added Hull polygon from user inputs and minor enhancement to GIS and state machine
This commit is contained in:
parent
4ad8ecf443
commit
b3f9b7cf4e
|
@ -9,7 +9,7 @@
|
|||
#
|
||||
BARRIER_TIMEOUT = 200 # in steps
|
||||
BARRIER_VSTIG = 80
|
||||
timeW = 0
|
||||
timeW = 1
|
||||
barrier = nil
|
||||
hvs = 0;
|
||||
|
||||
|
@ -19,7 +19,7 @@ hvs = 0;
|
|||
#
|
||||
function barrier_create() {
|
||||
# reset
|
||||
timeW = 0
|
||||
timeW = 1
|
||||
# create barrier vstig
|
||||
#log("---> Prev. br. ", barrier, " ", BARRIER_VSTIG)
|
||||
if(barrier!=nil) {
|
||||
|
@ -61,7 +61,6 @@ function barrier_wait(threshold, transf, resumef, bc) {
|
|||
barrier_create()
|
||||
|
||||
barrier.put(id, bc)
|
||||
barrier.get(id)
|
||||
log("--->BS: ", barrier.size(), " / ", threshold, " (", BARRIER_VSTIG, " - ", barrier.get("d"), ") t= ", timeW)
|
||||
#if(barrier.size()-1 >= threshold or barrier.get("d") == 1) {
|
||||
if(barrier_allgood(barrier,bc)) {
|
||||
|
|
|
@ -2,7 +2,7 @@ GOTO_MAXVEL = 1.5 # m/steps
|
|||
GOTO_MAXDIST = 150 # m.
|
||||
GOTODIST_TOL = 0.4 # m.
|
||||
GOTOANG_TOL = 0.1 # rad.
|
||||
GPSlimit = {.1={.lat=45.510400, .lng=-73.610421},
|
||||
GPSlimit = {.1={.lat=45.510523, .lng=-73.611118},#{.lat=45.510400, .lng=-73.610421},
|
||||
.2={.lat=45.510896, .lng=-73.608731},
|
||||
.3={.lat=45.510355, .lng=-73.608404},
|
||||
.4={.lat=45.509840, .lng=-73.610072}}
|
||||
|
@ -18,7 +18,7 @@ function goto_gps(transf) {
|
|||
} else {
|
||||
m_navigation = LimitSpeed(m_navigation, 1.0)
|
||||
gf = {.0=m_navigation, .1=vec_from_gps(GPSlimit[1].lat, GPSlimit[1].lng, 0), .2=vec_from_gps(GPSlimit[2].lat, GPSlimit[2].lng, 0), .3=vec_from_gps(GPSlimit[3].lat, GPSlimit[3].lng, 0), .4=vec_from_gps(GPSlimit[4].lat, GPSlimit[4].lng, 0)}
|
||||
geofence(gf)
|
||||
#geofence(gf)
|
||||
#m_navigation = LCA(m_navigation)
|
||||
goto_abs(m_navigation.x, m_navigation.y, cur_goal.altitude - pose.position.altitude, 0.0)
|
||||
}
|
||||
|
|
|
@ -1,13 +1,26 @@
|
|||
# listens to commands from the remote control (web, commandline, rcclient node, etc)
|
||||
function rc_cmd_listen() {
|
||||
if(flight.rc_cmd==22) {
|
||||
log("cmd 22")
|
||||
if(BVMSTATE=="TURNEDOFF") {
|
||||
if(flight.rc_cmd==400) { #ARM
|
||||
flight.rc_cmd=0
|
||||
arm()
|
||||
neighbors.broadcast("cmd", 400)
|
||||
} else if (flight.rc_cmd==401){ #DISARM
|
||||
flight.rc_cmd=0
|
||||
disarm()
|
||||
neighbors.broadcast("cmd", 401)
|
||||
} else if(flight.rc_cmd==22) { #TAKEOFF\LAUNCH
|
||||
flight.rc_cmd=0
|
||||
BVMSTATE = "LAUNCH"
|
||||
neighbors.broadcast("cmd", 22)
|
||||
} else if(flight.rc_cmd==21) {
|
||||
} else if (flight.rc_cmd==777){ #SYNC
|
||||
flight.rc_cmd=0
|
||||
reinit_time_sync()
|
||||
neighbors.broadcast("cmd", 777)
|
||||
}
|
||||
} else {
|
||||
if(flight.rc_cmd==21) {
|
||||
flight.rc_cmd=0
|
||||
AUTO_LAUNCH_STATE = "TURNEDOFF"
|
||||
#barrier_set(ROBOTS, "GOHOME", BVMSTATE, 21)
|
||||
#barrier_ready(21)
|
||||
BVMSTATE = "STOP"
|
||||
|
@ -18,25 +31,11 @@ function rc_cmd_listen() {
|
|||
barrier_set(ROBOTS, "GOHOME", BVMSTATE, 20)
|
||||
barrier_ready(20)
|
||||
neighbors.broadcast("cmd", 20)
|
||||
# } else if(flight.rc_cmd==16) {
|
||||
# flight.rc_cmd=0
|
||||
# BVMSTATE = "PATHPLAN"
|
||||
} else if(flight.rc_cmd==400) {
|
||||
flight.rc_cmd=0
|
||||
arm()
|
||||
neighbors.broadcast("cmd", 400)
|
||||
} else if (flight.rc_cmd==401){
|
||||
flight.rc_cmd=0
|
||||
disarm()
|
||||
neighbors.broadcast("cmd", 401)
|
||||
} else if (flight.rc_cmd==666){
|
||||
} else if(BVMSTATE!="BARRIERWAIT" and BVMSTATE!="LAUNCH") {
|
||||
if (flight.rc_cmd==666){
|
||||
flight.rc_cmd=0
|
||||
stattab_send()
|
||||
} else if (flight.rc_cmd==777){
|
||||
flight.rc_cmd=0
|
||||
reinit_time_sync()
|
||||
neighbors.broadcast("cmd", 777)
|
||||
}else if (flight.rc_cmd==900){
|
||||
} else if (flight.rc_cmd==900){
|
||||
flight.rc_cmd=0
|
||||
barrier_set(ROBOTS, "TASK_ALLOCATE", BVMSTATE, 900)
|
||||
barrier_ready(900)
|
||||
|
@ -44,12 +43,14 @@ function rc_cmd_listen() {
|
|||
} else if (flight.rc_cmd==901){
|
||||
flight.rc_cmd=0
|
||||
destroyGraph()
|
||||
barrier_set(ROBOTS, "PURSUIT", BVMSTATE, 901)
|
||||
resetWP()
|
||||
barrier_set(ROBOTS, "DEPLOY", BVMSTATE, 901)
|
||||
barrier_ready(901)
|
||||
neighbors.broadcast("cmd", 901)
|
||||
} else if (flight.rc_cmd==902){
|
||||
flight.rc_cmd=0
|
||||
destroyGraph()
|
||||
resetWP()
|
||||
barrier_set(ROBOTS, "WAYPOINT", BVMSTATE, 902)
|
||||
barrier_ready(902)
|
||||
neighbors.broadcast("cmd", 902)
|
||||
|
@ -67,6 +68,8 @@ function rc_cmd_listen() {
|
|||
barrier_ready(904)
|
||||
neighbors.broadcast("cmd", 904)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# listens to neighbors broadcasting commands
|
||||
|
@ -74,53 +77,52 @@ function nei_cmd_listen() {
|
|||
neighbors.listen("cmd",
|
||||
function(vid, value, rid) {
|
||||
print("Got (", vid, ",", value, ") #", rid, "(", BVMSTATE, ")")
|
||||
#if(BVMSTATE!="BARRIERWAIT") {
|
||||
if(value==22 and BVMSTATE=="TURNEDOFF") {
|
||||
if(BVMSTATE=="TURNEDOFF") {
|
||||
if(value==22) {
|
||||
BVMSTATE = "LAUNCH"
|
||||
}else if(value==20) {
|
||||
} else if(value==400) {
|
||||
arm()
|
||||
} else if(value==401){
|
||||
disarm()
|
||||
} else if(value==777){
|
||||
reinit_time_sync()
|
||||
}
|
||||
} else {
|
||||
if(value==20) {
|
||||
AUTO_LAUNCH_STATE = "IDLE"
|
||||
BVMSTATE = "GOHOME"
|
||||
} else if(value==21 and BVMSTATE!="TURNEDOFF") {
|
||||
} else if(value==21 ) {
|
||||
BVMSTATE = "STOP"
|
||||
} else if(value==400 and BVMSTATE=="TURNEDOFF") {
|
||||
arm()
|
||||
} else if(value==401 and BVMSTATE=="TURNEDOFF"){
|
||||
disarm()
|
||||
} else if(value==777 and BVMSTATE=="TURNEDOFF"){
|
||||
reinit_time_sync()
|
||||
#neighbors.broadcast("cmd", 777)
|
||||
}else if(value==900){ # Shapes
|
||||
}else if(BVMSTATE!="BARRIERWAIT" and BVMSTATE!="LAUNCH") {
|
||||
if(value==900){ # Shapes
|
||||
barrier_set(ROBOTS, "TASK_ALLOCATE", BVMSTATE, 900)
|
||||
#barrier_ready(900)
|
||||
#neighbors.broadcast("cmd", 900)
|
||||
} else if(value==901 and BVMSTATE!="BARRIERWAIT"){ # Pursuit
|
||||
} else if(value==901 and BVMSTATE!="DEPLOY" ){ # Pursuit
|
||||
destroyGraph()
|
||||
barrier_set(ROBOTS, "PURSUIT", BVMSTATE, 901)
|
||||
barrier_set(ROBOTS, "DEPLOY", BVMSTATE, 901)
|
||||
#barrier_ready(901)
|
||||
#neighbors.broadcast("cmd", 901)
|
||||
} else if(value==902 and BVMSTATE!="BARRIERWAIT" and BVMSTATE!="WAYPOINT"){ # Waypoint
|
||||
} else if(value==902 and BVMSTATE!="WAYPOINT" and BVMSTATE!="TURNEDOFF"){ # Waypoint
|
||||
destroyGraph()
|
||||
barrier_set(ROBOTS, "WAYPOINT", BVMSTATE, 902)
|
||||
#barrier_ready(902)
|
||||
#neighbors.broadcast("cmd", 902)
|
||||
} else if(value==903 and BVMSTATE!="BARRIERWAIT" and BVMSTATE!="POTENTIAL"){ # Formation
|
||||
} else if(value==903 and BVMSTATE!="POTENTIAL" and BVMSTATE!="TURNEDOFF"){ # Formation
|
||||
destroyGraph()
|
||||
resetWP()
|
||||
barrier_set(ROBOTS, "POTENTIAL", BVMSTATE, 903)
|
||||
#barrier_ready(903)
|
||||
#neighbors.broadcast("cmd", 903)
|
||||
} else if(value==904 and BVMSTATE!="BARRIERWAIT" and BVMSTATE!="IDLE"){ # idle
|
||||
} else if(value==904 and BVMSTATE!="IDLE" and BVMSTATE!="TURNEDOFF"){ # idle
|
||||
destroyGraph()
|
||||
resetWP()
|
||||
barrier_set(ROBOTS, "IDLE", BVMSTATE, 904)
|
||||
#barrier_ready(904)
|
||||
#neighbors.broadcast("cmd", 904)
|
||||
} else if(value==16 and BVMSTATE=="IDLE"){
|
||||
# neighbors.listen("gt",function(vid, value, rid) {
|
||||
# print("Got (", vid, ",", value, ") from robot #", rid)
|
||||
# # if(gt.id == id) statef=goto
|
||||
# })
|
||||
}
|
||||
#}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -141,7 +143,8 @@ function check_rc_wp() {
|
|||
v_wp.put(rc_goto.id,ls)
|
||||
reset_rc()
|
||||
}
|
||||
}
|
||||
} else
|
||||
v_wp.get(0)
|
||||
}
|
||||
|
||||
function resetWP() {
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
include "utils/vec2.bzz"
|
||||
include "act/barrier.bzz"
|
||||
include "utils/conversions.bzz"
|
||||
include "utils/quickhull.bzz"
|
||||
include "act/naviguation.bzz"
|
||||
include "act/CA.bzz"
|
||||
include "act/neighborcomm.bzz"
|
||||
|
@ -32,6 +33,7 @@ function idle() {
|
|||
# Core state function to launch the robot: takeoff and wait for others, or stop (land)
|
||||
function launch() {
|
||||
BVMSTATE = "LAUNCH"
|
||||
log("AUTO_LAUNCH_STATE: ", AUTO_LAUNCH_STATE)
|
||||
if(V_TYPE == 0 or V_TYPE == 1) { # flying vehicle so TAKE_OFF
|
||||
homegps = {.lat=pose.position.latitude, .long=pose.position.longitude}
|
||||
if(pose.position.altitude >= TARGET_ALTITUDE-TARGET_ALTITUDE/20.0) {
|
||||
|
@ -71,11 +73,13 @@ gohomeT=100
|
|||
# State function to go back to ROSBuzz recorded home GPS position (at takeoff)
|
||||
function goinghome() {
|
||||
BVMSTATE = "GOHOME"
|
||||
if(V_TYPE == 0 or V_TYPE == 1) { # flying vehicle so TAKE_OFF
|
||||
if(gohomeT > 0) { # TODO: Make a real check if home is reached
|
||||
gohome()
|
||||
gohomeT = gohomeT - 1
|
||||
} else
|
||||
BVMSTATE = AUTO_LAUNCH_STATE
|
||||
}
|
||||
}
|
||||
|
||||
# Core state function to stop and land.
|
||||
|
@ -85,14 +89,14 @@ function stop() {
|
|||
neighbors.broadcast("cmd", 21)
|
||||
uav_land()
|
||||
if(pose.position.altitude <= 0.2) {
|
||||
BVMSTATE = "TURNEDOFF"
|
||||
#barrier_set(ROBOTS,"TURNEDOFF","STOP", 21)
|
||||
#barrier_ready(21)
|
||||
BVMSTATE = "STOP"
|
||||
barrier_set(ROBOTS,"TURNEDOFF","STOP", 21)
|
||||
barrier_ready(21)
|
||||
}
|
||||
} else {
|
||||
BVMSTATE = "TURNEDOFF"
|
||||
#barrier_set(ROBOTS,"TURNEDOFF","STOP", 21)
|
||||
#barrier_ready(21)
|
||||
BVMSTATE = "STOP"
|
||||
barrier_set(ROBOTS,"TURNEDOFF","STOP", 21)
|
||||
barrier_ready(21)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -214,6 +218,8 @@ function lj_sum(rid, data, accum) {
|
|||
function lennardjones() {
|
||||
BVMSTATE="POTENTIAL"
|
||||
check_rc_wp()
|
||||
if(V_TYPE == 2) # NOT MOVING!
|
||||
return
|
||||
# Calculate accumulator
|
||||
accum_lj = neighbors.map(lj_vector).reduce(lj_sum, math.vec2.new(0.0, 0.0))
|
||||
if(neighbors.count() > 0)
|
||||
|
@ -243,22 +249,54 @@ function lennardjones() {
|
|||
counter = 0
|
||||
function voronoicentroid() {
|
||||
BVMSTATE="DEPLOY"
|
||||
if(counter==0 and id!=0) {
|
||||
pts = getbounds()
|
||||
pts[0] = {.x=0, .y=0} #add itself
|
||||
it_pts = 1
|
||||
#table_print(pts)
|
||||
check_rc_wp()
|
||||
log("V_wp size:",v_wp.size())
|
||||
if(V_TYPE == 2) # NOT MOVING!
|
||||
return
|
||||
if(not(v_wp.size() > 0))
|
||||
return
|
||||
it_pts = 0
|
||||
att = {}
|
||||
v_wp.foreach(
|
||||
function(key, value, robot){
|
||||
wp = unpackWP2i(value)
|
||||
if(key > 99)
|
||||
log("Nothing planed for the repulsors yet....")
|
||||
else if(key > 49)
|
||||
att[it_pts]=vec_from_gps(wp.lat, wp.lon, 0)
|
||||
it_pts = it_pts + 1
|
||||
})
|
||||
# Boundaries from Geofence
|
||||
#it_pts = 0
|
||||
#foreach(GPSlimit, function(key, value) {
|
||||
# bounds[it_pts]=vec_from_gps(value.lat, value.lng, 0)
|
||||
# it_pts = it_pts + 1
|
||||
#})
|
||||
# Boundaries from user attractors
|
||||
#att = {.0=vec_from_gps(45.510283, -73.609633, 0), .1=vec_from_gps(45.510398, -73.609281, 0)}
|
||||
bounds = QuickHull(att)
|
||||
if(size(bounds)<3 )
|
||||
return
|
||||
if(counter==0) {
|
||||
pts = {.np=size(bounds)}
|
||||
it_pts = 0
|
||||
foreach(bounds, function(key, value) {
|
||||
pts[it_pts]=value
|
||||
it_pts = it_pts + 1
|
||||
})
|
||||
pts[it_pts] = {.x=0, .y=0} #add itself
|
||||
it_pts = it_pts + 1
|
||||
if(neighbors.count() > 0) {
|
||||
neighbors.foreach(function(rid, data) {
|
||||
if(rid!=0){ #remove GS (?)
|
||||
pts[it_pts]=math.vec2.newp(data.distance,data.azimuth+pts.oa)
|
||||
pts[it_pts]=math.vec2.newp(data.distance,data.azimuth)
|
||||
it_pts = it_pts + 1
|
||||
}
|
||||
})
|
||||
#table_print(pts)
|
||||
voronoi(pts)
|
||||
}
|
||||
counter=10
|
||||
counter=4
|
||||
}
|
||||
counter=counter-1
|
||||
|
||||
|
@ -269,28 +307,6 @@ function voronoicentroid_done() {
|
|||
BVMSTATE="DEPLOY"
|
||||
}
|
||||
|
||||
function getbounds(){
|
||||
var RBlimit = {}
|
||||
foreach(GPSlimit, function(key, value) {
|
||||
RBlimit[key] = vec_from_gps(value.lat, value.lng, 0)
|
||||
})
|
||||
minY = RBlimit[1].y
|
||||
maxY = RBlimit[1].y
|
||||
minX = RBlimit[1].x
|
||||
maxX = RBlimit[1].x
|
||||
foreach(RBlimit, function(key, value) {
|
||||
if(value.y<minY)
|
||||
minY = value.y
|
||||
if(value.y>maxY)
|
||||
maxY = value.y
|
||||
if(value.x>maxX)
|
||||
maxX = value.x
|
||||
if(value.x<minX)
|
||||
minX = value.x
|
||||
})
|
||||
return {.miny=minY, .minx=minX, .maxy=maxY, .maxx=maxX, .oa=0.0}
|
||||
}
|
||||
|
||||
# Custom state function for the developer to play with
|
||||
function cusfun(){
|
||||
BVMSTATE="CUSFUN"
|
||||
|
|
|
@ -110,7 +110,7 @@ function r2i(value){
|
|||
#
|
||||
function find(table,value){
|
||||
var ind=nil
|
||||
var i=0
|
||||
i=0
|
||||
while(i<size(table)){
|
||||
if(table[i]==value)
|
||||
ind=i
|
||||
|
@ -187,7 +187,7 @@ function unpack_guide_msg(recv_value){
|
|||
#
|
||||
function target4label(nei_id){
|
||||
var return_val="miss"
|
||||
var i=0
|
||||
i=0
|
||||
while(i<size(lock_neighbor_id)){
|
||||
if(lock_neighbor_id[i]==nei_id){
|
||||
return_val=lock_neighbor_dis[i]
|
||||
|
@ -216,7 +216,7 @@ function LJ_vec(i){
|
|||
#calculate the motion vector
|
||||
#
|
||||
function motion_vector(){
|
||||
var i=0
|
||||
i=0
|
||||
var m_vector={.x=0.0,.y=0.0}
|
||||
while(i<m_neighbourCount){
|
||||
#calculate and add the motion vector
|
||||
|
@ -272,7 +272,7 @@ function Get_DisAndAzi(t_id){
|
|||
function UpdateNodeInfo(){
|
||||
#Collect informaiton
|
||||
#Update information
|
||||
var i=0
|
||||
i=0
|
||||
|
||||
while(i<m_neighbourCount){
|
||||
if(m_MessageState[i]=="GRAPH_JOINED"){
|
||||
|
@ -316,8 +316,8 @@ function DoFree() {
|
|||
#find a set of joined robots
|
||||
var setJoinedLabels={}
|
||||
var setJoinedIndexes={}
|
||||
var i=0
|
||||
var j=0
|
||||
i=0
|
||||
j=0
|
||||
while(i<m_neighbourCount){
|
||||
if(m_MessageState[i]=="GRAPH_JOINED"){
|
||||
setJoinedLabels[j]=m_MessageLabel[i]
|
||||
|
@ -367,7 +367,7 @@ function DoAsking(){
|
|||
}else {
|
||||
UpdateGraph()
|
||||
#look for response from predecessor
|
||||
var i=0
|
||||
i=0
|
||||
var psResponse=-1
|
||||
while(i<m_neighbourCount and psResponse==-1){
|
||||
#the respond robot in joined state
|
||||
|
@ -448,7 +448,7 @@ function DoJoining(){
|
|||
|
||||
function set_rc_goto() {
|
||||
#get information of pred
|
||||
var i=0
|
||||
i=0
|
||||
var IDofPred=-1
|
||||
while(i<m_neighbourCount and IDofPred==-1){
|
||||
if(m_MessageLabel[i]==m_vecNodes[m_nLabel].Pred and m_MessageState[i]=="GRAPH_JOINED")
|
||||
|
@ -497,8 +497,8 @@ function DoJoined(){
|
|||
|
||||
#collect all requests
|
||||
var mapRequests={}
|
||||
var i=0
|
||||
var j=0
|
||||
i=0
|
||||
j=0
|
||||
var ReqLabel
|
||||
var JoiningLabel
|
||||
var seenPred=0
|
||||
|
@ -588,7 +588,7 @@ function DoLock() {
|
|||
#record neighbor distance
|
||||
lock_neighbor_id={}
|
||||
lock_neighbor_dis={}
|
||||
var i=0
|
||||
i=0
|
||||
while(i<m_neighbourCount){
|
||||
lock_neighbor_id[i]=m_messageID[i]
|
||||
lock_neighbor_dis[i]=m_MessageRange[i]
|
||||
|
|
|
@ -0,0 +1,122 @@
|
|||
hullPts = {}
|
||||
hullC = 0
|
||||
|
||||
# When called returns a list of points that forms a convex hull around
|
||||
# the listPts Given (http://adultstudylife.blogspot.com/2016/06/quick-hull-in-python.html)
|
||||
function QuickHull(focalpts) {
|
||||
listPts = {}
|
||||
hullPts = {}
|
||||
jp = 0
|
||||
foreach(focalpts, function(key, pt) {
|
||||
ip = 0
|
||||
while(ip<6){
|
||||
listPts[jp*6+ip]=math.vec2.add(pt,math.vec2.newp(20, ip*math.pi/3))
|
||||
#log("Created new pt: ", listPts[j*6+i].x, listPts[j*6+i].y, "(", pt.x, pt.y, ")")
|
||||
ip=ip+1
|
||||
}
|
||||
jp=jp+1
|
||||
})
|
||||
|
||||
# get the min, and max from the list of points
|
||||
min_max = get_min_max_x(listPts)
|
||||
|
||||
hullPts = quickhull_rec(listPts, min_max.min, min_max.max)
|
||||
|
||||
hullPts = quickhull_rec(listPts, min_max.max, min_max.min)
|
||||
|
||||
return hullPts
|
||||
}
|
||||
|
||||
# Does the sorting for the quick hull sorting algorithm
|
||||
function quickhull_rec(listPts, minp, maxp) {
|
||||
left_of_line_pts = get_points_left_of_line(minp, maxp, listPts)
|
||||
|
||||
ptC = point_max_from_line(minp, maxp, left_of_line_pts)
|
||||
|
||||
if(size(ptC) < 1){
|
||||
hullPts[hullC] = maxp # max
|
||||
hullC = hullC +1
|
||||
return hullPts
|
||||
#log("Add pt:", maxp.x, maxp.y)
|
||||
}
|
||||
|
||||
hullPts = quickhull_rec(left_of_line_pts, minp, ptC)
|
||||
|
||||
hullPts = quickhull_rec(left_of_line_pts, ptC, maxp)
|
||||
|
||||
return hullPts
|
||||
}
|
||||
|
||||
# Returns all points that are LEFT of a line start->end
|
||||
function get_points_left_of_line(minp, maxp, listPts) {
|
||||
pts = {}
|
||||
ih = 0
|
||||
|
||||
foreach(listPts, function(key, pt) {
|
||||
if(isCCW(minp, maxp, pt)){
|
||||
pts[ih]=pt
|
||||
ih=ih+1
|
||||
}
|
||||
})
|
||||
|
||||
return pts
|
||||
}
|
||||
|
||||
# Returns the maximum point from a line start->end
|
||||
function point_max_from_line(minp, maxp, points) {
|
||||
max_dist = 0
|
||||
max_point = {}
|
||||
|
||||
foreach(points, function(key, point) {
|
||||
if((not(math.vec2.equal(point, minp))) and (not(math.vec2.equal(point, maxp)))) {
|
||||
#log("Get distance of pt: ", point.x, point.y)
|
||||
dist = distance_toline(minp, maxp, point)
|
||||
if(dist > max_dist) {
|
||||
max_dist = dist
|
||||
max_point = point
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
return max_point
|
||||
}
|
||||
|
||||
function get_min_max_x(list_pts) {
|
||||
min_x = 100000
|
||||
max_x = 0
|
||||
min_y = 0
|
||||
max_y = 0
|
||||
|
||||
foreach(list_pts, function(key, point) {
|
||||
if(point.x < min_x){
|
||||
min_x = point.x
|
||||
min_y = point.y
|
||||
}
|
||||
if(point.x > max_x){
|
||||
max_x = point.x
|
||||
max_y = point.y
|
||||
}
|
||||
})
|
||||
|
||||
return {.min=math.vec2.new(min_x, min_y), .max=math.vec2.new(max_x, max_y)}
|
||||
}
|
||||
|
||||
# Given a line of start->end, will return the distance that
|
||||
# point, pt, is from the line.
|
||||
function distance_toline(start, end, pt) { # pt is the point
|
||||
x1 = start.x
|
||||
y1 = start.y
|
||||
x2 = end.x
|
||||
y2 = end.y
|
||||
x0 = pt.x
|
||||
y0 = pt.y
|
||||
nom = math.abs((y2 - y1) * x0 - (x2 - x1) * y0 + x2 * y1 - y2 * x1)
|
||||
denom = math.vec2.length(math.vec2.sub(end,start))
|
||||
result = nom / denom
|
||||
return result
|
||||
}
|
||||
|
||||
# Tests whether the turn formed by A, B, and C is ccw
|
||||
function isCCW(A, B, C){
|
||||
return (B.x - A.x) * (C.y - A.y) > (B.y - A.y) * (C.x - A.x)
|
||||
}
|
|
@ -1,7 +1,11 @@
|
|||
function table_print(t) {
|
||||
if(t==nil)
|
||||
log("Table do not exist!")
|
||||
else {
|
||||
foreach(t, function(key, value) {
|
||||
log(key, " -> ", value)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
function table_copy(t) {
|
||||
|
@ -16,8 +20,8 @@ function table_copy(t) {
|
|||
#return the number of value in table
|
||||
#
|
||||
function count(table,value){
|
||||
var number=0
|
||||
var i=0
|
||||
number=0
|
||||
i=0
|
||||
while(i<size(table)){
|
||||
if(table[i]==value){
|
||||
number=number+1
|
||||
|
@ -27,17 +31,17 @@ function count(table,value){
|
|||
return number
|
||||
}
|
||||
#
|
||||
#map from int to state
|
||||
# map from int to state - vstig serialization limits to 9....
|
||||
#
|
||||
function i2s(value){
|
||||
if(value==1){
|
||||
return "GRAPH_ASKING"
|
||||
return "IDLE"
|
||||
}
|
||||
else if(value==2){
|
||||
return "GRAPH_JOINING"
|
||||
return "DEPLOY"
|
||||
}
|
||||
else if(value==3){
|
||||
return "GRAPH_JOINED"
|
||||
return "STOP"
|
||||
}
|
||||
else if(value==4){
|
||||
return "TURNEDOFF"
|
||||
|
@ -62,16 +66,16 @@ function i2s(value){
|
|||
}
|
||||
}
|
||||
#
|
||||
#map from state to int
|
||||
# map from state to int - vstig serialization limits to 9....
|
||||
#
|
||||
function s2i(value){
|
||||
if(value=="GRAPH_ASKING"){
|
||||
if(value=="IDLE"){
|
||||
return 1
|
||||
}
|
||||
else if(value=="GRAPH_JOINING"){
|
||||
else if(value=="DEPLOY"){
|
||||
return 2
|
||||
}
|
||||
else if(value=="GRAPH_JOINED"){
|
||||
else if(value=="STOP"){
|
||||
return 3
|
||||
}
|
||||
else if(value=="TURNEDOFF"){
|
||||
|
|
|
@ -105,3 +105,7 @@ math.vec2.scale = function(v, s) {
|
|||
math.vec2.dot = function(v1, v2) {
|
||||
return v1.x * v2.x + v1.y * v2.y
|
||||
}
|
||||
|
||||
math.vec2.equal = function(v1, v2) {
|
||||
return (v1.x == v2.x) and (v1.y == v2.y)
|
||||
}
|
|
@ -7,10 +7,11 @@ import csv
|
|||
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(1,1,1)
|
||||
fig.set_tight_layout(True)
|
||||
axes = plt.gca()
|
||||
axes.set_xlim([-70,70])
|
||||
axes.set_ylim([-70,70])
|
||||
datafile = open('src/rosbuzz/buzz_scripts/log/voronoi_4.csv', 'r')
|
||||
datafile = open('src/rosbuzz/buzz_scripts/log/voronoi_3.csv', 'r')
|
||||
Vorreader = csv.reader(datafile, delimiter=',')
|
||||
|
||||
def animate(i):
|
||||
|
@ -25,4 +26,5 @@ def animate(i):
|
|||
return
|
||||
|
||||
ani = animation.FuncAnimation(fig, animate, interval=250)
|
||||
ani.save('Voronoi.gif', dpi=80, writer='imagemagick')
|
||||
plt.show()
|
||||
|
|
|
@ -3,21 +3,16 @@ include "update.bzz"
|
|||
# it requires an 'action' function to be defined here.
|
||||
include "act/states.bzz"
|
||||
include "utils/table.bzz"
|
||||
include "plan/rrtstar.bzz"
|
||||
#include "plan/rrtstar.bzz"
|
||||
include "taskallocate/graphformGPS.bzz"
|
||||
include "taskallocate/bidding.bzz"
|
||||
#include "taskallocate/bidding.bzz"
|
||||
include "vstigenv.bzz"
|
||||
#include "timesync.bzz"
|
||||
include "utils/takeoff_heights.bzz"
|
||||
|
||||
#State launched after takeoff
|
||||
|
||||
AUTO_LAUNCH_STATE = "DEPLOY"
|
||||
TARGET = 9.0
|
||||
EPSILON = 30.0
|
||||
ROOT_ID = 3
|
||||
graph_id = 3
|
||||
graph_loop = 0
|
||||
AUTO_LAUNCH_STATE = "IDLE"
|
||||
LAND_AFTER_BARRIER_EXPIRE = 1 # if set to be 1 , the robots will land after barrier expire; if set to be 0, the robots will carry on to AUTO_LAUNCH_STATE.
|
||||
|
||||
#####
|
||||
|
@ -36,7 +31,7 @@ else
|
|||
function init() {
|
||||
init_stig()
|
||||
init_swarm()
|
||||
init_bidding()
|
||||
#init_bidding()
|
||||
|
||||
TARGET_ALTITUDE = takeoff_heights[id]
|
||||
|
||||
|
@ -44,7 +39,7 @@ function init() {
|
|||
nei_cmd_listen()
|
||||
|
||||
# Starting state: TURNEDOFF to wait for user input.
|
||||
BVMSTATE = "LAUNCH"
|
||||
BVMSTATE = "TURNEDOFF"
|
||||
}
|
||||
|
||||
# Executed at each time step.
|
||||
|
|
|
@ -68,6 +68,8 @@ struct Freelist
|
|||
struct Point
|
||||
{
|
||||
float x,y;
|
||||
Point(): x( 0.0 ), y( 0.0 ) { }
|
||||
Point( float x, float y ): x( x ), y( y ) { }
|
||||
};
|
||||
|
||||
// structure used both for sites and for vertices
|
||||
|
@ -206,12 +208,6 @@ private:
|
|||
void circle(float x, float y, float radius);
|
||||
void range(float minX, float minY, float maxX, float maxY);
|
||||
|
||||
|
||||
bool onSegment(Point p, Point q, Point r);
|
||||
int orientation(Point p, Point q, Point r);
|
||||
bool doIntersect(Point p1, Point q1, Point p2, Point q2);
|
||||
|
||||
|
||||
struct Freelist hfl;
|
||||
struct Halfedge *ELleftend, *ELrightend;
|
||||
int ELhashsize;
|
||||
|
|
|
@ -742,60 +742,6 @@ void VoronoiDiagramGenerator::plotinit()
|
|||
range(pxmin, pymin, pxmax, pymax);
|
||||
}
|
||||
|
||||
|
||||
// Given three colinear points p, q, r, the function checks if
|
||||
// point q lies on line segment 'pr'
|
||||
bool VoronoiDiagramGenerator::onSegment(Point p, Point q, Point r)
|
||||
{
|
||||
if (q.x <= std::max(p.x, r.x) && q.x >= std::min(p.x, r.x) &&
|
||||
q.y <= std::max(p.y, r.y) && q.y >= std::min(p.y, r.y))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
// To find orientation of ordered triplet (p, q, r).
|
||||
// The function returns following values
|
||||
// 0 --> p, q and r are colinear
|
||||
// 1 --> Clockwise
|
||||
// 2 --> Counterclockwise
|
||||
int VoronoiDiagramGenerator::orientation(Point p, Point q, Point r)
|
||||
{
|
||||
int val = (q.y - p.y) * (r.x - q.x) -
|
||||
(q.x - p.x) * (r.y - q.y);
|
||||
|
||||
if (val == 0) return 0; // colinear
|
||||
return (val > 0)? 1: 2; // clock or counterclock wise
|
||||
}
|
||||
// The function that returns true if line segment 'p1q1'
|
||||
// and 'p2q2' intersect.
|
||||
bool VoronoiDiagramGenerator::doIntersect(Point p1, Point q1, Point p2, Point q2)
|
||||
{
|
||||
// Find the four orientations needed for general and
|
||||
// special cases
|
||||
int o1 = orientation(p1, q1, p2);
|
||||
int o2 = orientation(p1, q1, q2);
|
||||
int o3 = orientation(p2, q2, p1);
|
||||
int o4 = orientation(p2, q2, q1);
|
||||
|
||||
// General case
|
||||
if (o1 != o2 && o3 != o4)
|
||||
return true;
|
||||
|
||||
// Special Cases
|
||||
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
|
||||
if (o1 == 0 && onSegment(p1, p2, q1)) return true;
|
||||
|
||||
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
|
||||
if (o2 == 0 && onSegment(p1, q2, q1)) return true;
|
||||
|
||||
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
|
||||
if (o3 == 0 && onSegment(p2, p1, q2)) return true;
|
||||
|
||||
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
|
||||
if (o4 == 0 && onSegment(p2, q1, q2)) return true;
|
||||
|
||||
return false; // Doesn't fall in any of the above cases
|
||||
}
|
||||
|
||||
void VoronoiDiagramGenerator::clip_line(struct Edge *e)
|
||||
{
|
||||
struct Site *s1, *s2;
|
||||
|
@ -805,7 +751,6 @@ void VoronoiDiagramGenerator::clip_line(struct Edge *e)
|
|||
x2 = e->reg[1]->coord.x;
|
||||
y1 = e->reg[0]->coord.y;
|
||||
y2 = e->reg[1]->coord.y;
|
||||
//printf("Clip line for edges: %d", e->edgenbr);
|
||||
|
||||
//if the distance between the two points this line was created from is less than
|
||||
//the square root of 2, then ignore it
|
||||
|
@ -905,7 +850,7 @@ void VoronoiDiagramGenerator::clip_line(struct Edge *e)
|
|||
{ y2 = pymin; x2 = (e -> c - y2)/e -> a;};
|
||||
};
|
||||
|
||||
//printf("\nPushing line (%f,%f,%f,%f)",x1,y1,x2,y2);
|
||||
//printf("Pushing line (%f,%f,%f,%f)\n",x1,y1,x2,y2);
|
||||
line(x1,y1,x2,y2,e->sites);
|
||||
}
|
||||
|
||||
|
|
|
@ -42,16 +42,11 @@ static bool logVoronoi = false;
|
|||
std::ofstream voronoicsv;
|
||||
|
||||
struct Point
|
||||
{
|
||||
int x;
|
||||
int y;
|
||||
};
|
||||
struct Pointf
|
||||
{
|
||||
float x;
|
||||
float y;
|
||||
Pointf(): x( 0.0 ), y( 0.0 ) { }
|
||||
Pointf( float x, float y ): x( x ), y( y ) { }
|
||||
Point(): x( 0.0 ), y( 0.0 ) { }
|
||||
Point( float x, float y ): x( x ), y( y ) { }
|
||||
};
|
||||
string WPlistname = "";
|
||||
|
||||
|
@ -224,6 +219,7 @@ void check_targets_sim(double lat, double lon, double *res)
|
|||
/ check if a listed target is close
|
||||
----------------------------------------------------------- */
|
||||
{
|
||||
float visibility_radius = 5.0;
|
||||
map<int, buzz_utility::RB_struct>::iterator it;
|
||||
for (it = wplist_map.begin(); it != wplist_map.end(); ++it)
|
||||
{
|
||||
|
@ -231,7 +227,7 @@ void check_targets_sim(double lat, double lon, double *res)
|
|||
double ref[2]={lat, lon};
|
||||
double tar[2]={it->second.latitude, it->second.longitude};
|
||||
rb_from_gps(tar, rb, ref);
|
||||
if(rb[0]<3.0){
|
||||
if(rb[0] < visibility_radius){
|
||||
ROS_WARN("FOUND A TARGET!!! [%i]", it->first);
|
||||
res[0] = it->first;
|
||||
res[1] = it->second.latitude;
|
||||
|
@ -272,164 +268,6 @@ int buzz_exportmap(buzzvm_t vm)
|
|||
return buzzvm_ret0(vm);
|
||||
}
|
||||
|
||||
float pol_area(vector <Pointf> vert) {
|
||||
float a = 0.0;
|
||||
vector <Pointf>::iterator it;
|
||||
vector <Pointf>::iterator next;
|
||||
for (it = vert.begin(); it != vert.end()-1; ++it){
|
||||
next = it+1;
|
||||
a += it->x * next->y - next->x * it->y;
|
||||
}
|
||||
a *= 0.5;
|
||||
//ROS_INFO("Polygon area: %f",a);
|
||||
return a;
|
||||
}
|
||||
|
||||
double* polygone_center(vector <Pointf> vert, double *c) {
|
||||
float A = pol_area(vert);
|
||||
int i1 = 1;
|
||||
vector <Pointf>::iterator it;
|
||||
vector <Pointf>::iterator next;
|
||||
for (it = vert.begin(); it != vert.end()-1; ++it){
|
||||
next = it+1;
|
||||
float t = it->x*next->y - next->x*it->y;
|
||||
c[0] += (it->x+next->x) * t;
|
||||
c[1] += (it->y+next->y) * t;
|
||||
}
|
||||
c[0] = c[0] / (6.0 * A);
|
||||
c[1] = c[1] / (6.0 * A);
|
||||
return c;
|
||||
}
|
||||
|
||||
float clockwise_angle_of( const Pointf& p )
|
||||
{
|
||||
return atan2(p.y,p.x);
|
||||
}
|
||||
|
||||
bool clockwise_compare_points( const Pointf& a, const Pointf& b )
|
||||
{
|
||||
return clockwise_angle_of( a ) < clockwise_angle_of( b );
|
||||
}
|
||||
|
||||
int voronoi_center(buzzvm_t vm) {
|
||||
float *xValues;//[4] = {-22, -17, 4,22};
|
||||
float *yValues;//[4] = {-9, 31,13,-5};
|
||||
float minx, miny, maxx, maxy;
|
||||
buzzvm_lnum_assert(vm, 1);
|
||||
// Get the parameter
|
||||
buzzvm_lload(vm, 1);
|
||||
buzzvm_type_assert(vm, 1, BUZZTYPE_TABLE); // dictionary
|
||||
buzzobj_t t = buzzvm_stack_at(vm, 1);
|
||||
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "maxx", 1));
|
||||
buzzvm_tget(vm);
|
||||
maxx = buzzvm_stack_at(vm, 1)->f.value;
|
||||
buzzvm_pop(vm);
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "maxy", 1));
|
||||
buzzvm_tget(vm);
|
||||
maxy = buzzvm_stack_at(vm, 1)->f.value;
|
||||
buzzvm_pop(vm);
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "minx", 1));
|
||||
buzzvm_tget(vm);
|
||||
minx = buzzvm_stack_at(vm, 1)->f.value;
|
||||
buzzvm_pop(vm);
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "miny", 1));
|
||||
buzzvm_tget(vm);
|
||||
miny = buzzvm_stack_at(vm, 1)->f.value;
|
||||
buzzvm_pop(vm);
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "oa", 1));
|
||||
buzzvm_tget(vm);
|
||||
float offset_angle = buzzvm_stack_at(vm, 1)->f.value;
|
||||
buzzvm_pop(vm);
|
||||
|
||||
long count = buzzdict_size(t->t.value)-5;
|
||||
xValues = new float[count];
|
||||
yValues = new float[count];
|
||||
for(int32_t i = 0; i < count; ++i) {
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushi(vm, i);
|
||||
buzzvm_tget(vm);
|
||||
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "x", 1));
|
||||
buzzvm_tget(vm);
|
||||
//ROS_INFO("---x-->%f",buzzvm_stack_at(vm, 1)->f.value);
|
||||
xValues[i] = buzzvm_stack_at(vm, 1)->f.value;
|
||||
buzzvm_pop(vm);
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "y", 1));
|
||||
buzzvm_tget(vm);
|
||||
//ROS_INFO("---y-->%f",buzzvm_stack_at(vm, 1)->f.value);
|
||||
yValues[i] = buzzvm_stack_at(vm, 1)->f.value;
|
||||
buzzvm_pop(vm);
|
||||
|
||||
buzzvm_pop(vm);
|
||||
}
|
||||
|
||||
VoronoiDiagramGenerator vdg;
|
||||
vdg.generateVoronoi(xValues,yValues,count, minx, maxx, miny, maxy,3);
|
||||
if(logVoronoi) voronoicsv << ros::Time::now().toNSec() << ",";
|
||||
vdg.resetIterator();
|
||||
|
||||
float x1,y1,x2,y2;
|
||||
int s[2];
|
||||
vector <Pointf> cell_vert;
|
||||
int i=0;
|
||||
while(vdg.getNext(x1,y1,x2,y2,s))
|
||||
{
|
||||
//ROS_INFO("GOT Line (%f,%f)->(%f,%f) between sites %d,%d\n",x1,y1,x2,y2,s[0],s[1]);
|
||||
if(logVoronoi) voronoicsv << x1 << "," << y1 << "," << x2 << "," << y2 << "," << s[0] << "," << s[1] << ",";
|
||||
i++;
|
||||
if((s[0]==0 || s[1]==0) && sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1))>0.1) {
|
||||
if(cell_vert.empty()){
|
||||
cell_vert.push_back(Pointf(x1,y1));
|
||||
cell_vert.push_back(Pointf(x2,y2));
|
||||
} else {
|
||||
bool alreadyin = false;
|
||||
vector <Pointf>::iterator itc;
|
||||
for (itc = cell_vert.begin(); itc != cell_vert.end(); ++itc) {
|
||||
double dist = sqrt((itc->x - x1) * (itc->x - x1) + (itc->y - y1) * (itc->y - y1));
|
||||
if(dist < 0.1) {
|
||||
alreadyin = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(!alreadyin)
|
||||
cell_vert.push_back(Pointf(x1, y1));
|
||||
alreadyin = false;
|
||||
for (itc = cell_vert.begin(); itc != cell_vert.end(); ++itc) {
|
||||
double dist = sqrt((itc->x - x2) * (itc->x - x2) + (itc->y - y2) * (itc->y - y2));
|
||||
if(dist < 0.1) {
|
||||
alreadyin = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(!alreadyin)
|
||||
cell_vert.push_back(Pointf(x2, y2));
|
||||
}
|
||||
}
|
||||
}
|
||||
std::sort( cell_vert.begin(), cell_vert.end(), clockwise_compare_points );
|
||||
cell_vert.push_back(cell_vert[0]);
|
||||
|
||||
double center_dist[2] = {0.0, 0.0};
|
||||
polygone_center(cell_vert, center_dist);
|
||||
if(logVoronoi) voronoicsv << center_dist[0] << "," << center_dist[1] << std::endl;
|
||||
center_dist[0]/=2;
|
||||
center_dist[1]/=2;
|
||||
double gps[3];
|
||||
gps_from_vec(center_dist, gps);
|
||||
//ROS_INFO("[%i] Voronoi cell center: %f, %f, %f, %f", buzz_utility::get_robotid(), center_dist[0], center_dist[1], gps[0], gps[1]);
|
||||
set_gpsgoal(gps);
|
||||
|
||||
return buzzvm_ret0(vm);
|
||||
}
|
||||
|
||||
/*
|
||||
* Geofence(): test for a point in a polygon
|
||||
* TAKEN from https://www.geeksforgeeks.org/how-to-check-if-a-given-point-lies-inside-a-polygon/
|
||||
|
@ -488,6 +326,21 @@ bool doIntersect(Point p1, Point q1, Point p2, Point q2)
|
|||
return false; // Doesn't fall in any of the above cases
|
||||
}
|
||||
|
||||
float clockwise_angle_of( const Point& p )
|
||||
{
|
||||
return atan2(p.y,p.x);
|
||||
}
|
||||
|
||||
bool clockwise_compare_points( const Point& a, const Point& b )
|
||||
{
|
||||
return clockwise_angle_of( a ) < clockwise_angle_of( b );
|
||||
}
|
||||
|
||||
void sortclose_polygon(vector <Point> *P){
|
||||
std::sort( P->begin(), P->end(), clockwise_compare_points );
|
||||
P->push_back((*P)[0]);
|
||||
}
|
||||
|
||||
int buzzuav_geofence(buzzvm_t vm)
|
||||
{
|
||||
bool onedge = false;
|
||||
|
@ -512,7 +365,7 @@ int buzzuav_geofence(buzzvm_t vm)
|
|||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "x", 1));
|
||||
buzzvm_tget(vm);
|
||||
tmp = round(buzzvm_stack_at(vm, 1)->f.value*10);
|
||||
tmp = buzzvm_stack_at(vm, 1)->f.value;
|
||||
//ROS_INFO("[%i]---x-->%i",buzz_utility::get_robotid(), tmp);
|
||||
if(i==0)
|
||||
P.x = tmp;
|
||||
|
@ -522,7 +375,7 @@ int buzzuav_geofence(buzzvm_t vm)
|
|||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "y", 1));
|
||||
buzzvm_tget(vm);
|
||||
tmp = round(buzzvm_stack_at(vm, 1)->f.value*10);
|
||||
tmp = buzzvm_stack_at(vm, 1)->f.value;
|
||||
//ROS_INFO("[%i]---y-->%i",buzz_utility::get_robotid(), tmp);
|
||||
if(i==0)
|
||||
P.y = tmp;
|
||||
|
@ -532,6 +385,8 @@ int buzzuav_geofence(buzzvm_t vm)
|
|||
|
||||
buzzvm_pop(vm);
|
||||
}
|
||||
// TODO: use vector
|
||||
//sortclose_polygon(&V);
|
||||
|
||||
// simple polygon: rectangle, 4 points
|
||||
int n = 4;
|
||||
|
@ -573,6 +428,276 @@ int buzzuav_geofence(buzzvm_t vm)
|
|||
return buzzvm_ret0(vm);
|
||||
}
|
||||
|
||||
float pol_area(vector <Point> vert) {
|
||||
float a = 0.0;
|
||||
//ROS_INFO("Polygone %d edges area.",vert.size());
|
||||
vector <Point>::iterator it;
|
||||
vector <Point>::iterator next;
|
||||
for (it = vert.begin(); it != vert.end()-1; ++it){
|
||||
next = it+1;
|
||||
a += it->x * next->y - next->x * it->y;
|
||||
}
|
||||
a *= 0.5;
|
||||
//ROS_INFO("Polygon area: %f",a);
|
||||
return a;
|
||||
}
|
||||
|
||||
double* polygone_center(vector <Point> vert, double *c) {
|
||||
float A = pol_area(vert);
|
||||
int i1 = 1;
|
||||
vector <Point>::iterator it;
|
||||
vector <Point>::iterator next;
|
||||
for (it = vert.begin(); it != vert.end()-1; ++it){
|
||||
next = it+1;
|
||||
float t = it->x*next->y - next->x*it->y;
|
||||
c[0] += (it->x+next->x) * t;
|
||||
c[1] += (it->y+next->y) * t;
|
||||
}
|
||||
c[0] = c[0] / (6.0 * A);
|
||||
c[1] = c[1] / (6.0 * A);
|
||||
return c;
|
||||
}
|
||||
|
||||
double numerator ( Point A, Point C, Point E, Point F ) { return (A.y - C.y) * (F.x - E.x) - (A.x - C.x) * (F.y - E.y); }
|
||||
double denominator( Point A, Point B, Point C, Point D ) { return (B.x - A.x) * (D.y - C.y) - (B.y - A.y) * (D.x - C.x); }
|
||||
|
||||
void getintersection(Point S, Point D, std::vector <Point> Poly, Point *I) {
|
||||
//printf("Points for intersection 1(%f,%f->%f,%f) and 2(%f,%f->%f,%f)\n",q1.x,q1.y,p1.x,p1.y,q2.x,q2.y,p2.x,p2.y);
|
||||
bool parallel = false;
|
||||
bool collinear = false;
|
||||
std::vector <Point>::iterator itc;
|
||||
std::vector <Point>::iterator next;
|
||||
for (itc = Poly.begin(); itc != Poly.end()-1; ++itc) {
|
||||
next = itc+1;
|
||||
if (doIntersect((*itc), (*next), S, D))
|
||||
{
|
||||
// Uses the determinant of the two lines. For more information, refer to one of the following:
|
||||
// https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection#Given_two_points_on_each_line
|
||||
// http://www.faqs.org/faqs/graphics/algorithms-faq/ (Subject 1.03)
|
||||
|
||||
double d = denominator( S, D, (*itc), (*next) );
|
||||
|
||||
if (std::abs( d ) < 0.000000001)
|
||||
{
|
||||
parallel = true;
|
||||
collinear = abs(numerator( S, D, (*itc), (*next) )) < 0.000000001;
|
||||
return;
|
||||
}
|
||||
|
||||
double r = numerator( S, (*itc), (*itc), (*next) ) / d;
|
||||
double s = numerator( S, (*itc), S, D ) / d;
|
||||
|
||||
(*I)=Point(S.x + r * (D.x - S.x), S.y + r * (D.y - S.y));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool isSiteout(Point S, std::vector <Point> Poly) {
|
||||
bool onedge = false;
|
||||
|
||||
// Create a point for line segment from p to infinite
|
||||
Point extreme = {10000, S.y};
|
||||
|
||||
// Count intersections of the above line with sides of polygon
|
||||
int count = 0;
|
||||
std::vector <Point>::iterator itc;
|
||||
std::vector <Point>::iterator next;
|
||||
for (itc = Poly.begin(); itc != Poly.end()-1; ++itc) {
|
||||
next = itc+1;
|
||||
|
||||
// Check if the line segment from 'p' to 'extreme' intersects
|
||||
// with the line segment from 'polygon[i]' to 'polygon[next]'
|
||||
if (doIntersect((*itc), (*next), S, extreme))
|
||||
{
|
||||
// If the point 'p' is colinear with line segment 'i-next',
|
||||
// then check if it lies on segment. If it lies, return true,
|
||||
// otherwise false
|
||||
if (orientation((*itc), S, (*next)) == 0) {
|
||||
onedge = onSegment((*itc), S, (*next));
|
||||
if(onedge)
|
||||
break;
|
||||
}
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
return ((count%2 == 0) && !onedge);
|
||||
}
|
||||
|
||||
int voronoi_center(buzzvm_t vm) {
|
||||
|
||||
float dist_max = 300;
|
||||
|
||||
buzzvm_lnum_assert(vm, 1);
|
||||
// Get the parameter
|
||||
buzzvm_lload(vm, 1);
|
||||
buzzvm_type_assert(vm, 1, BUZZTYPE_TABLE); // dictionary
|
||||
buzzobj_t t = buzzvm_stack_at(vm, 1);
|
||||
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "np", 1));
|
||||
buzzvm_tget(vm);
|
||||
int Poly_vert = buzzvm_stack_at(vm, 1)->i.value;
|
||||
buzzvm_pop(vm);
|
||||
|
||||
std::vector <Point> polygon_bound;
|
||||
for(int32_t i = 0; i < Poly_vert; ++i) {
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushi(vm, i);
|
||||
buzzvm_tget(vm);
|
||||
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "x", 1));
|
||||
buzzvm_tget(vm);
|
||||
//ROS_INFO("---x-->%f",buzzvm_stack_at(vm, 1)->f.value);
|
||||
float tmpx = buzzvm_stack_at(vm, 1)->f.value;
|
||||
buzzvm_pop(vm);
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "y", 1));
|
||||
buzzvm_tget(vm);
|
||||
//ROS_INFO("---y-->%f",buzzvm_stack_at(vm, 1)->f.value);
|
||||
float tmpy = buzzvm_stack_at(vm, 1)->f.value;
|
||||
buzzvm_pop(vm);
|
||||
|
||||
polygon_bound.push_back(Point(tmpx, tmpy));
|
||||
//ROS_INFO("[%i] Polygon vertex: %f, %f", buzz_utility::get_robotid(),tmpx,tmpy);
|
||||
|
||||
buzzvm_pop(vm);
|
||||
}
|
||||
sortclose_polygon(&polygon_bound);
|
||||
// Check if we are in the zone
|
||||
if(isSiteout(Point(0,0), polygon_bound)){
|
||||
//ROS_WARN("Not in the Zone!!!");
|
||||
double goal_tmp[2];
|
||||
do{
|
||||
goal_tmp[0] = polygon_bound[0].x + (rand()%100)/100.0*(polygon_bound[2].x- polygon_bound[0].x);
|
||||
goal_tmp[1] = polygon_bound[0].y + (rand()%100)/100.0*(polygon_bound[2].y- polygon_bound[0].y);
|
||||
//ROS_WARN(" in the Zone (%f,%f)!",goal_tmp[0],goal_tmp[1]);
|
||||
} while(isSiteout(Point(goal_tmp[0],goal_tmp[1]), polygon_bound));
|
||||
ROS_WARN("Sending at a random location in the Zone (%f,%f)!",goal_tmp[0],goal_tmp[1]);
|
||||
double gps[3];
|
||||
gps_from_vec(goal_tmp, gps);
|
||||
set_gpsgoal(gps);
|
||||
return buzzvm_ret0(vm);
|
||||
}
|
||||
|
||||
|
||||
int count = buzzdict_size(t->t.value)-(Poly_vert+1);
|
||||
ROS_WARN("NP: %d, Sites: %d", Poly_vert, count);
|
||||
float *xValues = new float[count];
|
||||
float *yValues = new float[count];
|
||||
for(int32_t i = 0; i < count; ++i) {
|
||||
int index = i + Poly_vert;
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushi(vm, index);
|
||||
buzzvm_tget(vm);
|
||||
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "x", 1));
|
||||
buzzvm_tget(vm);
|
||||
//ROS_INFO("---x-->%f",buzzvm_stack_at(vm, 1)->f.value);
|
||||
xValues[i] = buzzvm_stack_at(vm, 1)->f.value;
|
||||
buzzvm_pop(vm);
|
||||
buzzvm_dup(vm);
|
||||
buzzvm_pushs(vm, buzzvm_string_register(vm, "y", 1));
|
||||
buzzvm_tget(vm);
|
||||
//ROS_INFO("---y-->%f",buzzvm_stack_at(vm, 1)->f.value);
|
||||
yValues[i] = buzzvm_stack_at(vm, 1)->f.value;
|
||||
buzzvm_pop(vm);
|
||||
|
||||
buzzvm_pop(vm);
|
||||
}
|
||||
|
||||
VoronoiDiagramGenerator vdg;
|
||||
ROS_WARN("[%i] Voronoi Bounded tessellation starting with %i sites...", buzz_utility::get_robotid(),count);
|
||||
vdg.generateVoronoi(xValues, yValues, count, -dist_max, dist_max, -dist_max, dist_max, 3.0);
|
||||
if(logVoronoi) voronoicsv << ros::Time::now().toNSec() << ",";
|
||||
vdg.resetIterator();
|
||||
//ROS_WARN("[%i] Voronoi Bounded tessellation done!", buzz_utility::get_robotid());
|
||||
|
||||
std::vector <Point>::iterator itc, next;
|
||||
for (itc = polygon_bound.begin(); itc != polygon_bound.end()-1; ++itc) {
|
||||
next = itc+1;
|
||||
if(logVoronoi) voronoicsv << itc->x << "," << itc->y << "," << next->x << "," << next->y << "," << 0 << "," << 0 << ",";
|
||||
}
|
||||
|
||||
float x1,y1,x2,y2;
|
||||
int s[2];
|
||||
vector <Point> cell_vert;
|
||||
Point Intersection;
|
||||
int i=0;
|
||||
while(vdg.getNext(x1,y1,x2,y2,s))
|
||||
{
|
||||
//ROS_INFO("GOT Line (%f,%f)->(%f,%f) between sites %d,%d",x1,y1,x2,y2,s[0],s[1]);
|
||||
if(sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1))<0.1)
|
||||
continue;
|
||||
bool isout1 = isSiteout(Point(x1,y1), polygon_bound);
|
||||
bool isout2 = isSiteout(Point(x2,y2), polygon_bound);
|
||||
if(isout1 && isout2){
|
||||
//ROS_INFO("Line out of area!");
|
||||
continue;
|
||||
}else if(isout1) {
|
||||
getintersection(Point(x2,y2), Point(x1,y1), polygon_bound, &Intersection);
|
||||
x1 = Intersection.x;
|
||||
y1 = Intersection.y;
|
||||
//ROS_INFO("Site out 1 -> (%f,%f)", x1, y1);
|
||||
}else if(isout2) {
|
||||
getintersection(Point(x1,y1), Point(x2,y2), polygon_bound, &Intersection);
|
||||
x2 = Intersection.x;
|
||||
y2 = Intersection.y;
|
||||
//ROS_INFO("Site out 2 -> (%f,%f)", x2, y2);
|
||||
}
|
||||
if(logVoronoi) voronoicsv << x1 << "," << y1 << "," << x2 << "," << y2 << "," << s[0] << "," << s[1] << ",";
|
||||
i++;
|
||||
if((s[0]==0 || s[1]==0)) {
|
||||
if(cell_vert.empty()){
|
||||
cell_vert.push_back(Point(x1,y1));
|
||||
cell_vert.push_back(Point(x2,y2));
|
||||
} else {
|
||||
bool alreadyin = false;
|
||||
vector <Point>::iterator itc;
|
||||
for (itc = cell_vert.begin(); itc != cell_vert.end(); ++itc) {
|
||||
double dist = sqrt((itc->x - x1) * (itc->x - x1) + (itc->y - y1) * (itc->y - y1));
|
||||
if(dist < 0.1) {
|
||||
alreadyin = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(!alreadyin)
|
||||
cell_vert.push_back(Point(x1, y1));
|
||||
alreadyin = false;
|
||||
for (itc = cell_vert.begin(); itc != cell_vert.end(); ++itc) {
|
||||
double dist = sqrt((itc->x - x2) * (itc->x - x2) + (itc->y - y2) * (itc->y - y2));
|
||||
if(dist < 0.1) {
|
||||
alreadyin = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(!alreadyin)
|
||||
cell_vert.push_back(Point(x2, y2));
|
||||
}
|
||||
}
|
||||
}
|
||||
if(cell_vert.size()<3){
|
||||
ROS_WARN("[%i] Voronoi Bounded tessellation failed (%d)!", buzz_utility::get_robotid(),cell_vert.size());
|
||||
return buzzvm_ret0(vm);
|
||||
}
|
||||
std::sort( cell_vert.begin(), cell_vert.end(), clockwise_compare_points );
|
||||
cell_vert.push_back(cell_vert[0]);
|
||||
|
||||
double center_dist[2] = {0.0, 0.0};
|
||||
polygone_center(cell_vert, center_dist);
|
||||
if(logVoronoi) voronoicsv << center_dist[0] << "," << center_dist[1] << std::endl;
|
||||
center_dist[0]/=2;
|
||||
center_dist[1]/=2;
|
||||
double gps[3];
|
||||
gps_from_vec(center_dist, gps);
|
||||
//ROS_INFO("[%i] Voronoi cell center: %f, %f, %f, %f", buzz_utility::get_robotid(), center_dist[0], center_dist[1], gps[0], gps[1]);
|
||||
set_gpsgoal(gps);
|
||||
|
||||
return buzzvm_ret0(vm);
|
||||
}
|
||||
|
||||
int buzzuav_moveto(buzzvm_t vm)
|
||||
/*
|
||||
/ Buzz closure to move following a 3D vector + Yaw
|
||||
|
|
Loading…
Reference in New Issue