbor LJ interactions
function lj_sum(rid, data, accum) {
return math.vec2.add(data, accum)
}
# Calculates and actuates the flocking interaction
function hexagon() {
statef=hexagon
# Calculate accumulator
var accum = neighbors.map(lj_vector).reduce(lj_sum, math.vec2.new(0.0, 0.0))
if(neighbors.count() > 0)
math.vec2.scale(accum, 1.0 / neighbors.count())
# Move according to vector
# print("Robot ", id, "must push ",accum.length, "; ", accum.angle)
# uav_moveto(accum.x, accum.y)
}
########################################
#
# BARRIER-RELATED FUNCTIONS
#
########################################
#
# Constants
#
BARRIER_VSTIG = 1
ROBOTS = 1 # number of robots in the swarm
#
# Sets a barrier
#
function barrier_set(threshold, transf) {
statef = function() {
barrier_wait(threshold, transf);
}
barrier = stigmergy.create(BARRIER_VSTIG)
}
#
# Make yourself ready
#
function barrier_ready() {
barrier.put(id, 1)
}
#
# Executes the barrier
#
function barrier_wait(threshold, transf) {
barrier.get(id)
if(barrier.size() >= threshold) {
barrier = nil
transf()
}
}
# flight status
function idle() {
statef=idle
neighbors.listen("cmd",
function(vid, value, rid) {
print("Got (", vid, ",", value, ") from robot #", rid)
if(value==22) {
statef=takeoff
} else if(value==21) {
statef=land
}
}
)
if( flight.status == 2 and position.altitude >= TARGET_ALTITUDE-TARGET_ALTITUDE/20.0)
statef=hexagon
}
function takeoff() {
#if( flight.status == 2 and position.altitude >= TARGET_ALTITUDE-TARGET_ALTITUDE/20.0) {
# barrier_set(ROBOTS,hexagon)
# barrier_ready()
#}
if( flight.status !=3){
log("Altitude: ", TARGET_ALTITUDE)
neighbors.broadcast("cmd", 22)
uav_takeoff(TARGET_ALTITUDE)
}
}
function land() {
#log("Land: ", flight.status)
#if(flight.status != 0 and flight.status != 4){
# neighbors.broadcast("cmd", 21)
# uav_land()
#}
uav_land()
}
# Executed once at init time.
function init() {
statef=idle
}
# Executed at each time step.
function step() {
if(flight.rc_cmd==22) {
log("cmd 22")
flight.rc_cmd=0
statef = takeoff
neighbors.broadcast("cmd", 22)
} else if(flight.rc_cmd==21) {
log("cmd 21")
log("To land")
flight.rc_cmd=0
statef = land
neighbors.broadcast("cmd", 21)
} else if(flight.rc_cmd==16) {
flight.rc_cmd=0
uav_goto()
}
statef()
}
# Executed once when the robot (or the simulator) is reset.
function reset() {
}
# Executed once at the end of experiment.
function destroy() {
}