ROSBuzz_MISTLab/script/testflockfev.bzz

276 lines
6.1 KiB
Plaintext

# We need this for 2D vectors
# Make sure you pass the correct include path to "bzzc -I <path1:path2> ..."
include "vec2.bzz"
####################################################################################################
# Updater related
# This should be here for the updater to work, changing position of code will crash the updater
####################################################################################################
updated="update_ack"
update_no=0
function updated_neigh(){
neighbors.broadcast(updated, update_no)
}
TARGET_ALTITUDE = 5.0
CURSTATE = "TURNEDOFF"
# Lennard-Jones parameters
TARGET = 12.0
EPSILON = 14.0
# Lennard-Jones interaction magnitude
function lj_magnitude(dist, target, epsilon) {
return -(epsilon / dist) * ((target / dist)^4 - (target / dist)^2)
#return -(4 * epsilon) * ((target / dist)^12 - (target / dist)^6)
}
# Neighbor data to LJ interaction vector
function lj_vector(rid, data) {
return math.vec2.newp(lj_magnitude(data.distance, TARGET, EPSILON), data.azimuth)
}
# Accumulator of neighbor LJ interactions
function lj_sum(rid, data, accum) {
return math.vec2.add(data, accum)
}
function user_attract(t) {
fus = math.vec2.new(0.0, 0.0)
if(size(t)>0) {
foreach(t, function(u, tab) {
#log("id: ",u," Range ", tab.r, "Bearing ", tab.b)
fus = math.vec2.add(fus, math.vec2.newp(lj_magnitude(tab.r, 3 * TARGET / 4.0, EPSILON * 2.0), tab.b))
})
math.vec2.scale(fus, 1.0 / size(t))
}
#print("User attract:", fus.x," ", fus.y, " [", size(t), "]")
return fus
}
# Calculates and actuates the flocking interaction
function hexagon() {
statef=hexagon
# Calculate accumulator
var accum = neighbors.map(lj_vector).reduce(lj_sum, math.vec2.new(0.0, 0.0))
if(neighbors.count() > 0)
accum = math.vec2.scale(accum, 1.0 / neighbors.count())
accum = math.vec2.add(accum, user_attract(users.dataL))
accum = math.vec2.scale(accum, 1.0 / 2.0)
if(math.vec2.length(accum) > 1.0) {
accum = math.vec2.scale(accum, 1.0 / math.vec2.length(accum))
}
# Move according to vector
print("Robot ", id, "must push ", math.vec2.length(accum) )#, "; ", math.vec2.angle(accum))
uav_moveto(accum.x, accum.y)
CURSTATE = "LENNARDJONES"
# if(timeW>=WAIT_TIMEOUT) { #FOR MOVETO TESTS
# timeW =0
# statef=land
# } else if(timeW>=WAIT_TIMEOUT/2) {
# CURSTATE ="GOEAST"
# timeW = timeW+1
# uav_moveto(0.0,5.0)
# } else {
# CURSTATE ="GONORTH"
# timeW = timeW+1
# uav_moveto(5.0,0.0)
# }
}
########################################
#
# BARRIER-RELATED FUNCTIONS
#
########################################
#
# Constants
#
BARRIER_VSTIG = 1
#
# Sets a barrier
#
function barrier_set(threshold, transf) {
statef = function() {
barrier_wait(threshold, transf);
}
barrier = stigmergy.create(BARRIER_VSTIG)
}
#
# Make yourself ready
#
function barrier_ready() {
barrier.put(id, 1)
}
#
# Executes the barrier
#
WAIT_TIMEOUT = 200
timeW=0
function barrier_wait(threshold, transf) {
barrier.get(id)
barrier.put(id, 1)
CURSTATE = "BARRIERWAIT"
if(barrier.size() >= threshold) {
#barrier = nil
transf()
} else if(timeW>=WAIT_TIMEOUT) {
barrier = nil
statef=land
timeW=0
}
timeW = timeW+1
}
# flight status
function idle() {
statef=idle
CURSTATE = "IDLE"
}
function takeoff() {
CURSTATE = "TAKEOFF"
statef=takeoff
#log("TakeOff: ", flight.status)
#log("Relative position: ", position.altitude)
if( flight.status == 2 and position.altitude >= TARGET_ALTITUDE-TARGET_ALTITUDE/20.0) {
barrier_set(ROBOTS,hexagon)
barrier_ready()
#statef=hexagon
}
else {
log("Altitude: ", TARGET_ALTITUDE)
neighbors.broadcast("cmd", 22)
uav_takeoff(TARGET_ALTITUDE)
}
}
function land() {
CURSTATE = "LAND"
statef=land
#log("Land: ", flight.status)
if(flight.status == 2 or flight.status == 3){
neighbors.broadcast("cmd", 21)
uav_land()
}
else {
barrier_set(ROBOTS,idle)
barrier_ready()
timeW=0
#barrier = nil
#statef=idle
}
}
function users_save(t) {
if(size(t)>0) {
foreach(t, function(id, tab) {
#log("id: ",id," Latitude ", tab.la, "Longitude ", tab.lo)
add_user_rb(id,tab.la,tab.lo)
})
}
}
# printing the contents of a table: a custom function
function table_print(t) {
if(size(t)>0) {
foreach(t, function(u, tab) {
log("id: ",u," Range ", tab.r, "Bearing ", tab.b)
})
}
}
########################################
#
# MAIN FUNCTIONS
#
########################################
# Executed once at init time.
function init() {
s = swarm.create(1)
s.join()
vt = stigmergy.create(5)
t = {}
vt.put("p",t)
statef=idle
CURSTATE = "IDLE"
}
# Executed at each time step.
function step() {
if(flight.rc_cmd==22) {
log("cmd 22")
flight.rc_cmd=0
statef = takeoff
CURSTATE = "TAKEOFF"
neighbors.broadcast("cmd", 22)
} else if(flight.rc_cmd==21) {
log("cmd 21")
log("To land")
flight.rc_cmd=0
statef = land
CURSTATE = "LAND"
neighbors.broadcast("cmd", 21)
} else if(flight.rc_cmd==16) {
flight.rc_cmd=0
statef = idle
#uav_goto()
add_user_rb(10,rc_goto.latitude,rc_goto.longitude)
} else if(flight.rc_cmd==400) {
flight.rc_cmd=0
uav_arm()
neighbors.broadcast("cmd", 400)
} else if (flight.rc_cmd==401){
flight.rc_cmd=0
uav_disarm()
neighbors.broadcast("cmd", 401)
}
neighbors.listen("cmd",
function(vid, value, rid) {
print("Got (", vid, ",", value, ") from robot #", rid)
if(value==22 and CURSTATE=="IDLE") {
statef=takeoff
} else if(value==21) {
statef=land
} else if(value==400 and CURSTATE=="IDLE") {
uav_arm()
} else if(value==401 and CURSTATE=="IDLE"){
uav_disarm()
}
}
)
statef()
log("Current state: ", CURSTATE)
log("Swarm size: ",ROBOTS)
# Read a value from the structure
# log(users)
#users_print(users.dataG)
# if(size(users.dataG)>0)
# vt.put("p", users.dataG)
# Get the number of keys in the structure
#log("The vstig has ", vt.size(), " elements")
# users_save(vt.get("p"))
# table_print(users.dataL)
}
# Executed once when the robot (or the simulator) is reset.
function reset() {
}
# Executed once at the end of experiment.
function destroy() {
}