ROSBuzz_MISTLab/buzz_scripts/include/uavstates.bzz

193 lines
4.7 KiB
Plaintext

########################################
#
# FLIGHT-RELATED FUNCTIONS
#
########################################
TARGET_ALTITUDE = 5.0
UAVSTATE = "TURNEDOFF"
GOTO_MAXVEL = 2
TAKEOFF_VSTIG = 11
goal = {.range=0, .bearing=0, .latitude=0, .longitude=0}
function uav_initswarm() {
s = swarm.create(1)
s.join()
}
function turnedoff() {
statef=turnedoff
UAVSTATE = "TURNEDOFF"
}
function idle() {
statef=idle
UAVSTATE = "IDLE"
}
firstpassT = 1
function takeoff() {
UAVSTATE = "TAKEOFF"
statef=takeoff
if(firstpassT) {
barrier_create(TAKEOFF_VSTIG)
firstpassT = 0
}
if( flight.status == 2 and position.altitude >= TARGET_ALTITUDE-TARGET_ALTITUDE/20.0) {
barrier_wait(ROBOTS, action, land)
} else {
log("Altitude: ", TARGET_ALTITUDE)
neighbors.broadcast("cmd", 22)
uav_takeoff(TARGET_ALTITUDE)
}
}
firstpassL = 1
function land() {
UAVSTATE = "LAND"
statef=land
if(firstpassL) {
barrier_create(TAKEOFF_VSTIG+1)
firstpassL = 0
}
neighbors.broadcast("cmd", 21)
uav_land()
if(flight.status != 2 and flight.status != 3){
barrier_wait(ROBOTS,turnedoff,land)
}
}
function goto() {
UAVSTATE = "GOTO"
statef=goto
if(rc_goto.id==id){
s.leave()
gotoWP(picture)
} else {
neighbors.broadcast("cmd", 16)
neighbors.broadcast("gt", rc_goto.id+rc_goto.longitude+rc_goto.latitude)
}
}
function picture() {
#TODO: change gimbal orientation
uav_takepicture()
statef=idle
}
function gotoWP(transf) {
# print(rc_goto.id, " is going alone to lat=", rc_goto.latitude)
rb_from_gps(rc_goto.latitude, rc_goto.longitude)
print(id, " has to move ", goal.range)
m_navigation = math.vec2.newp(goal.range, goal.bearing)
if(math.vec2.length(m_navigation)>GOTO_MAXVEL) {
m_navigation = math.vec2.scale(m_navigation, GOTO_MAXVEL/math.vec2.length(m_navigation))
uav_moveto(m_navigation.x, m_navigation.y, rc_goto.altitude-position.altitude)
} else if(math.vec2.length(m_navigation)>0.25)
uav_moveto(m_navigation.x, m_navigation.y, rc_goto.altitude-position.altitude)
else
transf()
}
function follow() {
if(size(targets)>0) {
UAVSTATE = "FOLLOW"
statef=follow
attractor=math.vec2.newp(0,0)
foreach(targets, function(id, tab) {
force=(0.05)*(tab.range)^4
attractor=math.vec2.add(attractor, math.vec2.newp(force, tab.bearing))
})
uav_moveto(attractor.x, attractor.y, 0.0)
} else {
log("No target in local table!")
#statef=idle
}
}
function uav_rccmd() {
if(flight.rc_cmd==22) {
log("cmd 22")
flight.rc_cmd=0
statef = takeoff
UAVSTATE = "TAKEOFF"
neighbors.broadcast("cmd", 22)
} else if(flight.rc_cmd==21) {
log("cmd 21")
log("To land")
flight.rc_cmd=0
statef = land
UAVSTATE = "LAND"
neighbors.broadcast("cmd", 21)
} else if(flight.rc_cmd==16) {
flight.rc_cmd=0
UAVSTATE = "GOTO"
statef = goto
} else if(flight.rc_cmd==400) {
flight.rc_cmd=0
uav_arm()
neighbors.broadcast("cmd", 400)
} else if (flight.rc_cmd==401){
flight.rc_cmd=0
uav_disarm()
neighbors.broadcast("cmd", 401)
} else if (flight.rc_cmd==666){
flight.rc_cmd=0
stattab_send()
}
}
function uav_neicmd() {
neighbors.listen("cmd",
function(vid, value, rid) {
print("Got (", vid, ",", value, ") from robot #", rid)
if(value==22 and UAVSTATE!="TAKEOFF") {
statef=takeoff
} else if(value==21) {
statef=land
} else if(value==400 and UAVSTATE=="IDLE") {
uav_arm()
} else if(value==401 and UAVSTATE=="IDLE"){
uav_disarm()
} else if(value==16){
# neighbors.listen("gt",function(vid, value, rid) {
# print("Got (", vid, ",", value, ") from robot #", rid)
# # if(gt.id == id) statef=goto
# })
}
})
}
function LimitAngle(angle){
if(angle>2*math.pi)
return angle-2*math.pi
else if (angle<0)
return angle+2*math.pi
else
return angle
}
function rb_from_gps(lat, lon) {
print("gps2rb: ",lat,lon,position.latitude,position.longitude)
d_lon = lon - position.longitude
d_lat = lat - position.latitude
ned_x = d_lat/180*math.pi * 6371000.0;
ned_y = d_lon/180*math.pi * 6371000.0 * math.cos(lat/180*math.pi);
goal.range = math.sqrt(ned_x*ned_x+ned_y*ned_y);
goal.bearing = LimitAngle(math.atan(ned_y,ned_x));
}
function gps_from_rb(range, bearing) {
print("rb2gps: ",range,bearing,position.latitude,position.longitude)
latR = position.latitude*math.pi/180.0;
lonR = position.longitude*math.pi/180.0;
target_lat = math.asin(math.sin(latR) * math.cos(range/6371000.0) + math.cos(latR) * math.sin(range/6371000.0) * math.cos(bearing));
target_lon = lonR + math.atan(math.sin(bearing) * math.sin(range/6371000.0) * math.cos(latR), math.cos(range/6371000.0) - math.sin(latR) * math.sin(target_lat));
goal.latitude = target_lat*180.0/math.pi;
goal.longitude = target_lon*180.0/math.pi;
}