
Project RTS
Ogulcan Kaya 2023

INTRODUCTION
This is a Godot/GDScript project developed by O. Kaya under supervision of Alex Davies in
2023. It’s meant to eventually be assembled into a drone control software to run on mobile
phones and function similarly to an RTS game in terms of UX.

This documentation sheet will set forth all of the components and pieces that are there in the
two existing scenes of the project, plus what’s next, and extra notes. Additional, more specific
minutiae are explained in the code itself, which has been cleaned up to remove most
non-functional or deprecated logic, of which there was a lot during this process.

1. Pathing[DronePather.tscn]
1.1. DroneMgr: Manager script/object for spawning drones(default bound to middle

mouse) and feeding them target positions(left mouse button) and then move
orders.
This script programmatically determines an (adjustably) tight circle around the
clicked point around which these positions will be, and sequentially tells the
drones to path toward their points upon the completion of the last path.

1.2. NavDrone: This is the drone(representation) itself, when told to path by the
manager, uses a navmesh(navigation mesh, sometimes referred to as navigation
region in godot) to draw the shortest path there, as far as I know, with A*. Then
covers that path with navmesh blocking cubes. Has custom move logic to follow
that path. After the initial pathing, it’ll trigger a navmesh rebake to cut its added
obstacles into it, then trigger the manager to send the order to the next drone to
path. Once all drones are done pathing, they’re all given the order to clean up
their obstacles and the navmesh is once again rebaked to prep for the next
operation.
This style ensures no two drones’ paths can ever intersect. We could try making
drones live obstacles to each other(allowing more flexible pathing), but that’d
make it potentially dangerous if the logic wasn’t being run drone-side. This
current system should(and seems to) make a collision impossible if the drone
follows the given set of points, and reduced the total amount of data that’s
mission critical.

1.3. Testbin: This is the obstacle used by NavDrones to cover their paths for the
navmesh. There’s nothing complex here, it’s just a cube. In the final version,
these would be invisible to keep the UI sleek. Currently they also serve to mark
out the path every drone will be taking, and could be colour coded to further show
that clearly.

Spiri Robotics 2023



Project RTS
Ogulcan Kaya 2023

NOTES & TODO:
- In a finalized version, DroneMgr would not spawn drones but pull data as to where said

drones are in real life and assign them to its internal list
- Ideally, DroneMgr wouldn’t hand the circle points sequentially to the drones but instead

minimize the total distance each drone travels by picking the most distance optimized set
of points, or anything more optimized than the current fixed orientation and numbering
points system

- The whole RTS thing implies we’d want behaviours beside ‘circle one point’, should be a
simple thing to implement, but still worth noting. Similarly, it’d be nice to add the ability to
select particular drones for a maneuver rather than all known ones at once.

- One issue with the quality of pathing is that if drone A and drone B haven’t pathed yet
and drone B is between A and its goal, if A paths first, B will just draw its path on top of
A. This could be solved with smarter pathing iteration than just going through the set list
of circle points and matching drone numbers in order, but a good thing to do would be to
have a failsafe that if their paths do intersect, there’d be a reversal of pathing order
between those to to sort it

- The movement and path iteration is done manually in navdrone as default godot will try
to ‘fix’ the given path by redrawing it after rebake.

- The solution of rebaking the navmesh between every drone *does* work fast enough,
around 2 seconds per drone to determine in the relatively large -though somewhat
sparse- test scene. For a final version, the navmesh would likely need to be cut into
different sections and be selectively rebaked to optimize performance, or dynamic
obstacles would be used with the aforementioned downsides

2. 2D Mapping[cgtosm.tscn]
2.1. Mapper: This simple script takes a set of coordinates w/ zoom level up to 19 and

using OSM’s supplied formulas, finds the correct 2d map tile representing it,
casts it onto a plane, and scales it to be 1 unit =1 meter

2.2. MoveCam and crosshair: Controls camera movement and rotation for a top
down, 2d camera. The crosshair follows the camera exactly without capturing
height, making for a constant 100x100 meter reticle on screen.

NOTES & TODO:
- We must integrate the current two scenes. It’d be very easy and of no use as of now, but

better sooner than later.
- The crosshair randomly disappears based on position and zoom of the camera despite

being in render distance and definitely above the map, this leads me to suspect it’s float
inaccuracy, but this is a non-issue as the crosshair is a temp measure to check scaling.

- The scaling is weirdly off for mapper, not by a significant margin, but enough to count. I
may have been a little imprecise in the admittedly very compact math map I did, as
geometric formulae isn’t 100% accurate due to earth’s irregular shape.

Spiri Robotics 2023



Project RTS
Ogulcan Kaya 2023

- 2D maps do not give us what we need to navigate real life space, and the 3d data is
provided in a filterable JSON file format. Converting that into geometry is the path
forward.

- The camera controls are set for 2D and top down, and probably would not work for 3d,
certainly would not be intuitive, but a normal FPS camera with drag controls should fix
that.

3. General Notes & Todo
3.1. An android port was attempted but due to android studio issues didn’t really work

on my phone. I just couldn’t get the right api version loaded on my pc for a proper
build.

3.2. UI is obviously PC focused right now and requires two buttons for testing in the
pathing scene, and basically 6/a joystick for camera controls on the mapping
scene.

3.3. Notes regarding exact functionality, methods, variables etc are in the scripts
themselves.

3.4. 3D Maps, Integration of the two facets of the software, then connection to actual
drones to send and receive data would be the core features missing, alongside
the numerous other things mentioned above.

3.5. I tried to use all pre-existing solutions for loading 3d OSM data into godot as of
November 2023 and found them to be all some combination of:

3.5.1. Non-functional
3.5.2. Non-complete
3.5.3. Non-documented
3.5.4. Non-applicable

3.6. Hence, It’s suggested future programmers and engineers who may land on this
project do not waste their time attempting to integrate those.

3.7. While documenting this I did find this writeup on getting 3d visualisation going in
Unity that seems would be useful and relatively easy to convert to godot with the
work I’ve already done on the project as a basis:
http://barankahyaoglu.com/dev/openstreetmap-in-unity3d/
While Geodot *may* be useful for actually pulling in the terrain shape, for
less-urban environments where that is a significant factor.

Spiri Robotics 2023

http://barankahyaoglu.com/dev/openstreetmap-in-unity3d/

