This commit is contained in:
vivek-shankar 2017-01-27 02:45:02 -05:00
commit 02c1593738
4 changed files with 147 additions and 13 deletions

View File

@ -91,6 +91,9 @@ private:
/*convert from spherical to cartesian coordinate system callback */ /*convert from spherical to cartesian coordinate system callback */
void cvt_cartesian_coordinates(double neighbours_pos_payload [], double out[]); void cvt_cartesian_coordinates(double neighbours_pos_payload [], double out[]);
/*convert from spherical to cartesian coordinate system callback */
void cvt_rangebearing_coordinates(double neighbours_pos_payload [], double out[]);
/*battery status callback*/ /*battery status callback*/
void battery(const mavros_msgs::BatteryStatus::ConstPtr& msg); void battery(const mavros_msgs::BatteryStatus::ConstPtr& msg);

View File

@ -61,7 +61,34 @@ int buzzros_print(buzzvm_t vm) {
/****************************************/ /****************************************/
/****************************************/ /****************************************/
/*convert from spherical to cartesian coordinate system callback */
void cartesian_coordinates(double spherical_pos_payload [], double out[]){
double latitude, longitude, rho;
latitude = spherical_pos_payload[0] / 180.0 * M_PI;
longitude = spherical_pos_payload[1] / 180.0 * M_PI;
rho = spherical_pos_payload[2]+6371000; //centered on Earth
try {
out[0] = cos(latitude) * cos(longitude) * rho;
out[1] = cos(latitude) * sin(longitude) * rho;
out[2] = sin(latitude) * rho; // z is 'up'
} catch (std::overflow_error e) {
// std::cout << e.what() << " Error in convertion to cartesian coordinate system "<<endl;
}
}
/*convert from cartesian to spherical coordinate system callback */
void spherical_coordinates(double cartesian_pos_payload [], double out[]){
double x, y, z;
x = cartesian_pos_payload[0];
y = cartesian_pos_payload[1];
z = cartesian_pos_payload[2];
try {
out[2]=sqrt(pow(x,2.0)+pow(y,2.0)+pow(z,2.0))-6371000;
out[1]=atan2(y,x)*180/M_PI;
out[0]=atan2(z,(sqrt(pow(x,2.0)+pow(y,2.0))))*180/M_PI;
} catch (std::overflow_error e) {
// std::cout << e.what() << " Error in convertion to spherical coordinate system "<<endl;
}
}
int buzzuav_goto(buzzvm_t vm) { int buzzuav_goto(buzzvm_t vm) {
buzzvm_lnum_assert(vm, 2); buzzvm_lnum_assert(vm, 2);
buzzvm_lload(vm, 1); /* dx */ buzzvm_lload(vm, 1); /* dx */
@ -70,14 +97,20 @@ int buzzuav_goto(buzzvm_t vm) {
//buzzvm_type_assert(vm, 3, BUZZTYPE_FLOAT); //buzzvm_type_assert(vm, 3, BUZZTYPE_FLOAT);
buzzvm_type_assert(vm, 2, BUZZTYPE_FLOAT); buzzvm_type_assert(vm, 2, BUZZTYPE_FLOAT);
buzzvm_type_assert(vm, 1, BUZZTYPE_FLOAT); buzzvm_type_assert(vm, 1, BUZZTYPE_FLOAT);
float dy = buzzvm_stack_at(vm, 1)->f.value; float dx = buzzvm_stack_at(vm, 1)->f.value;
float dx = buzzvm_stack_at(vm, 2)->f.value; float dy = buzzvm_stack_at(vm, 2)->f.value;
printf(" Vector for Goto: %.7f,%.7f\n",dx,dy);
//goto_pos[0]=buzzvm_stack_at(vm, 3)->f.value; //goto_pos[0]=buzzvm_stack_at(vm, 3)->f.value;
double dlat=dx/(6371000+cur_pos[2]); double cur_pos_cartesian[3];
double dlon=dy/cos(cur_pos[0]/180*3.1416)/(6371000+cur_pos[2]); cartesian_coordinates(cur_pos,cur_pos_cartesian);
goto_pos[0]=cur_pos[0]+dlat*180/3.1416; double goto_cartesian[3];
goto_pos[1]=cur_pos[1]+dlon*180/3.1416; goto_cartesian[0] = dx + cur_pos_cartesian[0];
goto_pos[2]=cur_pos[2]; goto_cartesian[1] = dy + cur_pos_cartesian[1];
goto_cartesian[2] = cur_pos_cartesian[2];
spherical_coordinates(goto_cartesian, goto_pos);
// goto_pos[0]=cur_pos[0]+dlat*180/M_PI;
// goto_pos[1]=cur_pos[1]+dlon*180/M_PI;
// goto_pos[2]=cur_pos[2];
cur_cmd=mavros_msgs::CommandCode::NAV_WAYPOINT; cur_cmd=mavros_msgs::CommandCode::NAV_WAYPOINT;
printf(" Buzz requested Go To, to Latitude: %.7f , Longitude: %.7f, Altitude: %.7f \n",goto_pos[0],goto_pos[1],goto_pos[2]); printf(" Buzz requested Go To, to Latitude: %.7f , Longitude: %.7f, Altitude: %.7f \n",goto_pos[0],goto_pos[1],goto_pos[2]);
buzz_cmd=2; buzz_cmd=2;

View File

@ -249,8 +249,8 @@ namespace rosbzz_node{
/*convert from spherical to cartesian coordinate system callback */ /*convert from spherical to cartesian coordinate system callback */
void roscontroller::cvt_cartesian_coordinates(double spherical_pos_payload [], double out[]){ void roscontroller::cvt_cartesian_coordinates(double spherical_pos_payload [], double out[]){
double latitude, longitude, rho; double latitude, longitude, rho;
latitude = spherical_pos_payload[0] / 180.0 * 3.1416; latitude = spherical_pos_payload[0] / 180.0 * M_PI;
longitude = spherical_pos_payload[1] / 180.0 * 3.1416; longitude = spherical_pos_payload[1] / 180.0 * M_PI;
rho = spherical_pos_payload[2]+6371000; //centered on Earth rho = spherical_pos_payload[2]+6371000; //centered on Earth
try { try {
out[0] = cos(latitude) * cos(longitude) * rho; out[0] = cos(latitude) * cos(longitude) * rho;
@ -261,6 +261,101 @@ namespace rosbzz_node{
} }
} }
/*convert from GPS delta to Range and Bearing */
void roscontroller::cvt_rangebearing_coordinates(double spherical_pos[], double out[]){
//Earth ellipse parameteres
double f = 1.0/298.257223563;
double a = 6378137;
double b = 6356752.314245;
double a2b2b2 = (a*a-b*b)/(b*b);
// constants to enhance the computation
double omega = (spherical_pos[1]-cur_pos[1])/180*M_PI;
double A, lambda0, sigma, deltasigma, lambda=omega;
double cosU2 = cos(atan((1-f)*tan(spherical_pos[0]/180*M_PI)));
double sinU2 = sin(atan((1-f)*tan(spherical_pos[0]/180*M_PI)));
double cosU1 = cos(atan((1-f)*tan(cur_pos[0]/180*M_PI)));
double sinU1 = sin(atan((1-f)*tan(cur_pos[0]/180*M_PI)));
try {
bool converged = 0;
for (int i = 0; i < 20; i++) {
lambda0=lambda;
// eq. 14
double sin2sigma = (cosU2 * sin(lambda) * cosU2 * sin(lambda)) + pow(cosU1*sinU2 - sinU1*cosU2 * cos(lambda), 2.0);
double sinsigma = sqrt(sin2sigma);
// eq. 15
double cossigma = sinU1*sinU2 + (cosU1*cosU2 * cos(lambda));
// eq. 16
sigma = atan2(sinsigma, cossigma);
// eq. 17 Careful! sin2sigma might be almost 0!
double sinalpha = (sin2sigma == 0) ? 0.0 : cosU1*cosU2 * sin(lambda) / sinsigma;
double alpha = asin(sinalpha);
double cos2alpha = cos(alpha) * cos(alpha);
// eq. 18 Careful! cos2alpha might be almost 0!
double cos2sigmam = cos2alpha == 0.0 ? 0.0 : cossigma - 2 * sinU1*sinU2 / cos2alpha;
double u2 = cos2alpha * a2b2b2;
double cos2sigmam2 = cos2sigmam * cos2sigmam;
// eq. 3
A = 1.0 + u2 / 16384 * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)));
// eq. 4
double B = u2 / 1024 * (256 + u2 * (-128 + u2 * (74 - 47 * u2)));
// eq. 6
deltasigma = B * sinsigma * (cos2sigmam + B / 4 * (cossigma * (-1 + 2 * cos2sigmam2) - B / 6 * cos2sigmam * (-3 + 4 * sin2sigma) * (-3 + 4 * cos2sigmam2)));
// eq. 10
double C = f / 16 * cos2alpha * (4 + f * (4 - 3 * cos2alpha));
// eq. 11 (modified)
lambda = omega + (1 - C) * f * sinalpha * (sigma + C * sinsigma * (cos2sigmam + C * cossigma * (-1 + 2 * cos2sigmam2)));
// see how much improvement we got
double change = fabs((lambda - lambda0) / lambda);
if ((i > 1) && (change < 0.0000000000001)) {
//cout << "CONVERSION CONVERGED at " << i << " !!!!" << endl;
converged = 1;
break;
}
}
// eq. 19
out[0] = b * A * (sigma - deltasigma);
// didn't converge? must be N/S
if (!converged) {
if (cur_pos[0] > spherical_pos[0]) {
out[1] = M_PI/2;
out[2] = 0;
} else if (cur_pos[0] < spherical_pos[0]) {
out[1] = 0;
out[2] = M_PI/2;
}
} else { // else, it converged, so do the math
// eq. 20
out[1] = atan2(cosU2 * sin(lambda), (cosU1*sinU2 - sinU1*cosU2 * cos(lambda)));
if (out[1] < 0.0) out[1] += 2*M_PI;
// eq. 21
out[2] = atan2(cosU1 * sin(lambda), (-sinU1*cosU2 + cosU1*sinU2 * cos(lambda))) + 3.1416;
if (out[2] < 0.0) out[2] += 2*M_PI;
}
if (out[1] >= M_PI) out[1] -= M_PI;
if (out[2] >= M_PI) out[2] -= M_PI;
} catch (std::overflow_error e) {
std::cout << e.what() << " Error in convertion to range and bearing "<<endl;
}
}
/*convert from cartesian to spherical coordinate system callback */ /*convert from cartesian to spherical coordinate system callback */
void roscontroller::cvt_spherical_coordinates(double cartesian_pos_payload [], double out[]){ void roscontroller::cvt_spherical_coordinates(double cartesian_pos_payload [], double out[]){
double x, y, z; double x, y, z;
@ -315,7 +410,9 @@ namespace rosbzz_node{
double neighbours_pos_payload[3]; double neighbours_pos_payload[3];
memcpy(neighbours_pos_payload, message_obt, 3*sizeof(uint64_t)); memcpy(neighbours_pos_payload, message_obt, 3*sizeof(uint64_t));
buzz_utility::Pos_struct raw_neigh_pos(neighbours_pos_payload[0],neighbours_pos_payload[1],neighbours_pos_payload[2]); buzz_utility::Pos_struct raw_neigh_pos(neighbours_pos_payload[0],neighbours_pos_payload[1],neighbours_pos_payload[2]);
cout<<"obt lat ,long alt"<<neighbours_pos_payload[0]<<neighbours_pos_payload[1]<<neighbours_pos_payload[2]; // cout<<"Got" << neighbours_pos_payload[0] <<", " << neighbours_pos_payload[1] << ", " << neighbours_pos_payload[2] << endl;
// double cvt_neighbours_pos_test[3];
// cvt_rangebearing_coordinates(neighbours_pos_payload, cvt_neighbours_pos_test);
/*Convert obtained position to relative CARTESIAN position*/ /*Convert obtained position to relative CARTESIAN position*/
double cartesian_neighbours_pos[3], cartesian_cur_pos[3]; double cartesian_neighbours_pos[3], cartesian_cur_pos[3];
cvt_cartesian_coordinates(neighbours_pos_payload, cartesian_neighbours_pos); cvt_cartesian_coordinates(neighbours_pos_payload, cartesian_neighbours_pos);
@ -328,7 +425,8 @@ namespace rosbzz_node{
cvt_spherical_coordinates(neighbours_pos_payload, cvt_neighbours_pos_payload); cvt_spherical_coordinates(neighbours_pos_payload, cvt_neighbours_pos_payload);
/*Extract robot id of the neighbour*/ /*Extract robot id of the neighbour*/
uint16_t* out = buzz_utility::u64_cvt_u16((uint64_t)*(message_obt+3)); uint16_t* out = buzz_utility::u64_cvt_u16((uint64_t)*(message_obt+3));
cout << "Rel Pos of " << (int)out[1] << ": " << cvt_neighbours_pos_payload[0] << ", "<< cvt_neighbours_pos_payload[2] << ", "<< cvt_neighbours_pos_payload[3] << endl; // cout << "Rel Pos of " << (int)out[1] << ": " << cvt_neighbours_pos_payload[0] << ", "<< cvt_neighbours_pos_payload[2] << ", "<< cvt_neighbours_pos_payload[3] << endl;
// cout << "Rel Test Pos of " << (int)out[1] << ": " << cvt_neighbours_pos_test[0] << ", "<< cvt_neighbours_pos_test[2] << ", "<< cvt_neighbours_pos_test[3] << endl;
/*pass neighbour position to local maintaner*/ /*pass neighbour position to local maintaner*/
buzz_utility::Pos_struct n_pos(cvt_neighbours_pos_payload[0],cvt_neighbours_pos_payload[1],cvt_neighbours_pos_payload[2]); buzz_utility::Pos_struct n_pos(cvt_neighbours_pos_payload[0],cvt_neighbours_pos_payload[1],cvt_neighbours_pos_payload[2]);
/*Put RID and pos*/ /*Put RID and pos*/

View File

@ -34,7 +34,7 @@ function hexagon() {
if(neighbors.count() > 0) if(neighbors.count() > 0)
math.vec2.scale(accum, 1.0 / neighbors.count()) math.vec2.scale(accum, 1.0 / neighbors.count())
# Move according to vector # Move according to vector
print("Robot ", id, "must push ",accum.x, "; ", accum.y) # print("Robot ", id, "must push ",accum.x, "; ", accum.y)
uav_goto(accum.x, accum.y) uav_goto(accum.x, accum.y)
} }