ROSBuzz_MISTLab/buzz_scripts/include/act/states.bzz

226 lines
6.2 KiB
Plaintext
Raw Normal View History

2017-12-22 17:48:39 -04:00
########################################
#
# FLIGHT-RELATED FUNCTIONS
#
########################################
include "utils/vec2.bzz"
include "act/barrier.bzz"
include "utils/conversions.bzz"
include "act/naviguation.bzz"
include "act/CA.bzz"
include "act/neighborcomm.bzz"
2017-12-22 17:48:39 -04:00
TARGET_ALTITUDE = 15.0 # m.
BVMSTATE = "TURNEDOFF"
PICTURE_WAIT = 20 # steps
2018-09-06 13:47:38 -03:00
2017-12-22 17:48:39 -04:00
path_it = 0
pic_time = 0
g_it = 0
# Core state function when on the ground
2017-12-22 17:48:39 -04:00
function turnedoff() {
BVMSTATE = "TURNEDOFF"
}
# Core state function when hovering
2017-12-22 17:48:39 -04:00
function idle() {
BVMSTATE = "IDLE"
}
# Core state function to launch the robot: takeoff and wait for others, or stop (land)
2017-12-22 17:48:39 -04:00
function launch() {
BVMSTATE = "LAUNCH"
2018-09-06 13:47:38 -03:00
if(V_TYPE == 0 or V_TYPE == 1) { # flying vehicle so TAKE_OFF
2017-12-22 17:48:39 -04:00
homegps = {.lat=pose.position.latitude, .long=pose.position.longitude}
if(pose.position.altitude >= TARGET_ALTITUDE-TARGET_ALTITUDE/20.0) {
2018-09-06 13:47:38 -03:00
barrier_set(ROBOTS, AUTO_LAUNCH_STATE, "STOP", 22)
barrier_ready(22)
2017-12-22 17:48:39 -04:00
} else {
log("Altitude: ", pose.position.altitude)
neighbors.broadcast("cmd", 22)
uav_takeoff(TARGET_ALTITUDE)
}
} else {
2018-09-06 13:47:38 -03:00
barrier_set(ROBOTS, AUTO_LAUNCH_STATE, "STOP", 22)
barrier_ready(22)
2017-12-22 17:48:39 -04:00
}
}
# Launch function version without the timeout and stop state.
function launch_switch() {
BVMSTATE = "LAUNCH_SWITCH"
if(V_TYPE == 0 or V_TYPE == 1) { # flying vehicle so TAKE_OFF
homegps = {.lat=pose.position.latitude, .long=pose.position.longitude}
if(pose.position.altitude >= TARGET_ALTITUDE-TARGET_ALTITUDE/20.0) {
barrier_set(ROBOTS, AUTO_LAUNCH_STATE, AUTO_LAUNCH_STATE, 22)
barrier_ready(22)
} else {
log("Altitude: ", pose.position.altitude)
neighbors.broadcast("cmd", 22)
uav_takeoff(TARGET_ALTITUDE)
}
} else {
barrier_set(ROBOTS, AUTO_LAUNCH_STATE, AUTO_LAUNCH_STATE, 22)
barrier_ready(22)
}
}
2018-09-06 13:47:38 -03:00
gohomeT=100
# State function to go back to ROSBuzz recorded home GPS position (at takeoff)
2018-09-06 13:47:38 -03:00
function goinghome() {
BVMSTATE = "GOHOME"
if(gohomeT > 0) { # TODO: Make a real check if home is reached
gohome()
gohomeT = gohomeT - 1
} else
BVMSTATE = AUTO_LAUNCH_STATE
}
# Core state function to stop and land.
2017-12-22 17:48:39 -04:00
function stop() {
2018-09-06 13:47:38 -03:00
BVMSTATE = "STOP"
2017-12-22 17:48:39 -04:00
if(V_TYPE == 0 or V_TYPE == 1) { # flying vehicle so LAND
neighbors.broadcast("cmd", 21)
uav_land()
2018-09-27 13:18:43 -03:00
if(pose.position.altitude <= 0.2) {
2018-09-06 13:47:38 -03:00
BVMSTATE = "TURNEDOFF"
#barrier_set(ROBOTS,"TURNEDOFF","STOP", 21)
#barrier_ready(21)
2017-12-22 17:48:39 -04:00
}
} else {
2018-09-06 13:47:38 -03:00
BVMSTATE = "TURNEDOFF"
#barrier_set(ROBOTS,"TURNEDOFF","STOP", 21)
#barrier_ready(21)
}
2017-12-22 17:48:39 -04:00
}
# State function for individual waypoint control
firsttimeinwp = 1
function indiWP() {
if(firsttimeinwp) {
nei_goal_listen()
storegoal(pose.position.latitude, pose.position.longitude, pose.position.altitude)
firsttimeinwp = 0
}
BVMSTATE = "INDIWP"
if(rc_goto.id != -1) {
log(rc_goto.id)
if(rc_goto.id == id) {
storegoal(rc_goto.latitude, rc_goto.longitude, pose.position.altitude)
} else
bd_goal()
}
goto_gps(nil)
}
# State function to take a picture from the camera server (developed by HS)
2017-12-22 17:48:39 -04:00
function take_picture() {
BVMSTATE="PICTURE"
2018-09-06 13:47:38 -03:00
setgimbal(0.0, 0.0, -90.0, 20.0)
2017-12-22 17:48:39 -04:00
if(pic_time==PICTURE_WAIT/2) { # wait for the drone to stabilize
2018-09-06 13:47:38 -03:00
takepicture()
2017-12-22 17:48:39 -04:00
} else if(pic_time>=PICTURE_WAIT) { # wait for the picture
BVMSTATE="IDLE"
pic_time=0
2017-12-22 17:48:39 -04:00
}
pic_time=pic_time+1
}
# State function to follow a moving attractor (GPS sent from a user phone)
2017-12-22 17:48:39 -04:00
function follow() {
if(size(targets)>0) {
BVMSTATE = "FOLLOW"
attractor=math.vec2.newp(0,0)
foreach(targets, function(id, tab) {
force=(0.05)*(tab.range)^4
attractor=math.vec2.add(attractor, math.vec2.newp(force, tab.bearing))
})
goto_abs(attractor.x, attractor.y, 0.0, 0.0)
2017-12-22 17:48:39 -04:00
} else {
log("No target in local table!")
BVMSTATE = "IDLE"
}
}
# State function to converge to centroid
function aggregate() {
BVMSTATE="AGGREGATE"
centroid = neighbors.reduce(function(rid, data, centroid) {
centroid = math.vec2.add(centroid, math.vec2.newp(data.distance, data.azimuth))
return centroid
}, {.x=0, .y=0})
if(neighbors.count() > 0)
centroid = math.vec2.scale(centroid, 1.0 / neighbors.count())
cmdbin = math.vec2.sub(centroid, math.vec2.newp(3.0, id * 2 * math.pi / ROBOTS))
cmdbin = LimitSpeed(cmdbin, 1.0/2.0)
goto_abs(cmdbin.x, cmdbin.y, 0.0, 0.0)
}
# State fucntion to circle all together around centroid
function pursuit() {
BVMSTATE="PURSUIT"
2018-09-06 13:47:38 -03:00
rd = 20.0
pc = 3.2
vd = 15.0
r_vec = neighbors.reduce(function(rid, data, r_vec) {
r_vec = math.vec2.add(r_vec, math.vec2.newp(data.distance, data.azimuth))
return r_vec
}, {.x=0, .y=0})
if(neighbors.count() > 0)
r_vec = math.vec2.scale(r_vec, 1.0 / neighbors.count())
r = math.vec2.length(r_vec)
2018-09-06 13:47:38 -03:00
var sqr = (r-rd)*(r-rd)+pc*pc*r*r
gamma = vd / math.sqrt(sqr)
dr = -gamma * (r-rd)
dT = gamma * pc
vfg = math.vec2.newp(r+dr*0.1, math.vec2.angle(r_vec)+dT*0.1)
vfg = LimitSpeed(vfg, 2.0)
goto_abs(vfg.x, vfg.y, 0.0, 0.0)
}
# Lennard-Jones interaction magnitude
TARGET = 8.0
2018-09-06 13:47:38 -03:00
EPSILON = 30.0
function lj_magnitude(dist, target, epsilon) {
2018-09-06 13:47:38 -03:00
lj = -(epsilon / dist) * ((target / dist)^4 - (target / dist)^2)
return lj
}
# Neighbor data to LJ interaction vector
function lj_vector(rid, data) {
return math.vec2.newp(lj_magnitude(data.distance, TARGET, EPSILON), data.azimuth)
}
# Accumulator of neighbor LJ interactions
function lj_sum(rid, data, accum) {
return math.vec2.add(data, accum)
}
# Sate function that calculates and actuates the flocking interaction
function formation() {
BVMSTATE="FORMATION"
# Calculate accumulator
accum_lj = neighbors.map(lj_vector).reduce(lj_sum, math.vec2.new(0.0, 0.0))
if(neighbors.count() > 0)
accum_lj = math.vec2.scale(accum_lj, 1.0 / neighbors.count())
2018-09-06 13:47:38 -03:00
accum_lj = LimitSpeed(accum_lj, 1.0/3.0)
goto_abs(accum_lj.x, accum_lj.y, 0.0, 0.0)
}
# Custom state function for the developer to play with
function cusfun(){
BVMSTATE="CUSFUN"
log("cusfun: yay!!!")
LOCAL_TARGET = math.vec2.new(5 ,0 )
local_set_point = math.vec2.new(LOCAL_TARGET.x - pose.position.x ,LOCAL_TARGET.y - pose.position.y ) # has to move 5 meters in x from the home location
if(math.vec2.length(local_set_point) > GOTODIST_TOL){
local_set_point = LimitSpeed(local_set_point, 1.0)
goto_abs(local_set_point.x, local_set_point.y, 0.0, 0.0)
}
else{
log("TARGET REACHED")
}
}