wfb-ng/telemetry/mavlink.py

14683 lines
1003 KiB
Python

'''
MAVLink protocol implementation (auto-generated by mavgen.py)
Generated from: common.xml
Note: this file has been auto-generated. DO NOT EDIT
'''
from __future__ import print_function
from builtins import range
from builtins import object
import struct, array, time, json, os, sys, platform
import hashlib
class x25crc(object):
'''x25 CRC - based on checksum.h from mavlink library'''
def __init__(self, buf=None):
self.crc = 0xffff
if buf is not None:
if isinstance(buf, str):
self.accumulate_str(buf)
else:
self.accumulate(buf)
def accumulate(self, buf):
'''add in some more bytes'''
accum = self.crc
for b in buf:
tmp = b ^ (accum & 0xff)
tmp = (tmp ^ (tmp<<4)) & 0xFF
accum = (accum>>8) ^ (tmp<<8) ^ (tmp<<3) ^ (tmp>>4)
self.crc = accum
def accumulate_str(self, buf):
'''add in some more bytes'''
accum = self.crc
import array
bytes = array.array('B')
bytes.fromstring(buf)
self.accumulate(bytes)
WIRE_PROTOCOL_VERSION = '2.0'
DIALECT = 'mavlink'
PROTOCOL_MARKER_V1 = 0xFE
PROTOCOL_MARKER_V2 = 0xFD
HEADER_LEN_V1 = 6
HEADER_LEN_V2 = 10
MAVLINK_SIGNATURE_BLOCK_LEN = 13
MAVLINK_IFLAG_SIGNED = 0x01
native_supported = platform.system() != 'Windows' # Not yet supported on other dialects
native_force = 'MAVNATIVE_FORCE' in os.environ # Will force use of native code regardless of what client app wants
native_testing = 'MAVNATIVE_TESTING' in os.environ # Will force both native and legacy code to be used and their results compared
if native_supported and float(WIRE_PROTOCOL_VERSION) <= 1:
try:
import mavnative
except ImportError:
print('ERROR LOADING MAVNATIVE - falling back to python implementation')
native_supported = False
else:
# mavnative isn't supported for MAVLink2 yet
native_supported = False
# some base types from mavlink_types.h
MAVLINK_TYPE_CHAR = 0
MAVLINK_TYPE_UINT8_T = 1
MAVLINK_TYPE_INT8_T = 2
MAVLINK_TYPE_UINT16_T = 3
MAVLINK_TYPE_INT16_T = 4
MAVLINK_TYPE_UINT32_T = 5
MAVLINK_TYPE_INT32_T = 6
MAVLINK_TYPE_UINT64_T = 7
MAVLINK_TYPE_INT64_T = 8
MAVLINK_TYPE_FLOAT = 9
MAVLINK_TYPE_DOUBLE = 10
class MAVLink_header(object):
'''MAVLink message header'''
def __init__(self, msgId, incompat_flags=0, compat_flags=0, mlen=0, seq=0, srcSystem=0, srcComponent=0):
self.mlen = mlen
self.seq = seq
self.srcSystem = srcSystem
self.srcComponent = srcComponent
self.msgId = msgId
self.incompat_flags = incompat_flags
self.compat_flags = compat_flags
def pack(self, force_mavlink1=False):
if WIRE_PROTOCOL_VERSION == '2.0' and not force_mavlink1:
return struct.pack('<BBBBBBBHB', 253, self.mlen,
self.incompat_flags, self.compat_flags,
self.seq, self.srcSystem, self.srcComponent,
self.msgId&0xFFFF, self.msgId>>16)
return struct.pack('<BBBBBB', PROTOCOL_MARKER_V1, self.mlen, self.seq,
self.srcSystem, self.srcComponent, self.msgId)
class MAVLink_message(object):
'''base MAVLink message class'''
def __init__(self, msgId, name):
self._header = MAVLink_header(msgId)
self._payload = None
self._msgbuf = None
self._crc = None
self._fieldnames = []
self._type = name
self._signed = False
self._link_id = None
def format_attr(self, field):
'''override field getter'''
raw_attr = getattr(self,field)
if isinstance(raw_attr, bytes):
raw_attr = raw_attr.decode("utf-8").rstrip("\00")
return raw_attr
def get_msgbuf(self):
if isinstance(self._msgbuf, bytearray):
return self._msgbuf
return bytearray(self._msgbuf)
def get_header(self):
return self._header
def get_payload(self):
return self._payload
def get_crc(self):
return self._crc
def get_fieldnames(self):
return self._fieldnames
def get_type(self):
return self._type
def get_msgId(self):
return self._header.msgId
def get_srcSystem(self):
return self._header.srcSystem
def get_srcComponent(self):
return self._header.srcComponent
def get_seq(self):
return self._header.seq
def get_signed(self):
return self._signed
def get_link_id(self):
return self._link_id
def __str__(self):
ret = '%s {' % self._type
for a in self._fieldnames:
v = self.format_attr(a)
ret += '%s : %s, ' % (a, v)
ret = ret[0:-2] + '}'
return ret
def __ne__(self, other):
return not self.__eq__(other)
def __eq__(self, other):
if other == None:
return False
if self.get_type() != other.get_type():
return False
# We do not compare CRC because native code doesn't provide it
#if self.get_crc() != other.get_crc():
# return False
if self.get_seq() != other.get_seq():
return False
if self.get_srcSystem() != other.get_srcSystem():
return False
if self.get_srcComponent() != other.get_srcComponent():
return False
for a in self._fieldnames:
if self.format_attr(a) != other.format_attr(a):
return False
return True
def to_dict(self):
d = dict({})
d['mavpackettype'] = self._type
for a in self._fieldnames:
d[a] = self.format_attr(a)
return d
def to_json(self):
return json.dumps(self.to_dict())
def sign_packet(self, mav):
h = hashlib.new('sha256')
self._msgbuf += struct.pack('<BQ', mav.signing.link_id, mav.signing.timestamp)[:7]
h.update(mav.signing.secret_key)
h.update(self._msgbuf)
sig = h.digest()[:6]
self._msgbuf += sig
mav.signing.timestamp += 1
def pack(self, mav, crc_extra, payload, force_mavlink1=False):
plen = len(payload)
if WIRE_PROTOCOL_VERSION != '1.0' and not force_mavlink1:
# in MAVLink2 we can strip trailing zeros off payloads. This allows for simple
# variable length arrays and smaller packets
while plen > 1 and payload[plen-1] == chr(0):
plen -= 1
self._payload = payload[:plen]
incompat_flags = 0
if mav.signing.sign_outgoing:
incompat_flags |= MAVLINK_IFLAG_SIGNED
self._header = MAVLink_header(self._header.msgId,
incompat_flags=incompat_flags, compat_flags=0,
mlen=len(self._payload), seq=mav.seq,
srcSystem=mav.srcSystem, srcComponent=mav.srcComponent)
self._msgbuf = self._header.pack(force_mavlink1=force_mavlink1) + self._payload
crc = x25crc(self._msgbuf[1:])
if True: # using CRC extra
crc.accumulate_str(struct.pack('B', crc_extra))
self._crc = crc.crc
self._msgbuf += struct.pack('<H', self._crc)
if mav.signing.sign_outgoing and not force_mavlink1:
self.sign_packet(mav)
return self._msgbuf
# enums
class EnumEntry(object):
def __init__(self, name, description):
self.name = name
self.description = description
self.param = {}
enums = {}
# MAV_AUTOPILOT
enums['MAV_AUTOPILOT'] = {}
MAV_AUTOPILOT_GENERIC = 0 # Generic autopilot, full support for everything
enums['MAV_AUTOPILOT'][0] = EnumEntry('MAV_AUTOPILOT_GENERIC', '''Generic autopilot, full support for everything''')
MAV_AUTOPILOT_RESERVED = 1 # Reserved for future use.
enums['MAV_AUTOPILOT'][1] = EnumEntry('MAV_AUTOPILOT_RESERVED', '''Reserved for future use.''')
MAV_AUTOPILOT_SLUGS = 2 # SLUGS autopilot, http://slugsuav.soe.ucsc.edu
enums['MAV_AUTOPILOT'][2] = EnumEntry('MAV_AUTOPILOT_SLUGS', '''SLUGS autopilot, http://slugsuav.soe.ucsc.edu''')
MAV_AUTOPILOT_ARDUPILOTMEGA = 3 # ArduPilotMega / ArduCopter, http://diydrones.com
enums['MAV_AUTOPILOT'][3] = EnumEntry('MAV_AUTOPILOT_ARDUPILOTMEGA', '''ArduPilotMega / ArduCopter, http://diydrones.com''')
MAV_AUTOPILOT_OPENPILOT = 4 # OpenPilot, http://openpilot.org
enums['MAV_AUTOPILOT'][4] = EnumEntry('MAV_AUTOPILOT_OPENPILOT', '''OpenPilot, http://openpilot.org''')
MAV_AUTOPILOT_GENERIC_WAYPOINTS_ONLY = 5 # Generic autopilot only supporting simple waypoints
enums['MAV_AUTOPILOT'][5] = EnumEntry('MAV_AUTOPILOT_GENERIC_WAYPOINTS_ONLY', '''Generic autopilot only supporting simple waypoints''')
MAV_AUTOPILOT_GENERIC_WAYPOINTS_AND_SIMPLE_NAVIGATION_ONLY = 6 # Generic autopilot supporting waypoints and other simple navigation
# commands
enums['MAV_AUTOPILOT'][6] = EnumEntry('MAV_AUTOPILOT_GENERIC_WAYPOINTS_AND_SIMPLE_NAVIGATION_ONLY', '''Generic autopilot supporting waypoints and other simple navigation commands''')
MAV_AUTOPILOT_GENERIC_MISSION_FULL = 7 # Generic autopilot supporting the full mission command set
enums['MAV_AUTOPILOT'][7] = EnumEntry('MAV_AUTOPILOT_GENERIC_MISSION_FULL', '''Generic autopilot supporting the full mission command set''')
MAV_AUTOPILOT_INVALID = 8 # No valid autopilot, e.g. a GCS or other MAVLink component
enums['MAV_AUTOPILOT'][8] = EnumEntry('MAV_AUTOPILOT_INVALID', '''No valid autopilot, e.g. a GCS or other MAVLink component''')
MAV_AUTOPILOT_PPZ = 9 # PPZ UAV - http://nongnu.org/paparazzi
enums['MAV_AUTOPILOT'][9] = EnumEntry('MAV_AUTOPILOT_PPZ', '''PPZ UAV - http://nongnu.org/paparazzi''')
MAV_AUTOPILOT_UDB = 10 # UAV Dev Board
enums['MAV_AUTOPILOT'][10] = EnumEntry('MAV_AUTOPILOT_UDB', '''UAV Dev Board''')
MAV_AUTOPILOT_FP = 11 # FlexiPilot
enums['MAV_AUTOPILOT'][11] = EnumEntry('MAV_AUTOPILOT_FP', '''FlexiPilot''')
MAV_AUTOPILOT_PX4 = 12 # PX4 Autopilot - http://pixhawk.ethz.ch/px4/
enums['MAV_AUTOPILOT'][12] = EnumEntry('MAV_AUTOPILOT_PX4', '''PX4 Autopilot - http://pixhawk.ethz.ch/px4/''')
MAV_AUTOPILOT_SMACCMPILOT = 13 # SMACCMPilot - http://smaccmpilot.org
enums['MAV_AUTOPILOT'][13] = EnumEntry('MAV_AUTOPILOT_SMACCMPILOT', '''SMACCMPilot - http://smaccmpilot.org''')
MAV_AUTOPILOT_AUTOQUAD = 14 # AutoQuad -- http://autoquad.org
enums['MAV_AUTOPILOT'][14] = EnumEntry('MAV_AUTOPILOT_AUTOQUAD', '''AutoQuad -- http://autoquad.org''')
MAV_AUTOPILOT_ARMAZILA = 15 # Armazila -- http://armazila.com
enums['MAV_AUTOPILOT'][15] = EnumEntry('MAV_AUTOPILOT_ARMAZILA', '''Armazila -- http://armazila.com''')
MAV_AUTOPILOT_AEROB = 16 # Aerob -- http://aerob.ru
enums['MAV_AUTOPILOT'][16] = EnumEntry('MAV_AUTOPILOT_AEROB', '''Aerob -- http://aerob.ru''')
MAV_AUTOPILOT_ASLUAV = 17 # ASLUAV autopilot -- http://www.asl.ethz.ch
enums['MAV_AUTOPILOT'][17] = EnumEntry('MAV_AUTOPILOT_ASLUAV', '''ASLUAV autopilot -- http://www.asl.ethz.ch''')
MAV_AUTOPILOT_SMARTAP = 18 # SmartAP Autopilot - http://sky-drones.com
enums['MAV_AUTOPILOT'][18] = EnumEntry('MAV_AUTOPILOT_SMARTAP', '''SmartAP Autopilot - http://sky-drones.com''')
MAV_AUTOPILOT_AIRRAILS = 19 # AirRails - http://uaventure.com
enums['MAV_AUTOPILOT'][19] = EnumEntry('MAV_AUTOPILOT_AIRRAILS', '''AirRails - http://uaventure.com''')
MAV_AUTOPILOT_ENUM_END = 20 #
enums['MAV_AUTOPILOT'][20] = EnumEntry('MAV_AUTOPILOT_ENUM_END', '''''')
# MAV_TYPE
enums['MAV_TYPE'] = {}
MAV_TYPE_GENERIC = 0 # Generic micro air vehicle.
enums['MAV_TYPE'][0] = EnumEntry('MAV_TYPE_GENERIC', '''Generic micro air vehicle.''')
MAV_TYPE_FIXED_WING = 1 # Fixed wing aircraft.
enums['MAV_TYPE'][1] = EnumEntry('MAV_TYPE_FIXED_WING', '''Fixed wing aircraft.''')
MAV_TYPE_QUADROTOR = 2 # Quadrotor
enums['MAV_TYPE'][2] = EnumEntry('MAV_TYPE_QUADROTOR', '''Quadrotor''')
MAV_TYPE_COAXIAL = 3 # Coaxial helicopter
enums['MAV_TYPE'][3] = EnumEntry('MAV_TYPE_COAXIAL', '''Coaxial helicopter''')
MAV_TYPE_HELICOPTER = 4 # Normal helicopter with tail rotor.
enums['MAV_TYPE'][4] = EnumEntry('MAV_TYPE_HELICOPTER', '''Normal helicopter with tail rotor.''')
MAV_TYPE_ANTENNA_TRACKER = 5 # Ground installation
enums['MAV_TYPE'][5] = EnumEntry('MAV_TYPE_ANTENNA_TRACKER', '''Ground installation''')
MAV_TYPE_GCS = 6 # Operator control unit / ground control station
enums['MAV_TYPE'][6] = EnumEntry('MAV_TYPE_GCS', '''Operator control unit / ground control station''')
MAV_TYPE_AIRSHIP = 7 # Airship, controlled
enums['MAV_TYPE'][7] = EnumEntry('MAV_TYPE_AIRSHIP', '''Airship, controlled''')
MAV_TYPE_FREE_BALLOON = 8 # Free balloon, uncontrolled
enums['MAV_TYPE'][8] = EnumEntry('MAV_TYPE_FREE_BALLOON', '''Free balloon, uncontrolled''')
MAV_TYPE_ROCKET = 9 # Rocket
enums['MAV_TYPE'][9] = EnumEntry('MAV_TYPE_ROCKET', '''Rocket''')
MAV_TYPE_GROUND_ROVER = 10 # Ground rover
enums['MAV_TYPE'][10] = EnumEntry('MAV_TYPE_GROUND_ROVER', '''Ground rover''')
MAV_TYPE_SURFACE_BOAT = 11 # Surface vessel, boat, ship
enums['MAV_TYPE'][11] = EnumEntry('MAV_TYPE_SURFACE_BOAT', '''Surface vessel, boat, ship''')
MAV_TYPE_SUBMARINE = 12 # Submarine
enums['MAV_TYPE'][12] = EnumEntry('MAV_TYPE_SUBMARINE', '''Submarine''')
MAV_TYPE_HEXAROTOR = 13 # Hexarotor
enums['MAV_TYPE'][13] = EnumEntry('MAV_TYPE_HEXAROTOR', '''Hexarotor''')
MAV_TYPE_OCTOROTOR = 14 # Octorotor
enums['MAV_TYPE'][14] = EnumEntry('MAV_TYPE_OCTOROTOR', '''Octorotor''')
MAV_TYPE_TRICOPTER = 15 # Tricopter
enums['MAV_TYPE'][15] = EnumEntry('MAV_TYPE_TRICOPTER', '''Tricopter''')
MAV_TYPE_FLAPPING_WING = 16 # Flapping wing
enums['MAV_TYPE'][16] = EnumEntry('MAV_TYPE_FLAPPING_WING', '''Flapping wing''')
MAV_TYPE_KITE = 17 # Kite
enums['MAV_TYPE'][17] = EnumEntry('MAV_TYPE_KITE', '''Kite''')
MAV_TYPE_ONBOARD_CONTROLLER = 18 # Onboard companion controller
enums['MAV_TYPE'][18] = EnumEntry('MAV_TYPE_ONBOARD_CONTROLLER', '''Onboard companion controller''')
MAV_TYPE_VTOL_DUOROTOR = 19 # Two-rotor VTOL using control surfaces in vertical operation in
# addition. Tailsitter.
enums['MAV_TYPE'][19] = EnumEntry('MAV_TYPE_VTOL_DUOROTOR', '''Two-rotor VTOL using control surfaces in vertical operation in addition. Tailsitter.''')
MAV_TYPE_VTOL_QUADROTOR = 20 # Quad-rotor VTOL using a V-shaped quad config in vertical operation.
# Tailsitter.
enums['MAV_TYPE'][20] = EnumEntry('MAV_TYPE_VTOL_QUADROTOR', '''Quad-rotor VTOL using a V-shaped quad config in vertical operation. Tailsitter.''')
MAV_TYPE_VTOL_TILTROTOR = 21 # Tiltrotor VTOL
enums['MAV_TYPE'][21] = EnumEntry('MAV_TYPE_VTOL_TILTROTOR', '''Tiltrotor VTOL''')
MAV_TYPE_VTOL_RESERVED2 = 22 # VTOL reserved 2
enums['MAV_TYPE'][22] = EnumEntry('MAV_TYPE_VTOL_RESERVED2', '''VTOL reserved 2''')
MAV_TYPE_VTOL_RESERVED3 = 23 # VTOL reserved 3
enums['MAV_TYPE'][23] = EnumEntry('MAV_TYPE_VTOL_RESERVED3', '''VTOL reserved 3''')
MAV_TYPE_VTOL_RESERVED4 = 24 # VTOL reserved 4
enums['MAV_TYPE'][24] = EnumEntry('MAV_TYPE_VTOL_RESERVED4', '''VTOL reserved 4''')
MAV_TYPE_VTOL_RESERVED5 = 25 # VTOL reserved 5
enums['MAV_TYPE'][25] = EnumEntry('MAV_TYPE_VTOL_RESERVED5', '''VTOL reserved 5''')
MAV_TYPE_GIMBAL = 26 # Onboard gimbal
enums['MAV_TYPE'][26] = EnumEntry('MAV_TYPE_GIMBAL', '''Onboard gimbal''')
MAV_TYPE_ADSB = 27 # Onboard ADSB peripheral
enums['MAV_TYPE'][27] = EnumEntry('MAV_TYPE_ADSB', '''Onboard ADSB peripheral''')
MAV_TYPE_PARAFOIL = 28 # Steerable, nonrigid airfoil
enums['MAV_TYPE'][28] = EnumEntry('MAV_TYPE_PARAFOIL', '''Steerable, nonrigid airfoil''')
MAV_TYPE_DODECAROTOR = 29 # Dodecarotor
enums['MAV_TYPE'][29] = EnumEntry('MAV_TYPE_DODECAROTOR', '''Dodecarotor''')
MAV_TYPE_CAMERA = 30 # Camera
enums['MAV_TYPE'][30] = EnumEntry('MAV_TYPE_CAMERA', '''Camera''')
MAV_TYPE_CHARGING_STATION = 31 # Charging station
enums['MAV_TYPE'][31] = EnumEntry('MAV_TYPE_CHARGING_STATION', '''Charging station''')
MAV_TYPE_FLARM = 32 # Onboard FLARM collision avoidance system
enums['MAV_TYPE'][32] = EnumEntry('MAV_TYPE_FLARM', '''Onboard FLARM collision avoidance system''')
MAV_TYPE_ENUM_END = 33 #
enums['MAV_TYPE'][33] = EnumEntry('MAV_TYPE_ENUM_END', '''''')
# FIRMWARE_VERSION_TYPE
enums['FIRMWARE_VERSION_TYPE'] = {}
FIRMWARE_VERSION_TYPE_DEV = 0 # development release
enums['FIRMWARE_VERSION_TYPE'][0] = EnumEntry('FIRMWARE_VERSION_TYPE_DEV', '''development release''')
FIRMWARE_VERSION_TYPE_ALPHA = 64 # alpha release
enums['FIRMWARE_VERSION_TYPE'][64] = EnumEntry('FIRMWARE_VERSION_TYPE_ALPHA', '''alpha release''')
FIRMWARE_VERSION_TYPE_BETA = 128 # beta release
enums['FIRMWARE_VERSION_TYPE'][128] = EnumEntry('FIRMWARE_VERSION_TYPE_BETA', '''beta release''')
FIRMWARE_VERSION_TYPE_RC = 192 # release candidate
enums['FIRMWARE_VERSION_TYPE'][192] = EnumEntry('FIRMWARE_VERSION_TYPE_RC', '''release candidate''')
FIRMWARE_VERSION_TYPE_OFFICIAL = 255 # official stable release
enums['FIRMWARE_VERSION_TYPE'][255] = EnumEntry('FIRMWARE_VERSION_TYPE_OFFICIAL', '''official stable release''')
FIRMWARE_VERSION_TYPE_ENUM_END = 256 #
enums['FIRMWARE_VERSION_TYPE'][256] = EnumEntry('FIRMWARE_VERSION_TYPE_ENUM_END', '''''')
# HL_FAILURE_FLAG
enums['HL_FAILURE_FLAG'] = {}
HL_FAILURE_FLAG_GPS = 1 # GPS failure.
enums['HL_FAILURE_FLAG'][1] = EnumEntry('HL_FAILURE_FLAG_GPS', '''GPS failure.''')
HL_FAILURE_FLAG_DIFFERENTIAL_PRESSURE = 2 # Differential pressure sensor failure.
enums['HL_FAILURE_FLAG'][2] = EnumEntry('HL_FAILURE_FLAG_DIFFERENTIAL_PRESSURE', '''Differential pressure sensor failure.''')
HL_FAILURE_FLAG_ABSOLUTE_PRESSURE = 4 # Absolute pressure sensor failure.
enums['HL_FAILURE_FLAG'][4] = EnumEntry('HL_FAILURE_FLAG_ABSOLUTE_PRESSURE', '''Absolute pressure sensor failure.''')
HL_FAILURE_FLAG_3D_ACCEL = 8 # Accelerometer sensor failure.
enums['HL_FAILURE_FLAG'][8] = EnumEntry('HL_FAILURE_FLAG_3D_ACCEL', '''Accelerometer sensor failure.''')
HL_FAILURE_FLAG_3D_GYRO = 16 # Gyroscope sensor failure.
enums['HL_FAILURE_FLAG'][16] = EnumEntry('HL_FAILURE_FLAG_3D_GYRO', '''Gyroscope sensor failure.''')
HL_FAILURE_FLAG_3D_MAG = 32 # Magnetometer sensor failure.
enums['HL_FAILURE_FLAG'][32] = EnumEntry('HL_FAILURE_FLAG_3D_MAG', '''Magnetometer sensor failure.''')
HL_FAILURE_FLAG_TERRAIN = 64 # Terrain subsystem failure.
enums['HL_FAILURE_FLAG'][64] = EnumEntry('HL_FAILURE_FLAG_TERRAIN', '''Terrain subsystem failure.''')
HL_FAILURE_FLAG_BATTERY = 128 # Battery failure/critical low battery.
enums['HL_FAILURE_FLAG'][128] = EnumEntry('HL_FAILURE_FLAG_BATTERY', '''Battery failure/critical low battery.''')
HL_FAILURE_FLAG_RC_RECEIVER = 256 # RC receiver failure/no rc connection.
enums['HL_FAILURE_FLAG'][256] = EnumEntry('HL_FAILURE_FLAG_RC_RECEIVER', '''RC receiver failure/no rc connection.''')
HL_FAILURE_FLAG_OFFBOARD_LINK = 512 # Offboard link failure.
enums['HL_FAILURE_FLAG'][512] = EnumEntry('HL_FAILURE_FLAG_OFFBOARD_LINK', '''Offboard link failure.''')
HL_FAILURE_FLAG_ENGINE = 1024 # Engine failure.
enums['HL_FAILURE_FLAG'][1024] = EnumEntry('HL_FAILURE_FLAG_ENGINE', '''Engine failure.''')
HL_FAILURE_FLAG_GEOFENCE = 2048 # Geofence violation.
enums['HL_FAILURE_FLAG'][2048] = EnumEntry('HL_FAILURE_FLAG_GEOFENCE', '''Geofence violation.''')
HL_FAILURE_FLAG_ESTIMATOR = 4096 # Estimator failure, for example measurement rejection or large
# variances.
enums['HL_FAILURE_FLAG'][4096] = EnumEntry('HL_FAILURE_FLAG_ESTIMATOR', '''Estimator failure, for example measurement rejection or large variances.''')
HL_FAILURE_FLAG_MISSION = 8192 # Mission failure.
enums['HL_FAILURE_FLAG'][8192] = EnumEntry('HL_FAILURE_FLAG_MISSION', '''Mission failure.''')
HL_FAILURE_FLAG_ENUM_END = 8193 #
enums['HL_FAILURE_FLAG'][8193] = EnumEntry('HL_FAILURE_FLAG_ENUM_END', '''''')
# MAV_MODE_FLAG
enums['MAV_MODE_FLAG'] = {}
MAV_MODE_FLAG_CUSTOM_MODE_ENABLED = 1 # 0b00000001 Reserved for future use.
enums['MAV_MODE_FLAG'][1] = EnumEntry('MAV_MODE_FLAG_CUSTOM_MODE_ENABLED', '''0b00000001 Reserved for future use.''')
MAV_MODE_FLAG_TEST_ENABLED = 2 # 0b00000010 system has a test mode enabled. This flag is intended for
# temporary system tests and should not be
# used for stable implementations.
enums['MAV_MODE_FLAG'][2] = EnumEntry('MAV_MODE_FLAG_TEST_ENABLED', '''0b00000010 system has a test mode enabled. This flag is intended for temporary system tests and should not be used for stable implementations.''')
MAV_MODE_FLAG_AUTO_ENABLED = 4 # 0b00000100 autonomous mode enabled, system finds its own goal
# positions. Guided flag can be set or not,
# depends on the actual implementation.
enums['MAV_MODE_FLAG'][4] = EnumEntry('MAV_MODE_FLAG_AUTO_ENABLED', '''0b00000100 autonomous mode enabled, system finds its own goal positions. Guided flag can be set or not, depends on the actual implementation.''')
MAV_MODE_FLAG_GUIDED_ENABLED = 8 # 0b00001000 guided mode enabled, system flies waypoints / mission
# items.
enums['MAV_MODE_FLAG'][8] = EnumEntry('MAV_MODE_FLAG_GUIDED_ENABLED', '''0b00001000 guided mode enabled, system flies waypoints / mission items.''')
MAV_MODE_FLAG_STABILIZE_ENABLED = 16 # 0b00010000 system stabilizes electronically its attitude (and
# optionally position). It needs however
# further control inputs to move around.
enums['MAV_MODE_FLAG'][16] = EnumEntry('MAV_MODE_FLAG_STABILIZE_ENABLED', '''0b00010000 system stabilizes electronically its attitude (and optionally position). It needs however further control inputs to move around.''')
MAV_MODE_FLAG_HIL_ENABLED = 32 # 0b00100000 hardware in the loop simulation. All motors / actuators are
# blocked, but internal software is full
# operational.
enums['MAV_MODE_FLAG'][32] = EnumEntry('MAV_MODE_FLAG_HIL_ENABLED', '''0b00100000 hardware in the loop simulation. All motors / actuators are blocked, but internal software is full operational.''')
MAV_MODE_FLAG_MANUAL_INPUT_ENABLED = 64 # 0b01000000 remote control input is enabled.
enums['MAV_MODE_FLAG'][64] = EnumEntry('MAV_MODE_FLAG_MANUAL_INPUT_ENABLED', '''0b01000000 remote control input is enabled.''')
MAV_MODE_FLAG_SAFETY_ARMED = 128 # 0b10000000 MAV safety set to armed. Motors are enabled / running / can
# start. Ready to fly. Additional note: this
# flag is to be ignore when sent in the
# command MAV_CMD_DO_SET_MODE and
# MAV_CMD_COMPONENT_ARM_DISARM shall be used
# instead. The flag can still be used to
# report the armed state.
enums['MAV_MODE_FLAG'][128] = EnumEntry('MAV_MODE_FLAG_SAFETY_ARMED', '''0b10000000 MAV safety set to armed. Motors are enabled / running / can start. Ready to fly. Additional note: this flag is to be ignore when sent in the command MAV_CMD_DO_SET_MODE and MAV_CMD_COMPONENT_ARM_DISARM shall be used instead. The flag can still be used to report the armed state.''')
MAV_MODE_FLAG_ENUM_END = 129 #
enums['MAV_MODE_FLAG'][129] = EnumEntry('MAV_MODE_FLAG_ENUM_END', '''''')
# MAV_MODE_FLAG_DECODE_POSITION
enums['MAV_MODE_FLAG_DECODE_POSITION'] = {}
MAV_MODE_FLAG_DECODE_POSITION_CUSTOM_MODE = 1 # Eighth bit: 00000001
enums['MAV_MODE_FLAG_DECODE_POSITION'][1] = EnumEntry('MAV_MODE_FLAG_DECODE_POSITION_CUSTOM_MODE', '''Eighth bit: 00000001''')
MAV_MODE_FLAG_DECODE_POSITION_TEST = 2 # Seventh bit: 00000010
enums['MAV_MODE_FLAG_DECODE_POSITION'][2] = EnumEntry('MAV_MODE_FLAG_DECODE_POSITION_TEST', '''Seventh bit: 00000010''')
MAV_MODE_FLAG_DECODE_POSITION_AUTO = 4 # Sixt bit: 00000100
enums['MAV_MODE_FLAG_DECODE_POSITION'][4] = EnumEntry('MAV_MODE_FLAG_DECODE_POSITION_AUTO', '''Sixt bit: 00000100''')
MAV_MODE_FLAG_DECODE_POSITION_GUIDED = 8 # Fifth bit: 00001000
enums['MAV_MODE_FLAG_DECODE_POSITION'][8] = EnumEntry('MAV_MODE_FLAG_DECODE_POSITION_GUIDED', '''Fifth bit: 00001000''')
MAV_MODE_FLAG_DECODE_POSITION_STABILIZE = 16 # Fourth bit: 00010000
enums['MAV_MODE_FLAG_DECODE_POSITION'][16] = EnumEntry('MAV_MODE_FLAG_DECODE_POSITION_STABILIZE', '''Fourth bit: 00010000''')
MAV_MODE_FLAG_DECODE_POSITION_HIL = 32 # Third bit: 00100000
enums['MAV_MODE_FLAG_DECODE_POSITION'][32] = EnumEntry('MAV_MODE_FLAG_DECODE_POSITION_HIL', '''Third bit: 00100000''')
MAV_MODE_FLAG_DECODE_POSITION_MANUAL = 64 # Second bit: 01000000
enums['MAV_MODE_FLAG_DECODE_POSITION'][64] = EnumEntry('MAV_MODE_FLAG_DECODE_POSITION_MANUAL', '''Second bit: 01000000''')
MAV_MODE_FLAG_DECODE_POSITION_SAFETY = 128 # First bit: 10000000
enums['MAV_MODE_FLAG_DECODE_POSITION'][128] = EnumEntry('MAV_MODE_FLAG_DECODE_POSITION_SAFETY', '''First bit: 10000000''')
MAV_MODE_FLAG_DECODE_POSITION_ENUM_END = 129 #
enums['MAV_MODE_FLAG_DECODE_POSITION'][129] = EnumEntry('MAV_MODE_FLAG_DECODE_POSITION_ENUM_END', '''''')
# MAV_GOTO
enums['MAV_GOTO'] = {}
MAV_GOTO_DO_HOLD = 0 # Hold at the current position.
enums['MAV_GOTO'][0] = EnumEntry('MAV_GOTO_DO_HOLD', '''Hold at the current position.''')
MAV_GOTO_DO_CONTINUE = 1 # Continue with the next item in mission execution.
enums['MAV_GOTO'][1] = EnumEntry('MAV_GOTO_DO_CONTINUE', '''Continue with the next item in mission execution.''')
MAV_GOTO_HOLD_AT_CURRENT_POSITION = 2 # Hold at the current position of the system
enums['MAV_GOTO'][2] = EnumEntry('MAV_GOTO_HOLD_AT_CURRENT_POSITION', '''Hold at the current position of the system''')
MAV_GOTO_HOLD_AT_SPECIFIED_POSITION = 3 # Hold at the position specified in the parameters of the DO_HOLD action
enums['MAV_GOTO'][3] = EnumEntry('MAV_GOTO_HOLD_AT_SPECIFIED_POSITION', '''Hold at the position specified in the parameters of the DO_HOLD action''')
MAV_GOTO_ENUM_END = 4 #
enums['MAV_GOTO'][4] = EnumEntry('MAV_GOTO_ENUM_END', '''''')
# MAV_MODE
enums['MAV_MODE'] = {}
MAV_MODE_PREFLIGHT = 0 # System is not ready to fly, booting, calibrating, etc. No flag is set.
enums['MAV_MODE'][0] = EnumEntry('MAV_MODE_PREFLIGHT', '''System is not ready to fly, booting, calibrating, etc. No flag is set.''')
MAV_MODE_MANUAL_DISARMED = 64 # System is allowed to be active, under manual (RC) control, no
# stabilization
enums['MAV_MODE'][64] = EnumEntry('MAV_MODE_MANUAL_DISARMED', '''System is allowed to be active, under manual (RC) control, no stabilization''')
MAV_MODE_TEST_DISARMED = 66 # UNDEFINED mode. This solely depends on the autopilot - use with
# caution, intended for developers only.
enums['MAV_MODE'][66] = EnumEntry('MAV_MODE_TEST_DISARMED', '''UNDEFINED mode. This solely depends on the autopilot - use with caution, intended for developers only.''')
MAV_MODE_STABILIZE_DISARMED = 80 # System is allowed to be active, under assisted RC control.
enums['MAV_MODE'][80] = EnumEntry('MAV_MODE_STABILIZE_DISARMED', '''System is allowed to be active, under assisted RC control.''')
MAV_MODE_GUIDED_DISARMED = 88 # System is allowed to be active, under autonomous control, manual
# setpoint
enums['MAV_MODE'][88] = EnumEntry('MAV_MODE_GUIDED_DISARMED', '''System is allowed to be active, under autonomous control, manual setpoint''')
MAV_MODE_AUTO_DISARMED = 92 # System is allowed to be active, under autonomous control and
# navigation (the trajectory is decided
# onboard and not pre-programmed by waypoints)
enums['MAV_MODE'][92] = EnumEntry('MAV_MODE_AUTO_DISARMED', '''System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by waypoints)''')
MAV_MODE_MANUAL_ARMED = 192 # System is allowed to be active, under manual (RC) control, no
# stabilization
enums['MAV_MODE'][192] = EnumEntry('MAV_MODE_MANUAL_ARMED', '''System is allowed to be active, under manual (RC) control, no stabilization''')
MAV_MODE_TEST_ARMED = 194 # UNDEFINED mode. This solely depends on the autopilot - use with
# caution, intended for developers only.
enums['MAV_MODE'][194] = EnumEntry('MAV_MODE_TEST_ARMED', '''UNDEFINED mode. This solely depends on the autopilot - use with caution, intended for developers only.''')
MAV_MODE_STABILIZE_ARMED = 208 # System is allowed to be active, under assisted RC control.
enums['MAV_MODE'][208] = EnumEntry('MAV_MODE_STABILIZE_ARMED', '''System is allowed to be active, under assisted RC control.''')
MAV_MODE_GUIDED_ARMED = 216 # System is allowed to be active, under autonomous control, manual
# setpoint
enums['MAV_MODE'][216] = EnumEntry('MAV_MODE_GUIDED_ARMED', '''System is allowed to be active, under autonomous control, manual setpoint''')
MAV_MODE_AUTO_ARMED = 220 # System is allowed to be active, under autonomous control and
# navigation (the trajectory is decided
# onboard and not pre-programmed by waypoints)
enums['MAV_MODE'][220] = EnumEntry('MAV_MODE_AUTO_ARMED', '''System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by waypoints)''')
MAV_MODE_ENUM_END = 221 #
enums['MAV_MODE'][221] = EnumEntry('MAV_MODE_ENUM_END', '''''')
# MAV_STATE
enums['MAV_STATE'] = {}
MAV_STATE_UNINIT = 0 # Uninitialized system, state is unknown.
enums['MAV_STATE'][0] = EnumEntry('MAV_STATE_UNINIT', '''Uninitialized system, state is unknown.''')
MAV_STATE_BOOT = 1 # System is booting up.
enums['MAV_STATE'][1] = EnumEntry('MAV_STATE_BOOT', '''System is booting up.''')
MAV_STATE_CALIBRATING = 2 # System is calibrating and not flight-ready.
enums['MAV_STATE'][2] = EnumEntry('MAV_STATE_CALIBRATING', '''System is calibrating and not flight-ready.''')
MAV_STATE_STANDBY = 3 # System is grounded and on standby. It can be launched any time.
enums['MAV_STATE'][3] = EnumEntry('MAV_STATE_STANDBY', '''System is grounded and on standby. It can be launched any time.''')
MAV_STATE_ACTIVE = 4 # System is active and might be already airborne. Motors are engaged.
enums['MAV_STATE'][4] = EnumEntry('MAV_STATE_ACTIVE', '''System is active and might be already airborne. Motors are engaged.''')
MAV_STATE_CRITICAL = 5 # System is in a non-normal flight mode. It can however still navigate.
enums['MAV_STATE'][5] = EnumEntry('MAV_STATE_CRITICAL', '''System is in a non-normal flight mode. It can however still navigate.''')
MAV_STATE_EMERGENCY = 6 # System is in a non-normal flight mode. It lost control over parts or
# over the whole airframe. It is in mayday and
# going down.
enums['MAV_STATE'][6] = EnumEntry('MAV_STATE_EMERGENCY', '''System is in a non-normal flight mode. It lost control over parts or over the whole airframe. It is in mayday and going down.''')
MAV_STATE_POWEROFF = 7 # System just initialized its power-down sequence, will shut down now.
enums['MAV_STATE'][7] = EnumEntry('MAV_STATE_POWEROFF', '''System just initialized its power-down sequence, will shut down now.''')
MAV_STATE_FLIGHT_TERMINATION = 8 # System is terminating itself.
enums['MAV_STATE'][8] = EnumEntry('MAV_STATE_FLIGHT_TERMINATION', '''System is terminating itself.''')
MAV_STATE_ENUM_END = 9 #
enums['MAV_STATE'][9] = EnumEntry('MAV_STATE_ENUM_END', '''''')
# MAV_COMPONENT
enums['MAV_COMPONENT'] = {}
MAV_COMP_ID_ALL = 0 #
enums['MAV_COMPONENT'][0] = EnumEntry('MAV_COMP_ID_ALL', '''''')
MAV_COMP_ID_AUTOPILOT1 = 1 #
enums['MAV_COMPONENT'][1] = EnumEntry('MAV_COMP_ID_AUTOPILOT1', '''''')
MAV_COMP_ID_CAMERA = 100 #
enums['MAV_COMPONENT'][100] = EnumEntry('MAV_COMP_ID_CAMERA', '''''')
MAV_COMP_ID_CAMERA2 = 101 #
enums['MAV_COMPONENT'][101] = EnumEntry('MAV_COMP_ID_CAMERA2', '''''')
MAV_COMP_ID_CAMERA3 = 102 #
enums['MAV_COMPONENT'][102] = EnumEntry('MAV_COMP_ID_CAMERA3', '''''')
MAV_COMP_ID_CAMERA4 = 103 #
enums['MAV_COMPONENT'][103] = EnumEntry('MAV_COMP_ID_CAMERA4', '''''')
MAV_COMP_ID_CAMERA5 = 104 #
enums['MAV_COMPONENT'][104] = EnumEntry('MAV_COMP_ID_CAMERA5', '''''')
MAV_COMP_ID_CAMERA6 = 105 #
enums['MAV_COMPONENT'][105] = EnumEntry('MAV_COMP_ID_CAMERA6', '''''')
MAV_COMP_ID_SERVO1 = 140 #
enums['MAV_COMPONENT'][140] = EnumEntry('MAV_COMP_ID_SERVO1', '''''')
MAV_COMP_ID_SERVO2 = 141 #
enums['MAV_COMPONENT'][141] = EnumEntry('MAV_COMP_ID_SERVO2', '''''')
MAV_COMP_ID_SERVO3 = 142 #
enums['MAV_COMPONENT'][142] = EnumEntry('MAV_COMP_ID_SERVO3', '''''')
MAV_COMP_ID_SERVO4 = 143 #
enums['MAV_COMPONENT'][143] = EnumEntry('MAV_COMP_ID_SERVO4', '''''')
MAV_COMP_ID_SERVO5 = 144 #
enums['MAV_COMPONENT'][144] = EnumEntry('MAV_COMP_ID_SERVO5', '''''')
MAV_COMP_ID_SERVO6 = 145 #
enums['MAV_COMPONENT'][145] = EnumEntry('MAV_COMP_ID_SERVO6', '''''')
MAV_COMP_ID_SERVO7 = 146 #
enums['MAV_COMPONENT'][146] = EnumEntry('MAV_COMP_ID_SERVO7', '''''')
MAV_COMP_ID_SERVO8 = 147 #
enums['MAV_COMPONENT'][147] = EnumEntry('MAV_COMP_ID_SERVO8', '''''')
MAV_COMP_ID_SERVO9 = 148 #
enums['MAV_COMPONENT'][148] = EnumEntry('MAV_COMP_ID_SERVO9', '''''')
MAV_COMP_ID_SERVO10 = 149 #
enums['MAV_COMPONENT'][149] = EnumEntry('MAV_COMP_ID_SERVO10', '''''')
MAV_COMP_ID_SERVO11 = 150 #
enums['MAV_COMPONENT'][150] = EnumEntry('MAV_COMP_ID_SERVO11', '''''')
MAV_COMP_ID_SERVO12 = 151 #
enums['MAV_COMPONENT'][151] = EnumEntry('MAV_COMP_ID_SERVO12', '''''')
MAV_COMP_ID_SERVO13 = 152 #
enums['MAV_COMPONENT'][152] = EnumEntry('MAV_COMP_ID_SERVO13', '''''')
MAV_COMP_ID_SERVO14 = 153 #
enums['MAV_COMPONENT'][153] = EnumEntry('MAV_COMP_ID_SERVO14', '''''')
MAV_COMP_ID_GIMBAL = 154 #
enums['MAV_COMPONENT'][154] = EnumEntry('MAV_COMP_ID_GIMBAL', '''''')
MAV_COMP_ID_LOG = 155 #
enums['MAV_COMPONENT'][155] = EnumEntry('MAV_COMP_ID_LOG', '''''')
MAV_COMP_ID_ADSB = 156 #
enums['MAV_COMPONENT'][156] = EnumEntry('MAV_COMP_ID_ADSB', '''''')
MAV_COMP_ID_OSD = 157 # On Screen Display (OSD) devices for video links
enums['MAV_COMPONENT'][157] = EnumEntry('MAV_COMP_ID_OSD', '''On Screen Display (OSD) devices for video links''')
MAV_COMP_ID_PERIPHERAL = 158 # Generic autopilot peripheral component ID. Meant for devices that do
# not implement the parameter sub-protocol
enums['MAV_COMPONENT'][158] = EnumEntry('MAV_COMP_ID_PERIPHERAL', '''Generic autopilot peripheral component ID. Meant for devices that do not implement the parameter sub-protocol''')
MAV_COMP_ID_QX1_GIMBAL = 159 #
enums['MAV_COMPONENT'][159] = EnumEntry('MAV_COMP_ID_QX1_GIMBAL', '''''')
MAV_COMP_ID_FLARM = 160 #
enums['MAV_COMPONENT'][160] = EnumEntry('MAV_COMP_ID_FLARM', '''''')
MAV_COMP_ID_MAPPER = 180 #
enums['MAV_COMPONENT'][180] = EnumEntry('MAV_COMP_ID_MAPPER', '''''')
MAV_COMP_ID_MISSIONPLANNER = 190 #
enums['MAV_COMPONENT'][190] = EnumEntry('MAV_COMP_ID_MISSIONPLANNER', '''''')
MAV_COMP_ID_PATHPLANNER = 195 #
enums['MAV_COMPONENT'][195] = EnumEntry('MAV_COMP_ID_PATHPLANNER', '''''')
MAV_COMP_ID_IMU = 200 #
enums['MAV_COMPONENT'][200] = EnumEntry('MAV_COMP_ID_IMU', '''''')
MAV_COMP_ID_IMU_2 = 201 #
enums['MAV_COMPONENT'][201] = EnumEntry('MAV_COMP_ID_IMU_2', '''''')
MAV_COMP_ID_IMU_3 = 202 #
enums['MAV_COMPONENT'][202] = EnumEntry('MAV_COMP_ID_IMU_3', '''''')
MAV_COMP_ID_GPS = 220 #
enums['MAV_COMPONENT'][220] = EnumEntry('MAV_COMP_ID_GPS', '''''')
MAV_COMP_ID_GPS2 = 221 #
enums['MAV_COMPONENT'][221] = EnumEntry('MAV_COMP_ID_GPS2', '''''')
MAV_COMP_ID_UDP_BRIDGE = 240 #
enums['MAV_COMPONENT'][240] = EnumEntry('MAV_COMP_ID_UDP_BRIDGE', '''''')
MAV_COMP_ID_UART_BRIDGE = 241 #
enums['MAV_COMPONENT'][241] = EnumEntry('MAV_COMP_ID_UART_BRIDGE', '''''')
MAV_COMP_ID_SYSTEM_CONTROL = 250 #
enums['MAV_COMPONENT'][250] = EnumEntry('MAV_COMP_ID_SYSTEM_CONTROL', '''''')
MAV_COMPONENT_ENUM_END = 251 #
enums['MAV_COMPONENT'][251] = EnumEntry('MAV_COMPONENT_ENUM_END', '''''')
# MAV_SYS_STATUS_SENSOR
enums['MAV_SYS_STATUS_SENSOR'] = {}
MAV_SYS_STATUS_SENSOR_3D_GYRO = 1 # 0x01 3D gyro
enums['MAV_SYS_STATUS_SENSOR'][1] = EnumEntry('MAV_SYS_STATUS_SENSOR_3D_GYRO', '''0x01 3D gyro''')
MAV_SYS_STATUS_SENSOR_3D_ACCEL = 2 # 0x02 3D accelerometer
enums['MAV_SYS_STATUS_SENSOR'][2] = EnumEntry('MAV_SYS_STATUS_SENSOR_3D_ACCEL', '''0x02 3D accelerometer''')
MAV_SYS_STATUS_SENSOR_3D_MAG = 4 # 0x04 3D magnetometer
enums['MAV_SYS_STATUS_SENSOR'][4] = EnumEntry('MAV_SYS_STATUS_SENSOR_3D_MAG', '''0x04 3D magnetometer''')
MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE = 8 # 0x08 absolute pressure
enums['MAV_SYS_STATUS_SENSOR'][8] = EnumEntry('MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE', '''0x08 absolute pressure''')
MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE = 16 # 0x10 differential pressure
enums['MAV_SYS_STATUS_SENSOR'][16] = EnumEntry('MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE', '''0x10 differential pressure''')
MAV_SYS_STATUS_SENSOR_GPS = 32 # 0x20 GPS
enums['MAV_SYS_STATUS_SENSOR'][32] = EnumEntry('MAV_SYS_STATUS_SENSOR_GPS', '''0x20 GPS''')
MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW = 64 # 0x40 optical flow
enums['MAV_SYS_STATUS_SENSOR'][64] = EnumEntry('MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW', '''0x40 optical flow''')
MAV_SYS_STATUS_SENSOR_VISION_POSITION = 128 # 0x80 computer vision position
enums['MAV_SYS_STATUS_SENSOR'][128] = EnumEntry('MAV_SYS_STATUS_SENSOR_VISION_POSITION', '''0x80 computer vision position''')
MAV_SYS_STATUS_SENSOR_LASER_POSITION = 256 # 0x100 laser based position
enums['MAV_SYS_STATUS_SENSOR'][256] = EnumEntry('MAV_SYS_STATUS_SENSOR_LASER_POSITION', '''0x100 laser based position''')
MAV_SYS_STATUS_SENSOR_EXTERNAL_GROUND_TRUTH = 512 # 0x200 external ground truth (Vicon or Leica)
enums['MAV_SYS_STATUS_SENSOR'][512] = EnumEntry('MAV_SYS_STATUS_SENSOR_EXTERNAL_GROUND_TRUTH', '''0x200 external ground truth (Vicon or Leica)''')
MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL = 1024 # 0x400 3D angular rate control
enums['MAV_SYS_STATUS_SENSOR'][1024] = EnumEntry('MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL', '''0x400 3D angular rate control''')
MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION = 2048 # 0x800 attitude stabilization
enums['MAV_SYS_STATUS_SENSOR'][2048] = EnumEntry('MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION', '''0x800 attitude stabilization''')
MAV_SYS_STATUS_SENSOR_YAW_POSITION = 4096 # 0x1000 yaw position
enums['MAV_SYS_STATUS_SENSOR'][4096] = EnumEntry('MAV_SYS_STATUS_SENSOR_YAW_POSITION', '''0x1000 yaw position''')
MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL = 8192 # 0x2000 z/altitude control
enums['MAV_SYS_STATUS_SENSOR'][8192] = EnumEntry('MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL', '''0x2000 z/altitude control''')
MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL = 16384 # 0x4000 x/y position control
enums['MAV_SYS_STATUS_SENSOR'][16384] = EnumEntry('MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL', '''0x4000 x/y position control''')
MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS = 32768 # 0x8000 motor outputs / control
enums['MAV_SYS_STATUS_SENSOR'][32768] = EnumEntry('MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS', '''0x8000 motor outputs / control''')
MAV_SYS_STATUS_SENSOR_RC_RECEIVER = 65536 # 0x10000 rc receiver
enums['MAV_SYS_STATUS_SENSOR'][65536] = EnumEntry('MAV_SYS_STATUS_SENSOR_RC_RECEIVER', '''0x10000 rc receiver''')
MAV_SYS_STATUS_SENSOR_3D_GYRO2 = 131072 # 0x20000 2nd 3D gyro
enums['MAV_SYS_STATUS_SENSOR'][131072] = EnumEntry('MAV_SYS_STATUS_SENSOR_3D_GYRO2', '''0x20000 2nd 3D gyro''')
MAV_SYS_STATUS_SENSOR_3D_ACCEL2 = 262144 # 0x40000 2nd 3D accelerometer
enums['MAV_SYS_STATUS_SENSOR'][262144] = EnumEntry('MAV_SYS_STATUS_SENSOR_3D_ACCEL2', '''0x40000 2nd 3D accelerometer''')
MAV_SYS_STATUS_SENSOR_3D_MAG2 = 524288 # 0x80000 2nd 3D magnetometer
enums['MAV_SYS_STATUS_SENSOR'][524288] = EnumEntry('MAV_SYS_STATUS_SENSOR_3D_MAG2', '''0x80000 2nd 3D magnetometer''')
MAV_SYS_STATUS_GEOFENCE = 1048576 # 0x100000 geofence
enums['MAV_SYS_STATUS_SENSOR'][1048576] = EnumEntry('MAV_SYS_STATUS_GEOFENCE', '''0x100000 geofence''')
MAV_SYS_STATUS_AHRS = 2097152 # 0x200000 AHRS subsystem health
enums['MAV_SYS_STATUS_SENSOR'][2097152] = EnumEntry('MAV_SYS_STATUS_AHRS', '''0x200000 AHRS subsystem health''')
MAV_SYS_STATUS_TERRAIN = 4194304 # 0x400000 Terrain subsystem health
enums['MAV_SYS_STATUS_SENSOR'][4194304] = EnumEntry('MAV_SYS_STATUS_TERRAIN', '''0x400000 Terrain subsystem health''')
MAV_SYS_STATUS_REVERSE_MOTOR = 8388608 # 0x800000 Motors are reversed
enums['MAV_SYS_STATUS_SENSOR'][8388608] = EnumEntry('MAV_SYS_STATUS_REVERSE_MOTOR', '''0x800000 Motors are reversed''')
MAV_SYS_STATUS_LOGGING = 16777216 # 0x1000000 Logging
enums['MAV_SYS_STATUS_SENSOR'][16777216] = EnumEntry('MAV_SYS_STATUS_LOGGING', '''0x1000000 Logging''')
MAV_SYS_STATUS_SENSOR_BATTERY = 33554432 # 0x2000000 Battery
enums['MAV_SYS_STATUS_SENSOR'][33554432] = EnumEntry('MAV_SYS_STATUS_SENSOR_BATTERY', '''0x2000000 Battery''')
MAV_SYS_STATUS_SENSOR_PROXIMITY = 67108864 # 0x4000000 Proximity
enums['MAV_SYS_STATUS_SENSOR'][67108864] = EnumEntry('MAV_SYS_STATUS_SENSOR_PROXIMITY', '''0x4000000 Proximity''')
MAV_SYS_STATUS_SENSOR_SATCOM = 134217728 # 0x8000000 Satellite Communication
enums['MAV_SYS_STATUS_SENSOR'][134217728] = EnumEntry('MAV_SYS_STATUS_SENSOR_SATCOM', '''0x8000000 Satellite Communication ''')
MAV_SYS_STATUS_SENSOR_ENUM_END = 134217729 #
enums['MAV_SYS_STATUS_SENSOR'][134217729] = EnumEntry('MAV_SYS_STATUS_SENSOR_ENUM_END', '''''')
# MAV_FRAME
enums['MAV_FRAME'] = {}
MAV_FRAME_GLOBAL = 0 # Global coordinate frame, WGS84 coordinate system. First value / x:
# latitude, second value / y: longitude, third
# value / z: positive altitude over mean sea
# level (MSL).
enums['MAV_FRAME'][0] = EnumEntry('MAV_FRAME_GLOBAL', '''Global coordinate frame, WGS84 coordinate system. First value / x: latitude, second value / y: longitude, third value / z: positive altitude over mean sea level (MSL).''')
MAV_FRAME_LOCAL_NED = 1 # Local coordinate frame, Z-down (x: north, y: east, z: down).
enums['MAV_FRAME'][1] = EnumEntry('MAV_FRAME_LOCAL_NED', '''Local coordinate frame, Z-down (x: north, y: east, z: down).''')
MAV_FRAME_MISSION = 2 # NOT a coordinate frame, indicates a mission command.
enums['MAV_FRAME'][2] = EnumEntry('MAV_FRAME_MISSION', '''NOT a coordinate frame, indicates a mission command.''')
MAV_FRAME_GLOBAL_RELATIVE_ALT = 3 # Global coordinate frame, WGS84 coordinate system, relative altitude
# over ground with respect to the home
# position. First value / x: latitude, second
# value / y: longitude, third value / z:
# positive altitude with 0 being at the
# altitude of the home location.
enums['MAV_FRAME'][3] = EnumEntry('MAV_FRAME_GLOBAL_RELATIVE_ALT', '''Global coordinate frame, WGS84 coordinate system, relative altitude over ground with respect to the home position. First value / x: latitude, second value / y: longitude, third value / z: positive altitude with 0 being at the altitude of the home location.''')
MAV_FRAME_LOCAL_ENU = 4 # Local coordinate frame, Z-up (x: east, y: north, z: up).
enums['MAV_FRAME'][4] = EnumEntry('MAV_FRAME_LOCAL_ENU', '''Local coordinate frame, Z-up (x: east, y: north, z: up).''')
MAV_FRAME_GLOBAL_INT = 5 # Global coordinate frame, WGS84 coordinate system. First value / x:
# latitude in degrees*1.0e-7, second value /
# y: longitude in degrees*1.0e-7, third value
# / z: positive altitude over mean sea level
# (MSL).
enums['MAV_FRAME'][5] = EnumEntry('MAV_FRAME_GLOBAL_INT', '''Global coordinate frame, WGS84 coordinate system. First value / x: latitude in degrees*1.0e-7, second value / y: longitude in degrees*1.0e-7, third value / z: positive altitude over mean sea level (MSL).''')
MAV_FRAME_GLOBAL_RELATIVE_ALT_INT = 6 # Global coordinate frame, WGS84 coordinate system, relative altitude
# over ground with respect to the home
# position. First value / x: latitude in
# degrees*10e-7, second value / y: longitude
# in degrees*10e-7, third value / z: positive
# altitude with 0 being at the altitude of the
# home location.
enums['MAV_FRAME'][6] = EnumEntry('MAV_FRAME_GLOBAL_RELATIVE_ALT_INT', '''Global coordinate frame, WGS84 coordinate system, relative altitude over ground with respect to the home position. First value / x: latitude in degrees*10e-7, second value / y: longitude in degrees*10e-7, third value / z: positive altitude with 0 being at the altitude of the home location.''')
MAV_FRAME_LOCAL_OFFSET_NED = 7 # Offset to the current local frame. Anything expressed in this frame
# should be added to the current local frame
# position.
enums['MAV_FRAME'][7] = EnumEntry('MAV_FRAME_LOCAL_OFFSET_NED', '''Offset to the current local frame. Anything expressed in this frame should be added to the current local frame position.''')
MAV_FRAME_BODY_NED = 8 # Setpoint in body NED frame. This makes sense if all position control
# is externalized - e.g. useful to command 2
# m/s^2 acceleration to the right.
enums['MAV_FRAME'][8] = EnumEntry('MAV_FRAME_BODY_NED', '''Setpoint in body NED frame. This makes sense if all position control is externalized - e.g. useful to command 2 m/s^2 acceleration to the right.''')
MAV_FRAME_BODY_OFFSET_NED = 9 # Offset in body NED frame. This makes sense if adding setpoints to the
# current flight path, to avoid an obstacle -
# e.g. useful to command 2 m/s^2 acceleration
# to the east.
enums['MAV_FRAME'][9] = EnumEntry('MAV_FRAME_BODY_OFFSET_NED', '''Offset in body NED frame. This makes sense if adding setpoints to the current flight path, to avoid an obstacle - e.g. useful to command 2 m/s^2 acceleration to the east.''')
MAV_FRAME_GLOBAL_TERRAIN_ALT = 10 # Global coordinate frame with above terrain level altitude. WGS84
# coordinate system, relative altitude over
# terrain with respect to the waypoint
# coordinate. First value / x: latitude in
# degrees, second value / y: longitude in
# degrees, third value / z: positive altitude
# in meters with 0 being at ground level in
# terrain model.
enums['MAV_FRAME'][10] = EnumEntry('MAV_FRAME_GLOBAL_TERRAIN_ALT', '''Global coordinate frame with above terrain level altitude. WGS84 coordinate system, relative altitude over terrain with respect to the waypoint coordinate. First value / x: latitude in degrees, second value / y: longitude in degrees, third value / z: positive altitude in meters with 0 being at ground level in terrain model.''')
MAV_FRAME_GLOBAL_TERRAIN_ALT_INT = 11 # Global coordinate frame with above terrain level altitude. WGS84
# coordinate system, relative altitude over
# terrain with respect to the waypoint
# coordinate. First value / x: latitude in
# degrees*10e-7, second value / y: longitude
# in degrees*10e-7, third value / z: positive
# altitude in meters with 0 being at ground
# level in terrain model.
enums['MAV_FRAME'][11] = EnumEntry('MAV_FRAME_GLOBAL_TERRAIN_ALT_INT', '''Global coordinate frame with above terrain level altitude. WGS84 coordinate system, relative altitude over terrain with respect to the waypoint coordinate. First value / x: latitude in degrees*10e-7, second value / y: longitude in degrees*10e-7, third value / z: positive altitude in meters with 0 being at ground level in terrain model.''')
MAV_FRAME_BODY_FRD = 12 # Body fixed frame of reference, Z-down (x: forward, y: right, z: down).
enums['MAV_FRAME'][12] = EnumEntry('MAV_FRAME_BODY_FRD', '''Body fixed frame of reference, Z-down (x: forward, y: right, z: down).''')
MAV_FRAME_BODY_FLU = 13 # Body fixed frame of reference, Z-up (x: forward, y: left, z: up).
enums['MAV_FRAME'][13] = EnumEntry('MAV_FRAME_BODY_FLU', '''Body fixed frame of reference, Z-up (x: forward, y: left, z: up).''')
MAV_FRAME_MOCAP_NED = 14 # Odometry local coordinate frame of data given by a motion capture
# system, Z-down (x: north, y: east, z: down).
enums['MAV_FRAME'][14] = EnumEntry('MAV_FRAME_MOCAP_NED', '''Odometry local coordinate frame of data given by a motion capture system, Z-down (x: north, y: east, z: down).''')
MAV_FRAME_MOCAP_ENU = 15 # Odometry local coordinate frame of data given by a motion capture
# system, Z-up (x: east, y: north, z: up).
enums['MAV_FRAME'][15] = EnumEntry('MAV_FRAME_MOCAP_ENU', '''Odometry local coordinate frame of data given by a motion capture system, Z-up (x: east, y: north, z: up).''')
MAV_FRAME_VISION_NED = 16 # Odometry local coordinate frame of data given by a vision estimation
# system, Z-down (x: north, y: east, z: down).
enums['MAV_FRAME'][16] = EnumEntry('MAV_FRAME_VISION_NED', '''Odometry local coordinate frame of data given by a vision estimation system, Z-down (x: north, y: east, z: down).''')
MAV_FRAME_VISION_ENU = 17 # Odometry local coordinate frame of data given by a vision estimation
# system, Z-up (x: east, y: north, z: up).
enums['MAV_FRAME'][17] = EnumEntry('MAV_FRAME_VISION_ENU', '''Odometry local coordinate frame of data given by a vision estimation system, Z-up (x: east, y: north, z: up).''')
MAV_FRAME_ESTIM_NED = 18 # Odometry local coordinate frame of data given by an estimator running
# onboard the vehicle, Z-down (x: north, y:
# east, z: down).
enums['MAV_FRAME'][18] = EnumEntry('MAV_FRAME_ESTIM_NED', '''Odometry local coordinate frame of data given by an estimator running onboard the vehicle, Z-down (x: north, y: east, z: down).''')
MAV_FRAME_ESTIM_ENU = 19 # Odometry local coordinate frame of data given by an estimator running
# onboard the vehicle, Z-up (x: east, y: noth,
# z: up).
enums['MAV_FRAME'][19] = EnumEntry('MAV_FRAME_ESTIM_ENU', '''Odometry local coordinate frame of data given by an estimator running onboard the vehicle, Z-up (x: east, y: noth, z: up).''')
MAV_FRAME_ENUM_END = 20 #
enums['MAV_FRAME'][20] = EnumEntry('MAV_FRAME_ENUM_END', '''''')
# MAVLINK_DATA_STREAM_TYPE
enums['MAVLINK_DATA_STREAM_TYPE'] = {}
MAVLINK_DATA_STREAM_IMG_JPEG = 1 #
enums['MAVLINK_DATA_STREAM_TYPE'][1] = EnumEntry('MAVLINK_DATA_STREAM_IMG_JPEG', '''''')
MAVLINK_DATA_STREAM_IMG_BMP = 2 #
enums['MAVLINK_DATA_STREAM_TYPE'][2] = EnumEntry('MAVLINK_DATA_STREAM_IMG_BMP', '''''')
MAVLINK_DATA_STREAM_IMG_RAW8U = 3 #
enums['MAVLINK_DATA_STREAM_TYPE'][3] = EnumEntry('MAVLINK_DATA_STREAM_IMG_RAW8U', '''''')
MAVLINK_DATA_STREAM_IMG_RAW32U = 4 #
enums['MAVLINK_DATA_STREAM_TYPE'][4] = EnumEntry('MAVLINK_DATA_STREAM_IMG_RAW32U', '''''')
MAVLINK_DATA_STREAM_IMG_PGM = 5 #
enums['MAVLINK_DATA_STREAM_TYPE'][5] = EnumEntry('MAVLINK_DATA_STREAM_IMG_PGM', '''''')
MAVLINK_DATA_STREAM_IMG_PNG = 6 #
enums['MAVLINK_DATA_STREAM_TYPE'][6] = EnumEntry('MAVLINK_DATA_STREAM_IMG_PNG', '''''')
MAVLINK_DATA_STREAM_TYPE_ENUM_END = 7 #
enums['MAVLINK_DATA_STREAM_TYPE'][7] = EnumEntry('MAVLINK_DATA_STREAM_TYPE_ENUM_END', '''''')
# FENCE_ACTION
enums['FENCE_ACTION'] = {}
FENCE_ACTION_NONE = 0 # Disable fenced mode
enums['FENCE_ACTION'][0] = EnumEntry('FENCE_ACTION_NONE', '''Disable fenced mode''')
FENCE_ACTION_GUIDED = 1 # Switched to guided mode to return point (fence point 0)
enums['FENCE_ACTION'][1] = EnumEntry('FENCE_ACTION_GUIDED', '''Switched to guided mode to return point (fence point 0)''')
FENCE_ACTION_REPORT = 2 # Report fence breach, but don't take action
enums['FENCE_ACTION'][2] = EnumEntry('FENCE_ACTION_REPORT', '''Report fence breach, but don't take action''')
FENCE_ACTION_GUIDED_THR_PASS = 3 # Switched to guided mode to return point (fence point 0) with manual
# throttle control
enums['FENCE_ACTION'][3] = EnumEntry('FENCE_ACTION_GUIDED_THR_PASS', '''Switched to guided mode to return point (fence point 0) with manual throttle control''')
FENCE_ACTION_RTL = 4 # Switch to RTL (return to launch) mode and head for the return point.
enums['FENCE_ACTION'][4] = EnumEntry('FENCE_ACTION_RTL', '''Switch to RTL (return to launch) mode and head for the return point.''')
FENCE_ACTION_ENUM_END = 5 #
enums['FENCE_ACTION'][5] = EnumEntry('FENCE_ACTION_ENUM_END', '''''')
# FENCE_BREACH
enums['FENCE_BREACH'] = {}
FENCE_BREACH_NONE = 0 # No last fence breach
enums['FENCE_BREACH'][0] = EnumEntry('FENCE_BREACH_NONE', '''No last fence breach''')
FENCE_BREACH_MINALT = 1 # Breached minimum altitude
enums['FENCE_BREACH'][1] = EnumEntry('FENCE_BREACH_MINALT', '''Breached minimum altitude''')
FENCE_BREACH_MAXALT = 2 # Breached maximum altitude
enums['FENCE_BREACH'][2] = EnumEntry('FENCE_BREACH_MAXALT', '''Breached maximum altitude''')
FENCE_BREACH_BOUNDARY = 3 # Breached fence boundary
enums['FENCE_BREACH'][3] = EnumEntry('FENCE_BREACH_BOUNDARY', '''Breached fence boundary''')
FENCE_BREACH_ENUM_END = 4 #
enums['FENCE_BREACH'][4] = EnumEntry('FENCE_BREACH_ENUM_END', '''''')
# MAV_MOUNT_MODE
enums['MAV_MOUNT_MODE'] = {}
MAV_MOUNT_MODE_RETRACT = 0 # Load and keep safe position (Roll,Pitch,Yaw) from permant memory and
# stop stabilization
enums['MAV_MOUNT_MODE'][0] = EnumEntry('MAV_MOUNT_MODE_RETRACT', '''Load and keep safe position (Roll,Pitch,Yaw) from permant memory and stop stabilization''')
MAV_MOUNT_MODE_NEUTRAL = 1 # Load and keep neutral position (Roll,Pitch,Yaw) from permanent memory.
enums['MAV_MOUNT_MODE'][1] = EnumEntry('MAV_MOUNT_MODE_NEUTRAL', '''Load and keep neutral position (Roll,Pitch,Yaw) from permanent memory.''')
MAV_MOUNT_MODE_MAVLINK_TARGETING = 2 # Load neutral position and start MAVLink Roll,Pitch,Yaw control with
# stabilization
enums['MAV_MOUNT_MODE'][2] = EnumEntry('MAV_MOUNT_MODE_MAVLINK_TARGETING', '''Load neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization''')
MAV_MOUNT_MODE_RC_TARGETING = 3 # Load neutral position and start RC Roll,Pitch,Yaw control with
# stabilization
enums['MAV_MOUNT_MODE'][3] = EnumEntry('MAV_MOUNT_MODE_RC_TARGETING', '''Load neutral position and start RC Roll,Pitch,Yaw control with stabilization''')
MAV_MOUNT_MODE_GPS_POINT = 4 # Load neutral position and start to point to Lat,Lon,Alt
enums['MAV_MOUNT_MODE'][4] = EnumEntry('MAV_MOUNT_MODE_GPS_POINT', '''Load neutral position and start to point to Lat,Lon,Alt''')
MAV_MOUNT_MODE_ENUM_END = 5 #
enums['MAV_MOUNT_MODE'][5] = EnumEntry('MAV_MOUNT_MODE_ENUM_END', '''''')
# UAVCAN_NODE_HEALTH
enums['UAVCAN_NODE_HEALTH'] = {}
UAVCAN_NODE_HEALTH_OK = 0 # The node is functioning properly.
enums['UAVCAN_NODE_HEALTH'][0] = EnumEntry('UAVCAN_NODE_HEALTH_OK', '''The node is functioning properly.''')
UAVCAN_NODE_HEALTH_WARNING = 1 # A critical parameter went out of range or the node has encountered a
# minor failure.
enums['UAVCAN_NODE_HEALTH'][1] = EnumEntry('UAVCAN_NODE_HEALTH_WARNING', '''A critical parameter went out of range or the node has encountered a minor failure.''')
UAVCAN_NODE_HEALTH_ERROR = 2 # The node has encountered a major failure.
enums['UAVCAN_NODE_HEALTH'][2] = EnumEntry('UAVCAN_NODE_HEALTH_ERROR', '''The node has encountered a major failure.''')
UAVCAN_NODE_HEALTH_CRITICAL = 3 # The node has suffered a fatal malfunction.
enums['UAVCAN_NODE_HEALTH'][3] = EnumEntry('UAVCAN_NODE_HEALTH_CRITICAL', '''The node has suffered a fatal malfunction.''')
UAVCAN_NODE_HEALTH_ENUM_END = 4 #
enums['UAVCAN_NODE_HEALTH'][4] = EnumEntry('UAVCAN_NODE_HEALTH_ENUM_END', '''''')
# UAVCAN_NODE_MODE
enums['UAVCAN_NODE_MODE'] = {}
UAVCAN_NODE_MODE_OPERATIONAL = 0 # The node is performing its primary functions.
enums['UAVCAN_NODE_MODE'][0] = EnumEntry('UAVCAN_NODE_MODE_OPERATIONAL', '''The node is performing its primary functions.''')
UAVCAN_NODE_MODE_INITIALIZATION = 1 # The node is initializing; this mode is entered immediately after
# startup.
enums['UAVCAN_NODE_MODE'][1] = EnumEntry('UAVCAN_NODE_MODE_INITIALIZATION', '''The node is initializing; this mode is entered immediately after startup.''')
UAVCAN_NODE_MODE_MAINTENANCE = 2 # The node is under maintenance.
enums['UAVCAN_NODE_MODE'][2] = EnumEntry('UAVCAN_NODE_MODE_MAINTENANCE', '''The node is under maintenance.''')
UAVCAN_NODE_MODE_SOFTWARE_UPDATE = 3 # The node is in the process of updating its software.
enums['UAVCAN_NODE_MODE'][3] = EnumEntry('UAVCAN_NODE_MODE_SOFTWARE_UPDATE', '''The node is in the process of updating its software.''')
UAVCAN_NODE_MODE_OFFLINE = 7 # The node is no longer available online.
enums['UAVCAN_NODE_MODE'][7] = EnumEntry('UAVCAN_NODE_MODE_OFFLINE', '''The node is no longer available online.''')
UAVCAN_NODE_MODE_ENUM_END = 8 #
enums['UAVCAN_NODE_MODE'][8] = EnumEntry('UAVCAN_NODE_MODE_ENUM_END', '''''')
# MAV_CMD
enums['MAV_CMD'] = {}
MAV_CMD_NAV_WAYPOINT = 16 # Navigate to waypoint.
enums['MAV_CMD'][16] = EnumEntry('MAV_CMD_NAV_WAYPOINT', '''Navigate to waypoint.''')
enums['MAV_CMD'][16].param[1] = '''Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)'''
enums['MAV_CMD'][16].param[2] = '''Acceptance radius in meters (if the sphere with this radius is hit, the waypoint counts as reached)'''
enums['MAV_CMD'][16].param[3] = '''0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.'''
enums['MAV_CMD'][16].param[4] = '''Desired yaw angle at waypoint (rotary wing). NaN for unchanged.'''
enums['MAV_CMD'][16].param[5] = '''Latitude'''
enums['MAV_CMD'][16].param[6] = '''Longitude'''
enums['MAV_CMD'][16].param[7] = '''Altitude'''
MAV_CMD_NAV_LOITER_UNLIM = 17 # Loiter around this waypoint an unlimited amount of time
enums['MAV_CMD'][17] = EnumEntry('MAV_CMD_NAV_LOITER_UNLIM', '''Loiter around this waypoint an unlimited amount of time''')
enums['MAV_CMD'][17].param[1] = '''Empty'''
enums['MAV_CMD'][17].param[2] = '''Empty'''
enums['MAV_CMD'][17].param[3] = '''Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise'''
enums['MAV_CMD'][17].param[4] = '''Desired yaw angle.'''
enums['MAV_CMD'][17].param[5] = '''Latitude'''
enums['MAV_CMD'][17].param[6] = '''Longitude'''
enums['MAV_CMD'][17].param[7] = '''Altitude'''
MAV_CMD_NAV_LOITER_TURNS = 18 # Loiter around this waypoint for X turns
enums['MAV_CMD'][18] = EnumEntry('MAV_CMD_NAV_LOITER_TURNS', '''Loiter around this waypoint for X turns''')
enums['MAV_CMD'][18].param[1] = '''Turns'''
enums['MAV_CMD'][18].param[2] = '''Empty'''
enums['MAV_CMD'][18].param[3] = '''Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise'''
enums['MAV_CMD'][18].param[4] = '''Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle'''
enums['MAV_CMD'][18].param[5] = '''Latitude'''
enums['MAV_CMD'][18].param[6] = '''Longitude'''
enums['MAV_CMD'][18].param[7] = '''Altitude'''
MAV_CMD_NAV_LOITER_TIME = 19 # Loiter around this waypoint for X seconds
enums['MAV_CMD'][19] = EnumEntry('MAV_CMD_NAV_LOITER_TIME', '''Loiter around this waypoint for X seconds''')
enums['MAV_CMD'][19].param[1] = '''Seconds (decimal)'''
enums['MAV_CMD'][19].param[2] = '''Empty'''
enums['MAV_CMD'][19].param[3] = '''Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise'''
enums['MAV_CMD'][19].param[4] = '''Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle'''
enums['MAV_CMD'][19].param[5] = '''Latitude'''
enums['MAV_CMD'][19].param[6] = '''Longitude'''
enums['MAV_CMD'][19].param[7] = '''Altitude'''
MAV_CMD_NAV_RETURN_TO_LAUNCH = 20 # Return to launch location
enums['MAV_CMD'][20] = EnumEntry('MAV_CMD_NAV_RETURN_TO_LAUNCH', '''Return to launch location''')
enums['MAV_CMD'][20].param[1] = '''Empty'''
enums['MAV_CMD'][20].param[2] = '''Empty'''
enums['MAV_CMD'][20].param[3] = '''Empty'''
enums['MAV_CMD'][20].param[4] = '''Empty'''
enums['MAV_CMD'][20].param[5] = '''Empty'''
enums['MAV_CMD'][20].param[6] = '''Empty'''
enums['MAV_CMD'][20].param[7] = '''Empty'''
MAV_CMD_NAV_LAND = 21 # Land at location
enums['MAV_CMD'][21] = EnumEntry('MAV_CMD_NAV_LAND', '''Land at location''')
enums['MAV_CMD'][21].param[1] = '''Abort Alt'''
enums['MAV_CMD'][21].param[2] = '''Precision land mode. (0 = normal landing, 1 = opportunistic precision landing, 2 = required precsion landing)'''
enums['MAV_CMD'][21].param[3] = '''Empty'''
enums['MAV_CMD'][21].param[4] = '''Desired yaw angle. NaN for unchanged.'''
enums['MAV_CMD'][21].param[5] = '''Latitude'''
enums['MAV_CMD'][21].param[6] = '''Longitude'''
enums['MAV_CMD'][21].param[7] = '''Altitude (ground level)'''
MAV_CMD_NAV_TAKEOFF = 22 # Takeoff from ground / hand
enums['MAV_CMD'][22] = EnumEntry('MAV_CMD_NAV_TAKEOFF', '''Takeoff from ground / hand''')
enums['MAV_CMD'][22].param[1] = '''Minimum pitch (if airspeed sensor present), desired pitch without sensor'''
enums['MAV_CMD'][22].param[2] = '''Empty'''
enums['MAV_CMD'][22].param[3] = '''Empty'''
enums['MAV_CMD'][22].param[4] = '''Yaw angle (if magnetometer present), ignored without magnetometer. NaN for unchanged.'''
enums['MAV_CMD'][22].param[5] = '''Latitude'''
enums['MAV_CMD'][22].param[6] = '''Longitude'''
enums['MAV_CMD'][22].param[7] = '''Altitude'''
MAV_CMD_NAV_LAND_LOCAL = 23 # Land at local position (local frame only)
enums['MAV_CMD'][23] = EnumEntry('MAV_CMD_NAV_LAND_LOCAL', '''Land at local position (local frame only)''')
enums['MAV_CMD'][23].param[1] = '''Landing target number (if available)'''
enums['MAV_CMD'][23].param[2] = '''Maximum accepted offset from desired landing position [m] - computed magnitude from spherical coordinates: d = sqrt(x^2 + y^2 + z^2), which gives the maximum accepted distance between the desired landing position and the position where the vehicle is about to land'''
enums['MAV_CMD'][23].param[3] = '''Landing descend rate [ms^-1]'''
enums['MAV_CMD'][23].param[4] = '''Desired yaw angle [rad]'''
enums['MAV_CMD'][23].param[5] = '''Y-axis position [m]'''
enums['MAV_CMD'][23].param[6] = '''X-axis position [m]'''
enums['MAV_CMD'][23].param[7] = '''Z-axis / ground level position [m]'''
MAV_CMD_NAV_TAKEOFF_LOCAL = 24 # Takeoff from local position (local frame only)
enums['MAV_CMD'][24] = EnumEntry('MAV_CMD_NAV_TAKEOFF_LOCAL', '''Takeoff from local position (local frame only)''')
enums['MAV_CMD'][24].param[1] = '''Minimum pitch (if airspeed sensor present), desired pitch without sensor [rad]'''
enums['MAV_CMD'][24].param[2] = '''Empty'''
enums['MAV_CMD'][24].param[3] = '''Takeoff ascend rate [ms^-1]'''
enums['MAV_CMD'][24].param[4] = '''Yaw angle [rad] (if magnetometer or another yaw estimation source present), ignored without one of these'''
enums['MAV_CMD'][24].param[5] = '''Y-axis position [m]'''
enums['MAV_CMD'][24].param[6] = '''X-axis position [m]'''
enums['MAV_CMD'][24].param[7] = '''Z-axis position [m]'''
MAV_CMD_NAV_FOLLOW = 25 # Vehicle following, i.e. this waypoint represents the position of a
# moving vehicle
enums['MAV_CMD'][25] = EnumEntry('MAV_CMD_NAV_FOLLOW', '''Vehicle following, i.e. this waypoint represents the position of a moving vehicle''')
enums['MAV_CMD'][25].param[1] = '''Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation'''
enums['MAV_CMD'][25].param[2] = '''Ground speed of vehicle to be followed'''
enums['MAV_CMD'][25].param[3] = '''Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise'''
enums['MAV_CMD'][25].param[4] = '''Desired yaw angle.'''
enums['MAV_CMD'][25].param[5] = '''Latitude'''
enums['MAV_CMD'][25].param[6] = '''Longitude'''
enums['MAV_CMD'][25].param[7] = '''Altitude'''
MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT = 30 # Continue on the current course and climb/descend to specified
# altitude. When the altitude is reached
# continue to the next command (i.e., don't
# proceed to the next command until the
# desired altitude is reached.
enums['MAV_CMD'][30] = EnumEntry('MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT', '''Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached.''')
enums['MAV_CMD'][30].param[1] = '''Climb or Descend (0 = Neutral, command completes when within 5m of this command's altitude, 1 = Climbing, command completes when at or above this command's altitude, 2 = Descending, command completes when at or below this command's altitude. '''
enums['MAV_CMD'][30].param[2] = '''Empty'''
enums['MAV_CMD'][30].param[3] = '''Empty'''
enums['MAV_CMD'][30].param[4] = '''Empty'''
enums['MAV_CMD'][30].param[5] = '''Empty'''
enums['MAV_CMD'][30].param[6] = '''Empty'''
enums['MAV_CMD'][30].param[7] = '''Desired altitude in meters'''
MAV_CMD_NAV_LOITER_TO_ALT = 31 # Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0,
# then loiter at the current position. Don't
# consider the navigation command complete
# (don't leave loiter) until the altitude has
# been reached. Additionally, if the Heading
# Required parameter is non-zero the aircraft
# will not leave the loiter until heading
# toward the next waypoint.
enums['MAV_CMD'][31] = EnumEntry('MAV_CMD_NAV_LOITER_TO_ALT', '''Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint. ''')
enums['MAV_CMD'][31].param[1] = '''Heading Required (0 = False)'''
enums['MAV_CMD'][31].param[2] = '''Radius in meters. If positive loiter clockwise, negative counter-clockwise, 0 means no change to standard loiter.'''
enums['MAV_CMD'][31].param[3] = '''Empty'''
enums['MAV_CMD'][31].param[4] = '''Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location'''
enums['MAV_CMD'][31].param[5] = '''Latitude'''
enums['MAV_CMD'][31].param[6] = '''Longitude'''
enums['MAV_CMD'][31].param[7] = '''Altitude'''
MAV_CMD_DO_FOLLOW = 32 # Being following a target
enums['MAV_CMD'][32] = EnumEntry('MAV_CMD_DO_FOLLOW', '''Being following a target''')
enums['MAV_CMD'][32].param[1] = '''System ID (the system ID of the FOLLOW_TARGET beacon). Send 0 to disable follow-me and return to the default position hold mode'''
enums['MAV_CMD'][32].param[2] = '''RESERVED'''
enums['MAV_CMD'][32].param[3] = '''RESERVED'''
enums['MAV_CMD'][32].param[4] = '''altitude flag: 0: Keep current altitude, 1: keep altitude difference to target, 2: go to a fixed altitude above home'''
enums['MAV_CMD'][32].param[5] = '''altitude'''
enums['MAV_CMD'][32].param[6] = '''RESERVED'''
enums['MAV_CMD'][32].param[7] = '''TTL in seconds in which the MAV should go to the default position hold mode after a message rx timeout'''
MAV_CMD_DO_FOLLOW_REPOSITION = 33 # Reposition the MAV after a follow target command has been sent
enums['MAV_CMD'][33] = EnumEntry('MAV_CMD_DO_FOLLOW_REPOSITION', '''Reposition the MAV after a follow target command has been sent''')
enums['MAV_CMD'][33].param[1] = '''Camera q1 (where 0 is on the ray from the camera to the tracking device)'''
enums['MAV_CMD'][33].param[2] = '''Camera q2'''
enums['MAV_CMD'][33].param[3] = '''Camera q3'''
enums['MAV_CMD'][33].param[4] = '''Camera q4'''
enums['MAV_CMD'][33].param[5] = '''altitude offset from target (m)'''
enums['MAV_CMD'][33].param[6] = '''X offset from target (m)'''
enums['MAV_CMD'][33].param[7] = '''Y offset from target (m)'''
MAV_CMD_DO_ORBIT = 34 # Start orbiting on the circumference of a circle defined by the
# parameters. Setting any value NaN results in
# using defaults.
enums['MAV_CMD'][34] = EnumEntry('MAV_CMD_DO_ORBIT', '''Start orbiting on the circumference of a circle defined by the parameters. Setting any value NaN results in using defaults.''')
enums['MAV_CMD'][34].param[1] = '''Radius of the circle in meters. positive: Orbit clockwise. negative: Orbit counter-clockwise. '''
enums['MAV_CMD'][34].param[2] = '''Velocity tangential in m/s. NaN: Vehicle configuration default.'''
enums['MAV_CMD'][34].param[3] = '''Yaw behavior of the vehicle. 0: vehicle front points to the center (default). 1: Hold last heading. 2: Leave yaw uncontrolled.'''
enums['MAV_CMD'][34].param[4] = '''Reserved (e.g. for dynamic center beacon options)'''
enums['MAV_CMD'][34].param[5] = '''Center point latitude (if no MAV_FRAME specified) / X coordinate according to MAV_FRAME. NaN: Use current vehicle position or current center if already orbiting.'''
enums['MAV_CMD'][34].param[6] = '''Center point longitude (if no MAV_FRAME specified) / Y coordinate according to MAV_FRAME. NaN: Use current vehicle position or current center if already orbiting.'''
enums['MAV_CMD'][34].param[7] = '''Center point altitude (AMSL) (if no MAV_FRAME specified) / Z coordinate according to MAV_FRAME. NaN: Use current vehicle position or current center if already orbiting.'''
MAV_CMD_NAV_ROI = 80 # Sets the region of interest (ROI) for a sensor set or the vehicle
# itself. This can then be used by the
# vehicles control system to control the
# vehicle attitude and the attitude of various
# sensors such as cameras.
enums['MAV_CMD'][80] = EnumEntry('MAV_CMD_NAV_ROI', '''Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras.''')
enums['MAV_CMD'][80].param[1] = '''Region of interest mode. (see MAV_ROI enum)'''
enums['MAV_CMD'][80].param[2] = '''Waypoint index/ target ID. (see MAV_ROI enum)'''
enums['MAV_CMD'][80].param[3] = '''ROI index (allows a vehicle to manage multiple ROI's)'''
enums['MAV_CMD'][80].param[4] = '''Empty'''
enums['MAV_CMD'][80].param[5] = '''x the location of the fixed ROI (see MAV_FRAME)'''
enums['MAV_CMD'][80].param[6] = '''y'''
enums['MAV_CMD'][80].param[7] = '''z'''
MAV_CMD_NAV_PATHPLANNING = 81 # Control autonomous path planning on the MAV.
enums['MAV_CMD'][81] = EnumEntry('MAV_CMD_NAV_PATHPLANNING', '''Control autonomous path planning on the MAV.''')
enums['MAV_CMD'][81].param[1] = '''0: Disable local obstacle avoidance / local path planning (without resetting map), 1: Enable local path planning, 2: Enable and reset local path planning'''
enums['MAV_CMD'][81].param[2] = '''0: Disable full path planning (without resetting map), 1: Enable, 2: Enable and reset map/occupancy grid, 3: Enable and reset planned route, but not occupancy grid'''
enums['MAV_CMD'][81].param[3] = '''Empty'''
enums['MAV_CMD'][81].param[4] = '''Yaw angle at goal, in compass degrees, [0..360]'''
enums['MAV_CMD'][81].param[5] = '''Latitude/X of goal'''
enums['MAV_CMD'][81].param[6] = '''Longitude/Y of goal'''
enums['MAV_CMD'][81].param[7] = '''Altitude/Z of goal'''
MAV_CMD_NAV_SPLINE_WAYPOINT = 82 # Navigate to waypoint using a spline path.
enums['MAV_CMD'][82] = EnumEntry('MAV_CMD_NAV_SPLINE_WAYPOINT', '''Navigate to waypoint using a spline path.''')
enums['MAV_CMD'][82].param[1] = '''Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)'''
enums['MAV_CMD'][82].param[2] = '''Empty'''
enums['MAV_CMD'][82].param[3] = '''Empty'''
enums['MAV_CMD'][82].param[4] = '''Empty'''
enums['MAV_CMD'][82].param[5] = '''Latitude/X of goal'''
enums['MAV_CMD'][82].param[6] = '''Longitude/Y of goal'''
enums['MAV_CMD'][82].param[7] = '''Altitude/Z of goal'''
MAV_CMD_NAV_VTOL_TAKEOFF = 84 # Takeoff from ground using VTOL mode
enums['MAV_CMD'][84] = EnumEntry('MAV_CMD_NAV_VTOL_TAKEOFF', '''Takeoff from ground using VTOL mode''')
enums['MAV_CMD'][84].param[1] = '''Empty'''
enums['MAV_CMD'][84].param[2] = '''Front transition heading, see VTOL_TRANSITION_HEADING enum.'''
enums['MAV_CMD'][84].param[3] = '''Empty'''
enums['MAV_CMD'][84].param[4] = '''Yaw angle in degrees. NaN for unchanged.'''
enums['MAV_CMD'][84].param[5] = '''Latitude'''
enums['MAV_CMD'][84].param[6] = '''Longitude'''
enums['MAV_CMD'][84].param[7] = '''Altitude'''
MAV_CMD_NAV_VTOL_LAND = 85 # Land using VTOL mode
enums['MAV_CMD'][85] = EnumEntry('MAV_CMD_NAV_VTOL_LAND', '''Land using VTOL mode''')
enums['MAV_CMD'][85].param[1] = '''Empty'''
enums['MAV_CMD'][85].param[2] = '''Empty'''
enums['MAV_CMD'][85].param[3] = '''Approach altitude (with the same reference as the Altitude field). NaN if unspecified.'''
enums['MAV_CMD'][85].param[4] = '''Yaw angle in degrees. NaN for unchanged.'''
enums['MAV_CMD'][85].param[5] = '''Latitude'''
enums['MAV_CMD'][85].param[6] = '''Longitude'''
enums['MAV_CMD'][85].param[7] = '''Altitude (ground level)'''
MAV_CMD_NAV_GUIDED_ENABLE = 92 # hand control over to an external controller
enums['MAV_CMD'][92] = EnumEntry('MAV_CMD_NAV_GUIDED_ENABLE', '''hand control over to an external controller''')
enums['MAV_CMD'][92].param[1] = '''On / Off (> 0.5f on)'''
enums['MAV_CMD'][92].param[2] = '''Empty'''
enums['MAV_CMD'][92].param[3] = '''Empty'''
enums['MAV_CMD'][92].param[4] = '''Empty'''
enums['MAV_CMD'][92].param[5] = '''Empty'''
enums['MAV_CMD'][92].param[6] = '''Empty'''
enums['MAV_CMD'][92].param[7] = '''Empty'''
MAV_CMD_NAV_DELAY = 93 # Delay the next navigation command a number of seconds or until a
# specified time
enums['MAV_CMD'][93] = EnumEntry('MAV_CMD_NAV_DELAY', '''Delay the next navigation command a number of seconds or until a specified time''')
enums['MAV_CMD'][93].param[1] = '''Delay in seconds (decimal, -1 to enable time-of-day fields)'''
enums['MAV_CMD'][93].param[2] = '''hour (24h format, UTC, -1 to ignore)'''
enums['MAV_CMD'][93].param[3] = '''minute (24h format, UTC, -1 to ignore)'''
enums['MAV_CMD'][93].param[4] = '''second (24h format, UTC)'''
enums['MAV_CMD'][93].param[5] = '''Empty'''
enums['MAV_CMD'][93].param[6] = '''Empty'''
enums['MAV_CMD'][93].param[7] = '''Empty'''
MAV_CMD_NAV_PAYLOAD_PLACE = 94 # Descend and place payload. Vehicle descends until it detects a
# hanging payload has reached the ground, the
# gripper is opened to release the payload
enums['MAV_CMD'][94] = EnumEntry('MAV_CMD_NAV_PAYLOAD_PLACE', '''Descend and place payload. Vehicle descends until it detects a hanging payload has reached the ground, the gripper is opened to release the payload''')
enums['MAV_CMD'][94].param[1] = '''Maximum distance to descend (meters)'''
enums['MAV_CMD'][94].param[2] = '''Empty'''
enums['MAV_CMD'][94].param[3] = '''Empty'''
enums['MAV_CMD'][94].param[4] = '''Empty'''
enums['MAV_CMD'][94].param[5] = '''Latitude (deg * 1E7)'''
enums['MAV_CMD'][94].param[6] = '''Longitude (deg * 1E7)'''
enums['MAV_CMD'][94].param[7] = '''Altitude (meters)'''
MAV_CMD_NAV_LAST = 95 # NOP - This command is only used to mark the upper limit of the
# NAV/ACTION commands in the enumeration
enums['MAV_CMD'][95] = EnumEntry('MAV_CMD_NAV_LAST', '''NOP - This command is only used to mark the upper limit of the NAV/ACTION commands in the enumeration''')
enums['MAV_CMD'][95].param[1] = '''Empty'''
enums['MAV_CMD'][95].param[2] = '''Empty'''
enums['MAV_CMD'][95].param[3] = '''Empty'''
enums['MAV_CMD'][95].param[4] = '''Empty'''
enums['MAV_CMD'][95].param[5] = '''Empty'''
enums['MAV_CMD'][95].param[6] = '''Empty'''
enums['MAV_CMD'][95].param[7] = '''Empty'''
MAV_CMD_CONDITION_DELAY = 112 # Delay mission state machine.
enums['MAV_CMD'][112] = EnumEntry('MAV_CMD_CONDITION_DELAY', '''Delay mission state machine.''')
enums['MAV_CMD'][112].param[1] = '''Delay in seconds (decimal)'''
enums['MAV_CMD'][112].param[2] = '''Empty'''
enums['MAV_CMD'][112].param[3] = '''Empty'''
enums['MAV_CMD'][112].param[4] = '''Empty'''
enums['MAV_CMD'][112].param[5] = '''Empty'''
enums['MAV_CMD'][112].param[6] = '''Empty'''
enums['MAV_CMD'][112].param[7] = '''Empty'''
MAV_CMD_CONDITION_CHANGE_ALT = 113 # Ascend/descend at rate. Delay mission state machine until desired
# altitude reached.
enums['MAV_CMD'][113] = EnumEntry('MAV_CMD_CONDITION_CHANGE_ALT', '''Ascend/descend at rate. Delay mission state machine until desired altitude reached.''')
enums['MAV_CMD'][113].param[1] = '''Descent / Ascend rate (m/s)'''
enums['MAV_CMD'][113].param[2] = '''Empty'''
enums['MAV_CMD'][113].param[3] = '''Empty'''
enums['MAV_CMD'][113].param[4] = '''Empty'''
enums['MAV_CMD'][113].param[5] = '''Empty'''
enums['MAV_CMD'][113].param[6] = '''Empty'''
enums['MAV_CMD'][113].param[7] = '''Finish Altitude'''
MAV_CMD_CONDITION_DISTANCE = 114 # Delay mission state machine until within desired distance of next NAV
# point.
enums['MAV_CMD'][114] = EnumEntry('MAV_CMD_CONDITION_DISTANCE', '''Delay mission state machine until within desired distance of next NAV point.''')
enums['MAV_CMD'][114].param[1] = '''Distance (meters)'''
enums['MAV_CMD'][114].param[2] = '''Empty'''
enums['MAV_CMD'][114].param[3] = '''Empty'''
enums['MAV_CMD'][114].param[4] = '''Empty'''
enums['MAV_CMD'][114].param[5] = '''Empty'''
enums['MAV_CMD'][114].param[6] = '''Empty'''
enums['MAV_CMD'][114].param[7] = '''Empty'''
MAV_CMD_CONDITION_YAW = 115 # Reach a certain target angle.
enums['MAV_CMD'][115] = EnumEntry('MAV_CMD_CONDITION_YAW', '''Reach a certain target angle.''')
enums['MAV_CMD'][115].param[1] = '''target angle: [0-360], 0 is north'''
enums['MAV_CMD'][115].param[2] = '''speed during yaw change:[deg per second]'''
enums['MAV_CMD'][115].param[3] = '''direction: negative: counter clockwise, positive: clockwise [-1,1]'''
enums['MAV_CMD'][115].param[4] = '''relative offset or absolute angle: [ 1,0]'''
enums['MAV_CMD'][115].param[5] = '''Empty'''
enums['MAV_CMD'][115].param[6] = '''Empty'''
enums['MAV_CMD'][115].param[7] = '''Empty'''
MAV_CMD_CONDITION_LAST = 159 # NOP - This command is only used to mark the upper limit of the
# CONDITION commands in the enumeration
enums['MAV_CMD'][159] = EnumEntry('MAV_CMD_CONDITION_LAST', '''NOP - This command is only used to mark the upper limit of the CONDITION commands in the enumeration''')
enums['MAV_CMD'][159].param[1] = '''Empty'''
enums['MAV_CMD'][159].param[2] = '''Empty'''
enums['MAV_CMD'][159].param[3] = '''Empty'''
enums['MAV_CMD'][159].param[4] = '''Empty'''
enums['MAV_CMD'][159].param[5] = '''Empty'''
enums['MAV_CMD'][159].param[6] = '''Empty'''
enums['MAV_CMD'][159].param[7] = '''Empty'''
MAV_CMD_DO_SET_MODE = 176 # Set system mode.
enums['MAV_CMD'][176] = EnumEntry('MAV_CMD_DO_SET_MODE', '''Set system mode.''')
enums['MAV_CMD'][176].param[1] = '''Mode, as defined by ENUM MAV_MODE'''
enums['MAV_CMD'][176].param[2] = '''Custom mode - this is system specific, please refer to the individual autopilot specifications for details.'''
enums['MAV_CMD'][176].param[3] = '''Custom sub mode - this is system specific, please refer to the individual autopilot specifications for details.'''
enums['MAV_CMD'][176].param[4] = '''Empty'''
enums['MAV_CMD'][176].param[5] = '''Empty'''
enums['MAV_CMD'][176].param[6] = '''Empty'''
enums['MAV_CMD'][176].param[7] = '''Empty'''
MAV_CMD_DO_JUMP = 177 # Jump to the desired command in the mission list. Repeat this action
# only the specified number of times
enums['MAV_CMD'][177] = EnumEntry('MAV_CMD_DO_JUMP', '''Jump to the desired command in the mission list. Repeat this action only the specified number of times''')
enums['MAV_CMD'][177].param[1] = '''Sequence number'''
enums['MAV_CMD'][177].param[2] = '''Repeat count'''
enums['MAV_CMD'][177].param[3] = '''Empty'''
enums['MAV_CMD'][177].param[4] = '''Empty'''
enums['MAV_CMD'][177].param[5] = '''Empty'''
enums['MAV_CMD'][177].param[6] = '''Empty'''
enums['MAV_CMD'][177].param[7] = '''Empty'''
MAV_CMD_DO_CHANGE_SPEED = 178 # Change speed and/or throttle set points.
enums['MAV_CMD'][178] = EnumEntry('MAV_CMD_DO_CHANGE_SPEED', '''Change speed and/or throttle set points.''')
enums['MAV_CMD'][178].param[1] = '''Speed type (0=Airspeed, 1=Ground Speed)'''
enums['MAV_CMD'][178].param[2] = '''Speed (m/s, -1 indicates no change)'''
enums['MAV_CMD'][178].param[3] = '''Throttle ( Percent, -1 indicates no change)'''
enums['MAV_CMD'][178].param[4] = '''absolute or relative [0,1]'''
enums['MAV_CMD'][178].param[5] = '''Empty'''
enums['MAV_CMD'][178].param[6] = '''Empty'''
enums['MAV_CMD'][178].param[7] = '''Empty'''
MAV_CMD_DO_SET_HOME = 179 # Changes the home location either to the current location or a
# specified location.
enums['MAV_CMD'][179] = EnumEntry('MAV_CMD_DO_SET_HOME', '''Changes the home location either to the current location or a specified location.''')
enums['MAV_CMD'][179].param[1] = '''Use current (1=use current location, 0=use specified location)'''
enums['MAV_CMD'][179].param[2] = '''Empty'''
enums['MAV_CMD'][179].param[3] = '''Empty'''
enums['MAV_CMD'][179].param[4] = '''Empty'''
enums['MAV_CMD'][179].param[5] = '''Latitude'''
enums['MAV_CMD'][179].param[6] = '''Longitude'''
enums['MAV_CMD'][179].param[7] = '''Altitude'''
MAV_CMD_DO_SET_PARAMETER = 180 # Set a system parameter. Caution! Use of this command requires
# knowledge of the numeric enumeration value
# of the parameter.
enums['MAV_CMD'][180] = EnumEntry('MAV_CMD_DO_SET_PARAMETER', '''Set a system parameter. Caution! Use of this command requires knowledge of the numeric enumeration value of the parameter.''')
enums['MAV_CMD'][180].param[1] = '''Parameter number'''
enums['MAV_CMD'][180].param[2] = '''Parameter value'''
enums['MAV_CMD'][180].param[3] = '''Empty'''
enums['MAV_CMD'][180].param[4] = '''Empty'''
enums['MAV_CMD'][180].param[5] = '''Empty'''
enums['MAV_CMD'][180].param[6] = '''Empty'''
enums['MAV_CMD'][180].param[7] = '''Empty'''
MAV_CMD_DO_SET_RELAY = 181 # Set a relay to a condition.
enums['MAV_CMD'][181] = EnumEntry('MAV_CMD_DO_SET_RELAY', '''Set a relay to a condition.''')
enums['MAV_CMD'][181].param[1] = '''Relay number'''
enums['MAV_CMD'][181].param[2] = '''Setting (1=on, 0=off, others possible depending on system hardware)'''
enums['MAV_CMD'][181].param[3] = '''Empty'''
enums['MAV_CMD'][181].param[4] = '''Empty'''
enums['MAV_CMD'][181].param[5] = '''Empty'''
enums['MAV_CMD'][181].param[6] = '''Empty'''
enums['MAV_CMD'][181].param[7] = '''Empty'''
MAV_CMD_DO_REPEAT_RELAY = 182 # Cycle a relay on and off for a desired number of cycles with a desired
# period.
enums['MAV_CMD'][182] = EnumEntry('MAV_CMD_DO_REPEAT_RELAY', '''Cycle a relay on and off for a desired number of cycles with a desired period.''')
enums['MAV_CMD'][182].param[1] = '''Relay number'''
enums['MAV_CMD'][182].param[2] = '''Cycle count'''
enums['MAV_CMD'][182].param[3] = '''Cycle time (seconds, decimal)'''
enums['MAV_CMD'][182].param[4] = '''Empty'''
enums['MAV_CMD'][182].param[5] = '''Empty'''
enums['MAV_CMD'][182].param[6] = '''Empty'''
enums['MAV_CMD'][182].param[7] = '''Empty'''
MAV_CMD_DO_SET_SERVO = 183 # Set a servo to a desired PWM value.
enums['MAV_CMD'][183] = EnumEntry('MAV_CMD_DO_SET_SERVO', '''Set a servo to a desired PWM value.''')
enums['MAV_CMD'][183].param[1] = '''Servo number'''
enums['MAV_CMD'][183].param[2] = '''PWM (microseconds, 1000 to 2000 typical)'''
enums['MAV_CMD'][183].param[3] = '''Empty'''
enums['MAV_CMD'][183].param[4] = '''Empty'''
enums['MAV_CMD'][183].param[5] = '''Empty'''
enums['MAV_CMD'][183].param[6] = '''Empty'''
enums['MAV_CMD'][183].param[7] = '''Empty'''
MAV_CMD_DO_REPEAT_SERVO = 184 # Cycle a between its nominal setting and a desired PWM for a desired
# number of cycles with a desired period.
enums['MAV_CMD'][184] = EnumEntry('MAV_CMD_DO_REPEAT_SERVO', '''Cycle a between its nominal setting and a desired PWM for a desired number of cycles with a desired period.''')
enums['MAV_CMD'][184].param[1] = '''Servo number'''
enums['MAV_CMD'][184].param[2] = '''PWM (microseconds, 1000 to 2000 typical)'''
enums['MAV_CMD'][184].param[3] = '''Cycle count'''
enums['MAV_CMD'][184].param[4] = '''Cycle time (seconds)'''
enums['MAV_CMD'][184].param[5] = '''Empty'''
enums['MAV_CMD'][184].param[6] = '''Empty'''
enums['MAV_CMD'][184].param[7] = '''Empty'''
MAV_CMD_DO_FLIGHTTERMINATION = 185 # Terminate flight immediately
enums['MAV_CMD'][185] = EnumEntry('MAV_CMD_DO_FLIGHTTERMINATION', '''Terminate flight immediately''')
enums['MAV_CMD'][185].param[1] = '''Flight termination activated if > 0.5'''
enums['MAV_CMD'][185].param[2] = '''Empty'''
enums['MAV_CMD'][185].param[3] = '''Empty'''
enums['MAV_CMD'][185].param[4] = '''Empty'''
enums['MAV_CMD'][185].param[5] = '''Empty'''
enums['MAV_CMD'][185].param[6] = '''Empty'''
enums['MAV_CMD'][185].param[7] = '''Empty'''
MAV_CMD_DO_CHANGE_ALTITUDE = 186 # Change altitude set point.
enums['MAV_CMD'][186] = EnumEntry('MAV_CMD_DO_CHANGE_ALTITUDE', '''Change altitude set point.''')
enums['MAV_CMD'][186].param[1] = '''Altitude in meters'''
enums['MAV_CMD'][186].param[2] = '''Mav frame of new altitude (see MAV_FRAME)'''
enums['MAV_CMD'][186].param[3] = '''Empty'''
enums['MAV_CMD'][186].param[4] = '''Empty'''
enums['MAV_CMD'][186].param[5] = '''Empty'''
enums['MAV_CMD'][186].param[6] = '''Empty'''
enums['MAV_CMD'][186].param[7] = '''Empty'''
MAV_CMD_DO_LAND_START = 189 # Mission command to perform a landing. This is used as a marker in a
# mission to tell the autopilot where a
# sequence of mission items that represents a
# landing starts. It may also be sent via a
# COMMAND_LONG to trigger a landing, in which
# case the nearest (geographically) landing
# sequence in the mission will be used. The
# Latitude/Longitude is optional, and may be
# set to 0 if not needed. If specified then it
# will be used to help find the closest
# landing sequence.
enums['MAV_CMD'][189] = EnumEntry('MAV_CMD_DO_LAND_START', '''Mission command to perform a landing. This is used as a marker in a mission to tell the autopilot where a sequence of mission items that represents a landing starts. It may also be sent via a COMMAND_LONG to trigger a landing, in which case the nearest (geographically) landing sequence in the mission will be used. The Latitude/Longitude is optional, and may be set to 0 if not needed. If specified then it will be used to help find the closest landing sequence.''')
enums['MAV_CMD'][189].param[1] = '''Empty'''
enums['MAV_CMD'][189].param[2] = '''Empty'''
enums['MAV_CMD'][189].param[3] = '''Empty'''
enums['MAV_CMD'][189].param[4] = '''Empty'''
enums['MAV_CMD'][189].param[5] = '''Latitude'''
enums['MAV_CMD'][189].param[6] = '''Longitude'''
enums['MAV_CMD'][189].param[7] = '''Empty'''
MAV_CMD_DO_RALLY_LAND = 190 # Mission command to perform a landing from a rally point.
enums['MAV_CMD'][190] = EnumEntry('MAV_CMD_DO_RALLY_LAND', '''Mission command to perform a landing from a rally point.''')
enums['MAV_CMD'][190].param[1] = '''Break altitude (meters)'''
enums['MAV_CMD'][190].param[2] = '''Landing speed (m/s)'''
enums['MAV_CMD'][190].param[3] = '''Empty'''
enums['MAV_CMD'][190].param[4] = '''Empty'''
enums['MAV_CMD'][190].param[5] = '''Empty'''
enums['MAV_CMD'][190].param[6] = '''Empty'''
enums['MAV_CMD'][190].param[7] = '''Empty'''
MAV_CMD_DO_GO_AROUND = 191 # Mission command to safely abort an autonomous landing.
enums['MAV_CMD'][191] = EnumEntry('MAV_CMD_DO_GO_AROUND', '''Mission command to safely abort an autonomous landing.''')
enums['MAV_CMD'][191].param[1] = '''Altitude (meters)'''
enums['MAV_CMD'][191].param[2] = '''Empty'''
enums['MAV_CMD'][191].param[3] = '''Empty'''
enums['MAV_CMD'][191].param[4] = '''Empty'''
enums['MAV_CMD'][191].param[5] = '''Empty'''
enums['MAV_CMD'][191].param[6] = '''Empty'''
enums['MAV_CMD'][191].param[7] = '''Empty'''
MAV_CMD_DO_REPOSITION = 192 # Reposition the vehicle to a specific WGS84 global position.
enums['MAV_CMD'][192] = EnumEntry('MAV_CMD_DO_REPOSITION', '''Reposition the vehicle to a specific WGS84 global position.''')
enums['MAV_CMD'][192].param[1] = '''Ground speed, less than 0 (-1) for default'''
enums['MAV_CMD'][192].param[2] = '''Bitmask of option flags, see the MAV_DO_REPOSITION_FLAGS enum.'''
enums['MAV_CMD'][192].param[3] = '''Reserved'''
enums['MAV_CMD'][192].param[4] = '''Yaw heading, NaN for unchanged. For planes indicates loiter direction (0: clockwise, 1: counter clockwise)'''
enums['MAV_CMD'][192].param[5] = '''Latitude (deg * 1E7)'''
enums['MAV_CMD'][192].param[6] = '''Longitude (deg * 1E7)'''
enums['MAV_CMD'][192].param[7] = '''Altitude (meters)'''
MAV_CMD_DO_PAUSE_CONTINUE = 193 # If in a GPS controlled position mode, hold the current position or
# continue.
enums['MAV_CMD'][193] = EnumEntry('MAV_CMD_DO_PAUSE_CONTINUE', '''If in a GPS controlled position mode, hold the current position or continue.''')
enums['MAV_CMD'][193].param[1] = '''0: Pause current mission or reposition command, hold current position. 1: Continue mission. A VTOL capable vehicle should enter hover mode (multicopter and VTOL planes). A plane should loiter with the default loiter radius.'''
enums['MAV_CMD'][193].param[2] = '''Reserved'''
enums['MAV_CMD'][193].param[3] = '''Reserved'''
enums['MAV_CMD'][193].param[4] = '''Reserved'''
enums['MAV_CMD'][193].param[5] = '''Reserved'''
enums['MAV_CMD'][193].param[6] = '''Reserved'''
enums['MAV_CMD'][193].param[7] = '''Reserved'''
MAV_CMD_DO_SET_REVERSE = 194 # Set moving direction to forward or reverse.
enums['MAV_CMD'][194] = EnumEntry('MAV_CMD_DO_SET_REVERSE', '''Set moving direction to forward or reverse.''')
enums['MAV_CMD'][194].param[1] = '''Direction (0=Forward, 1=Reverse)'''
enums['MAV_CMD'][194].param[2] = '''Empty'''
enums['MAV_CMD'][194].param[3] = '''Empty'''
enums['MAV_CMD'][194].param[4] = '''Empty'''
enums['MAV_CMD'][194].param[5] = '''Empty'''
enums['MAV_CMD'][194].param[6] = '''Empty'''
enums['MAV_CMD'][194].param[7] = '''Empty'''
MAV_CMD_DO_SET_ROI_LOCATION = 195 # Sets the region of interest (ROI) to a location. This can then be used
# by the vehicles control system to control
# the vehicle attitude and the attitude of
# various sensors such as cameras.
enums['MAV_CMD'][195] = EnumEntry('MAV_CMD_DO_SET_ROI_LOCATION', '''Sets the region of interest (ROI) to a location. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras.''')
enums['MAV_CMD'][195].param[1] = '''Empty'''
enums['MAV_CMD'][195].param[2] = '''Empty'''
enums['MAV_CMD'][195].param[3] = '''Empty'''
enums['MAV_CMD'][195].param[4] = '''Empty'''
enums['MAV_CMD'][195].param[5] = '''Latitude'''
enums['MAV_CMD'][195].param[6] = '''Longitude'''
enums['MAV_CMD'][195].param[7] = '''Altitude'''
MAV_CMD_DO_SET_ROI_WPNEXT_OFFSET = 196 # Sets the region of interest (ROI) to be toward next waypoint, with
# optional pitch/roll/yaw offset. This can
# then be used by the vehicles control system
# to control the vehicle attitude and the
# attitude of various sensors such as cameras.
enums['MAV_CMD'][196] = EnumEntry('MAV_CMD_DO_SET_ROI_WPNEXT_OFFSET', '''Sets the region of interest (ROI) to be toward next waypoint, with optional pitch/roll/yaw offset. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras.''')
enums['MAV_CMD'][196].param[1] = '''Empty'''
enums['MAV_CMD'][196].param[2] = '''Empty'''
enums['MAV_CMD'][196].param[3] = '''Empty'''
enums['MAV_CMD'][196].param[4] = '''Empty'''
enums['MAV_CMD'][196].param[5] = '''pitch offset from next waypoint'''
enums['MAV_CMD'][196].param[6] = '''roll offset from next waypoint'''
enums['MAV_CMD'][196].param[7] = '''yaw offset from next waypoint'''
MAV_CMD_DO_SET_ROI_NONE = 197 # Cancels any previous ROI command returning the vehicle/sensors to
# default flight characteristics. This can
# then be used by the vehicles control system
# to control the vehicle attitude and the
# attitude of various sensors such as cameras.
enums['MAV_CMD'][197] = EnumEntry('MAV_CMD_DO_SET_ROI_NONE', '''Cancels any previous ROI command returning the vehicle/sensors to default flight characteristics. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras.''')
enums['MAV_CMD'][197].param[1] = '''Empty'''
enums['MAV_CMD'][197].param[2] = '''Empty'''
enums['MAV_CMD'][197].param[3] = '''Empty'''
enums['MAV_CMD'][197].param[4] = '''Empty'''
enums['MAV_CMD'][197].param[5] = '''Empty'''
enums['MAV_CMD'][197].param[6] = '''Empty'''
enums['MAV_CMD'][197].param[7] = '''Empty'''
MAV_CMD_DO_CONTROL_VIDEO = 200 # Control onboard camera system.
enums['MAV_CMD'][200] = EnumEntry('MAV_CMD_DO_CONTROL_VIDEO', '''Control onboard camera system.''')
enums['MAV_CMD'][200].param[1] = '''Camera ID (-1 for all)'''
enums['MAV_CMD'][200].param[2] = '''Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw'''
enums['MAV_CMD'][200].param[3] = '''Transmission mode: 0: video stream, >0: single images every n seconds (decimal)'''
enums['MAV_CMD'][200].param[4] = '''Recording: 0: disabled, 1: enabled compressed, 2: enabled raw'''
enums['MAV_CMD'][200].param[5] = '''Empty'''
enums['MAV_CMD'][200].param[6] = '''Empty'''
enums['MAV_CMD'][200].param[7] = '''Empty'''
MAV_CMD_DO_SET_ROI = 201 # Sets the region of interest (ROI) for a sensor set or the vehicle
# itself. This can then be used by the
# vehicles control system to control the
# vehicle attitude and the attitude of various
# sensors such as cameras.
enums['MAV_CMD'][201] = EnumEntry('MAV_CMD_DO_SET_ROI', '''Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras.''')
enums['MAV_CMD'][201].param[1] = '''Region of interest mode. (see MAV_ROI enum)'''
enums['MAV_CMD'][201].param[2] = '''Waypoint index/ target ID. (see MAV_ROI enum)'''
enums['MAV_CMD'][201].param[3] = '''ROI index (allows a vehicle to manage multiple ROI's)'''
enums['MAV_CMD'][201].param[4] = '''Empty'''
enums['MAV_CMD'][201].param[5] = '''MAV_ROI_WPNEXT: pitch offset from next waypoint, MAV_ROI_LOCATION: latitude'''
enums['MAV_CMD'][201].param[6] = '''MAV_ROI_WPNEXT: roll offset from next waypoint, MAV_ROI_LOCATION: longitude'''
enums['MAV_CMD'][201].param[7] = '''MAV_ROI_WPNEXT: yaw offset from next waypoint, MAV_ROI_LOCATION: altitude'''
MAV_CMD_DO_DIGICAM_CONFIGURE = 202 # THIS INTERFACE IS DEPRECATED since 2018-01. Please use PARAM_EXT_XXX
# messages and the camera definition format
# described in https://mavlink.io/en/protocol/
# camera_def.html.
enums['MAV_CMD'][202] = EnumEntry('MAV_CMD_DO_DIGICAM_CONFIGURE', '''THIS INTERFACE IS DEPRECATED since 2018-01. Please use PARAM_EXT_XXX messages and the camera definition format described in https://mavlink.io/en/protocol/camera_def.html.''')
enums['MAV_CMD'][202].param[1] = '''Modes: P, TV, AV, M, Etc'''
enums['MAV_CMD'][202].param[2] = '''Shutter speed: Divisor number for one second'''
enums['MAV_CMD'][202].param[3] = '''Aperture: F stop number'''
enums['MAV_CMD'][202].param[4] = '''ISO number e.g. 80, 100, 200, Etc'''
enums['MAV_CMD'][202].param[5] = '''Exposure type enumerator'''
enums['MAV_CMD'][202].param[6] = '''Command Identity'''
enums['MAV_CMD'][202].param[7] = '''Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)'''
MAV_CMD_DO_DIGICAM_CONTROL = 203 # THIS INTERFACE IS DEPRECATED since 2018-01. Please use PARAM_EXT_XXX
# messages and the camera definition format
# described in https://mavlink.io/en/protocol/
# camera_def.html.
enums['MAV_CMD'][203] = EnumEntry('MAV_CMD_DO_DIGICAM_CONTROL', '''THIS INTERFACE IS DEPRECATED since 2018-01. Please use PARAM_EXT_XXX messages and the camera definition format described in https://mavlink.io/en/protocol/camera_def.html.''')
enums['MAV_CMD'][203].param[1] = '''Session control e.g. show/hide lens'''
enums['MAV_CMD'][203].param[2] = '''Zoom's absolute position'''
enums['MAV_CMD'][203].param[3] = '''Zooming step value to offset zoom from the current position'''
enums['MAV_CMD'][203].param[4] = '''Focus Locking, Unlocking or Re-locking'''
enums['MAV_CMD'][203].param[5] = '''Shooting Command'''
enums['MAV_CMD'][203].param[6] = '''Command Identity'''
enums['MAV_CMD'][203].param[7] = '''Test shot identifier. If set to 1, image will only be captured, but not counted towards internal frame count.'''
MAV_CMD_DO_MOUNT_CONFIGURE = 204 # Mission command to configure a camera or antenna mount
enums['MAV_CMD'][204] = EnumEntry('MAV_CMD_DO_MOUNT_CONFIGURE', '''Mission command to configure a camera or antenna mount''')
enums['MAV_CMD'][204].param[1] = '''Mount operation mode (see MAV_MOUNT_MODE enum)'''
enums['MAV_CMD'][204].param[2] = '''stabilize roll? (1 = yes, 0 = no)'''
enums['MAV_CMD'][204].param[3] = '''stabilize pitch? (1 = yes, 0 = no)'''
enums['MAV_CMD'][204].param[4] = '''stabilize yaw? (1 = yes, 0 = no)'''
enums['MAV_CMD'][204].param[5] = '''roll input (0 = angle body frame, 1 = angular rate, 2 = angle absolute frame)'''
enums['MAV_CMD'][204].param[6] = '''pitch input (0 = angle body frame, 1 = angular rate, 2 = angle absolute frame)'''
enums['MAV_CMD'][204].param[7] = '''yaw input (0 = angle body frame, 1 = angular rate, 2 = angle absolute frame)'''
MAV_CMD_DO_MOUNT_CONTROL = 205 # Mission command to control a camera or antenna mount
enums['MAV_CMD'][205] = EnumEntry('MAV_CMD_DO_MOUNT_CONTROL', '''Mission command to control a camera or antenna mount''')
enums['MAV_CMD'][205].param[1] = '''pitch depending on mount mode (degrees or degrees/second depending on pitch input).'''
enums['MAV_CMD'][205].param[2] = '''roll depending on mount mode (degrees or degrees/second depending on roll input).'''
enums['MAV_CMD'][205].param[3] = '''yaw depending on mount mode (degrees or degrees/second depending on yaw input).'''
enums['MAV_CMD'][205].param[4] = '''alt in meters depending on mount mode.'''
enums['MAV_CMD'][205].param[5] = '''latitude in degrees * 1E7, set if appropriate mount mode.'''
enums['MAV_CMD'][205].param[6] = '''longitude in degrees * 1E7, set if appropriate mount mode.'''
enums['MAV_CMD'][205].param[7] = '''MAV_MOUNT_MODE enum value'''
MAV_CMD_DO_SET_CAM_TRIGG_DIST = 206 # Mission command to set camera trigger distance for this flight. The
# camera is triggered each time this distance
# is exceeded. This command can also be used
# to set the shutter integration time for the
# camera.
enums['MAV_CMD'][206] = EnumEntry('MAV_CMD_DO_SET_CAM_TRIGG_DIST', '''Mission command to set camera trigger distance for this flight. The camera is triggered each time this distance is exceeded. This command can also be used to set the shutter integration time for the camera.''')
enums['MAV_CMD'][206].param[1] = '''Camera trigger distance (meters). 0 to stop triggering.'''
enums['MAV_CMD'][206].param[2] = '''Camera shutter integration time (milliseconds). -1 or 0 to ignore'''
enums['MAV_CMD'][206].param[3] = '''Trigger camera once immediately. (0 = no trigger, 1 = trigger)'''
enums['MAV_CMD'][206].param[4] = '''Empty'''
enums['MAV_CMD'][206].param[5] = '''Empty'''
enums['MAV_CMD'][206].param[6] = '''Empty'''
enums['MAV_CMD'][206].param[7] = '''Empty'''
MAV_CMD_DO_FENCE_ENABLE = 207 # Mission command to enable the geofence
enums['MAV_CMD'][207] = EnumEntry('MAV_CMD_DO_FENCE_ENABLE', '''Mission command to enable the geofence''')
enums['MAV_CMD'][207].param[1] = '''enable? (0=disable, 1=enable, 2=disable_floor_only)'''
enums['MAV_CMD'][207].param[2] = '''Empty'''
enums['MAV_CMD'][207].param[3] = '''Empty'''
enums['MAV_CMD'][207].param[4] = '''Empty'''
enums['MAV_CMD'][207].param[5] = '''Empty'''
enums['MAV_CMD'][207].param[6] = '''Empty'''
enums['MAV_CMD'][207].param[7] = '''Empty'''
MAV_CMD_DO_PARACHUTE = 208 # Mission command to trigger a parachute
enums['MAV_CMD'][208] = EnumEntry('MAV_CMD_DO_PARACHUTE', '''Mission command to trigger a parachute''')
enums['MAV_CMD'][208].param[1] = '''action (0=disable, 1=enable, 2=release, for some systems see PARACHUTE_ACTION enum, not in general message set.)'''
enums['MAV_CMD'][208].param[2] = '''Empty'''
enums['MAV_CMD'][208].param[3] = '''Empty'''
enums['MAV_CMD'][208].param[4] = '''Empty'''
enums['MAV_CMD'][208].param[5] = '''Empty'''
enums['MAV_CMD'][208].param[6] = '''Empty'''
enums['MAV_CMD'][208].param[7] = '''Empty'''
MAV_CMD_DO_MOTOR_TEST = 209 # Mission command to perform motor test
enums['MAV_CMD'][209] = EnumEntry('MAV_CMD_DO_MOTOR_TEST', '''Mission command to perform motor test''')
enums['MAV_CMD'][209].param[1] = '''motor number (a number from 1 to max number of motors on the vehicle)'''
enums['MAV_CMD'][209].param[2] = '''throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)'''
enums['MAV_CMD'][209].param[3] = '''throttle'''
enums['MAV_CMD'][209].param[4] = '''timeout (in seconds)'''
enums['MAV_CMD'][209].param[5] = '''motor count (number of motors to test to test in sequence, waiting for the timeout above between them; 0=1 motor, 1=1 motor, 2=2 motors...)'''
enums['MAV_CMD'][209].param[6] = '''motor test order (See MOTOR_TEST_ORDER enum)'''
enums['MAV_CMD'][209].param[7] = '''Empty'''
MAV_CMD_DO_INVERTED_FLIGHT = 210 # Change to/from inverted flight
enums['MAV_CMD'][210] = EnumEntry('MAV_CMD_DO_INVERTED_FLIGHT', '''Change to/from inverted flight''')
enums['MAV_CMD'][210].param[1] = '''inverted (0=normal, 1=inverted)'''
enums['MAV_CMD'][210].param[2] = '''Empty'''
enums['MAV_CMD'][210].param[3] = '''Empty'''
enums['MAV_CMD'][210].param[4] = '''Empty'''
enums['MAV_CMD'][210].param[5] = '''Empty'''
enums['MAV_CMD'][210].param[6] = '''Empty'''
enums['MAV_CMD'][210].param[7] = '''Empty'''
MAV_CMD_NAV_SET_YAW_SPEED = 213 # Sets a desired vehicle turn angle and speed change
enums['MAV_CMD'][213] = EnumEntry('MAV_CMD_NAV_SET_YAW_SPEED', '''Sets a desired vehicle turn angle and speed change''')
enums['MAV_CMD'][213].param[1] = '''yaw angle to adjust steering by in centidegress'''
enums['MAV_CMD'][213].param[2] = '''speed - normalized to 0 .. 1'''
enums['MAV_CMD'][213].param[3] = '''Empty'''
enums['MAV_CMD'][213].param[4] = '''Empty'''
enums['MAV_CMD'][213].param[5] = '''Empty'''
enums['MAV_CMD'][213].param[6] = '''Empty'''
enums['MAV_CMD'][213].param[7] = '''Empty'''
MAV_CMD_DO_SET_CAM_TRIGG_INTERVAL = 214 # Mission command to set camera trigger interval for this flight. If
# triggering is enabled, the camera is
# triggered each time this interval expires.
# This command can also be used to set the
# shutter integration time for the camera.
enums['MAV_CMD'][214] = EnumEntry('MAV_CMD_DO_SET_CAM_TRIGG_INTERVAL', '''Mission command to set camera trigger interval for this flight. If triggering is enabled, the camera is triggered each time this interval expires. This command can also be used to set the shutter integration time for the camera.''')
enums['MAV_CMD'][214].param[1] = '''Camera trigger cycle time (milliseconds). -1 or 0 to ignore.'''
enums['MAV_CMD'][214].param[2] = '''Camera shutter integration time (milliseconds). Should be less than trigger cycle time. -1 or 0 to ignore.'''
enums['MAV_CMD'][214].param[3] = '''Empty'''
enums['MAV_CMD'][214].param[4] = '''Empty'''
enums['MAV_CMD'][214].param[5] = '''Empty'''
enums['MAV_CMD'][214].param[6] = '''Empty'''
enums['MAV_CMD'][214].param[7] = '''Empty'''
MAV_CMD_DO_MOUNT_CONTROL_QUAT = 220 # Mission command to control a camera or antenna mount, using a
# quaternion as reference.
enums['MAV_CMD'][220] = EnumEntry('MAV_CMD_DO_MOUNT_CONTROL_QUAT', '''Mission command to control a camera or antenna mount, using a quaternion as reference.''')
enums['MAV_CMD'][220].param[1] = '''q1 - quaternion param #1, w (1 in null-rotation)'''
enums['MAV_CMD'][220].param[2] = '''q2 - quaternion param #2, x (0 in null-rotation)'''
enums['MAV_CMD'][220].param[3] = '''q3 - quaternion param #3, y (0 in null-rotation)'''
enums['MAV_CMD'][220].param[4] = '''q4 - quaternion param #4, z (0 in null-rotation)'''
enums['MAV_CMD'][220].param[5] = '''Empty'''
enums['MAV_CMD'][220].param[6] = '''Empty'''
enums['MAV_CMD'][220].param[7] = '''Empty'''
MAV_CMD_DO_GUIDED_MASTER = 221 # set id of master controller
enums['MAV_CMD'][221] = EnumEntry('MAV_CMD_DO_GUIDED_MASTER', '''set id of master controller''')
enums['MAV_CMD'][221].param[1] = '''System ID'''
enums['MAV_CMD'][221].param[2] = '''Component ID'''
enums['MAV_CMD'][221].param[3] = '''Empty'''
enums['MAV_CMD'][221].param[4] = '''Empty'''
enums['MAV_CMD'][221].param[5] = '''Empty'''
enums['MAV_CMD'][221].param[6] = '''Empty'''
enums['MAV_CMD'][221].param[7] = '''Empty'''
MAV_CMD_DO_GUIDED_LIMITS = 222 # set limits for external control
enums['MAV_CMD'][222] = EnumEntry('MAV_CMD_DO_GUIDED_LIMITS', '''set limits for external control''')
enums['MAV_CMD'][222].param[1] = '''timeout - maximum time (in seconds) that external controller will be allowed to control vehicle. 0 means no timeout'''
enums['MAV_CMD'][222].param[2] = '''Absolute altitude (AMSL) min, in meters - if vehicle moves below this alt, the command will be aborted and the mission will continue. 0 means no lower altitude limit'''
enums['MAV_CMD'][222].param[3] = '''Absolute altitude (AMSL) max, in meters - if vehicle moves above this alt, the command will be aborted and the mission will continue. 0 means no upper altitude limit'''
enums['MAV_CMD'][222].param[4] = '''Horizontal move limit (AMSL), in meters - if vehicle moves more than this distance from its location at the moment the command was executed, the command will be aborted and the mission will continue. 0 means no horizontal altitude limit'''
enums['MAV_CMD'][222].param[5] = '''Empty'''
enums['MAV_CMD'][222].param[6] = '''Empty'''
enums['MAV_CMD'][222].param[7] = '''Empty'''
MAV_CMD_DO_ENGINE_CONTROL = 223 # Control vehicle engine. This is interpreted by the vehicles engine
# controller to change the target engine
# state. It is intended for vehicles with
# internal combustion engines
enums['MAV_CMD'][223] = EnumEntry('MAV_CMD_DO_ENGINE_CONTROL', '''Control vehicle engine. This is interpreted by the vehicles engine controller to change the target engine state. It is intended for vehicles with internal combustion engines''')
enums['MAV_CMD'][223].param[1] = '''0: Stop engine, 1:Start Engine'''
enums['MAV_CMD'][223].param[2] = '''0: Warm start, 1:Cold start. Controls use of choke where applicable'''
enums['MAV_CMD'][223].param[3] = '''Height delay (meters). This is for commanding engine start only after the vehicle has gained the specified height. Used in VTOL vehicles during takeoff to start engine after the aircraft is off the ground. Zero for no delay.'''
enums['MAV_CMD'][223].param[4] = '''Empty'''
enums['MAV_CMD'][223].param[5] = '''Empty'''
enums['MAV_CMD'][223].param[5] = '''Empty'''
enums['MAV_CMD'][223].param[6] = '''Empty'''
enums['MAV_CMD'][223].param[7] = '''Empty'''
MAV_CMD_DO_SET_MISSION_CURRENT = 224 # Set the mission item with sequence number seq as current item. This
# means that the MAV will continue to this
# mission item on the shortest path (not
# following the mission items in-between).
enums['MAV_CMD'][224] = EnumEntry('MAV_CMD_DO_SET_MISSION_CURRENT', '''Set the mission item with sequence number seq as current item. This means that the MAV will continue to this mission item on the shortest path (not following the mission items in-between).''')
enums['MAV_CMD'][224].param[1] = '''Mission sequence value to set'''
enums['MAV_CMD'][224].param[2] = '''Empty'''
enums['MAV_CMD'][224].param[3] = '''Empty'''
enums['MAV_CMD'][224].param[4] = '''Empty'''
enums['MAV_CMD'][224].param[5] = '''Empty'''
enums['MAV_CMD'][224].param[5] = '''Empty'''
enums['MAV_CMD'][224].param[6] = '''Empty'''
enums['MAV_CMD'][224].param[7] = '''Empty'''
MAV_CMD_DO_LAST = 240 # NOP - This command is only used to mark the upper limit of the DO
# commands in the enumeration
enums['MAV_CMD'][240] = EnumEntry('MAV_CMD_DO_LAST', '''NOP - This command is only used to mark the upper limit of the DO commands in the enumeration''')
enums['MAV_CMD'][240].param[1] = '''Empty'''
enums['MAV_CMD'][240].param[2] = '''Empty'''
enums['MAV_CMD'][240].param[3] = '''Empty'''
enums['MAV_CMD'][240].param[4] = '''Empty'''
enums['MAV_CMD'][240].param[5] = '''Empty'''
enums['MAV_CMD'][240].param[6] = '''Empty'''
enums['MAV_CMD'][240].param[7] = '''Empty'''
MAV_CMD_PREFLIGHT_CALIBRATION = 241 # Trigger calibration. This command will be only accepted if in pre-
# flight mode. Except for Temperature
# Calibration, only one sensor should be set
# in a single message and all others should be
# zero.
enums['MAV_CMD'][241] = EnumEntry('MAV_CMD_PREFLIGHT_CALIBRATION', '''Trigger calibration. This command will be only accepted if in pre-flight mode. Except for Temperature Calibration, only one sensor should be set in a single message and all others should be zero.''')
enums['MAV_CMD'][241].param[1] = '''1: gyro calibration, 3: gyro temperature calibration'''
enums['MAV_CMD'][241].param[2] = '''1: magnetometer calibration'''
enums['MAV_CMD'][241].param[3] = '''1: ground pressure calibration'''
enums['MAV_CMD'][241].param[4] = '''1: radio RC calibration, 2: RC trim calibration'''
enums['MAV_CMD'][241].param[5] = '''1: accelerometer calibration, 2: board level calibration, 3: accelerometer temperature calibration, 4: simple accelerometer calibration'''
enums['MAV_CMD'][241].param[6] = '''1: APM: compass/motor interference calibration (PX4: airspeed calibration, deprecated), 2: airspeed calibration'''
enums['MAV_CMD'][241].param[7] = '''1: ESC calibration, 3: barometer temperature calibration'''
MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS = 242 # Set sensor offsets. This command will be only accepted if in pre-
# flight mode.
enums['MAV_CMD'][242] = EnumEntry('MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS', '''Set sensor offsets. This command will be only accepted if in pre-flight mode.''')
enums['MAV_CMD'][242].param[1] = '''Sensor to adjust the offsets for: 0: gyros, 1: accelerometer, 2: magnetometer, 3: barometer, 4: optical flow, 5: second magnetometer, 6: third magnetometer'''
enums['MAV_CMD'][242].param[2] = '''X axis offset (or generic dimension 1), in the sensor's raw units'''
enums['MAV_CMD'][242].param[3] = '''Y axis offset (or generic dimension 2), in the sensor's raw units'''
enums['MAV_CMD'][242].param[4] = '''Z axis offset (or generic dimension 3), in the sensor's raw units'''
enums['MAV_CMD'][242].param[5] = '''Generic dimension 4, in the sensor's raw units'''
enums['MAV_CMD'][242].param[6] = '''Generic dimension 5, in the sensor's raw units'''
enums['MAV_CMD'][242].param[7] = '''Generic dimension 6, in the sensor's raw units'''
MAV_CMD_PREFLIGHT_UAVCAN = 243 # Trigger UAVCAN config. This command will be only accepted if in pre-
# flight mode.
enums['MAV_CMD'][243] = EnumEntry('MAV_CMD_PREFLIGHT_UAVCAN', '''Trigger UAVCAN config. This command will be only accepted if in pre-flight mode.''')
enums['MAV_CMD'][243].param[1] = '''1: Trigger actuator ID assignment and direction mapping.'''
enums['MAV_CMD'][243].param[2] = '''Reserved'''
enums['MAV_CMD'][243].param[3] = '''Reserved'''
enums['MAV_CMD'][243].param[4] = '''Reserved'''
enums['MAV_CMD'][243].param[5] = '''Reserved'''
enums['MAV_CMD'][243].param[6] = '''Reserved'''
enums['MAV_CMD'][243].param[7] = '''Reserved'''
MAV_CMD_PREFLIGHT_STORAGE = 245 # Request storage of different parameter values and logs. This command
# will be only accepted if in pre-flight mode.
enums['MAV_CMD'][245] = EnumEntry('MAV_CMD_PREFLIGHT_STORAGE', '''Request storage of different parameter values and logs. This command will be only accepted if in pre-flight mode.''')
enums['MAV_CMD'][245].param[1] = '''Parameter storage: 0: READ FROM FLASH/EEPROM, 1: WRITE CURRENT TO FLASH/EEPROM, 2: Reset to defaults'''
enums['MAV_CMD'][245].param[2] = '''Mission storage: 0: READ FROM FLASH/EEPROM, 1: WRITE CURRENT TO FLASH/EEPROM, 2: Reset to defaults'''
enums['MAV_CMD'][245].param[3] = '''Onboard logging: 0: Ignore, 1: Start default rate logging, -1: Stop logging, > 1: start logging with rate of param 3 in Hz (e.g. set to 1000 for 1000 Hz logging)'''
enums['MAV_CMD'][245].param[4] = '''Reserved'''
enums['MAV_CMD'][245].param[5] = '''Empty'''
enums['MAV_CMD'][245].param[6] = '''Empty'''
enums['MAV_CMD'][245].param[7] = '''Empty'''
MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN = 246 # Request the reboot or shutdown of system components.
enums['MAV_CMD'][246] = EnumEntry('MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN', '''Request the reboot or shutdown of system components.''')
enums['MAV_CMD'][246].param[1] = '''0: Do nothing for autopilot, 1: Reboot autopilot, 2: Shutdown autopilot, 3: Reboot autopilot and keep it in the bootloader until upgraded.'''
enums['MAV_CMD'][246].param[2] = '''0: Do nothing for onboard computer, 1: Reboot onboard computer, 2: Shutdown onboard computer, 3: Reboot onboard computer and keep it in the bootloader until upgraded.'''
enums['MAV_CMD'][246].param[3] = '''WIP: 0: Do nothing for camera, 1: Reboot onboard camera, 2: Shutdown onboard camera, 3: Reboot onboard camera and keep it in the bootloader until upgraded'''
enums['MAV_CMD'][246].param[4] = '''WIP: 0: Do nothing for mount (e.g. gimbal), 1: Reboot mount, 2: Shutdown mount, 3: Reboot mount and keep it in the bootloader until upgraded'''
enums['MAV_CMD'][246].param[5] = '''Reserved, send 0'''
enums['MAV_CMD'][246].param[6] = '''Reserved, send 0'''
enums['MAV_CMD'][246].param[7] = '''WIP: ID (e.g. camera ID -1 for all IDs)'''
MAV_CMD_OVERRIDE_GOTO = 252 # Hold / continue the current action
enums['MAV_CMD'][252] = EnumEntry('MAV_CMD_OVERRIDE_GOTO', '''Hold / continue the current action''')
enums['MAV_CMD'][252].param[1] = '''MAV_GOTO_DO_HOLD: hold MAV_GOTO_DO_CONTINUE: continue with next item in mission plan'''
enums['MAV_CMD'][252].param[2] = '''MAV_GOTO_HOLD_AT_CURRENT_POSITION: Hold at current position MAV_GOTO_HOLD_AT_SPECIFIED_POSITION: hold at specified position'''
enums['MAV_CMD'][252].param[3] = '''MAV_FRAME coordinate frame of hold point'''
enums['MAV_CMD'][252].param[4] = '''Desired yaw angle in degrees'''
enums['MAV_CMD'][252].param[5] = '''Latitude / X position'''
enums['MAV_CMD'][252].param[6] = '''Longitude / Y position'''
enums['MAV_CMD'][252].param[7] = '''Altitude / Z position'''
MAV_CMD_MISSION_START = 300 # start running a mission
enums['MAV_CMD'][300] = EnumEntry('MAV_CMD_MISSION_START', '''start running a mission''')
enums['MAV_CMD'][300].param[1] = '''first_item: the first mission item to run'''
enums['MAV_CMD'][300].param[2] = '''last_item: the last mission item to run (after this item is run, the mission ends)'''
MAV_CMD_COMPONENT_ARM_DISARM = 400 # Arms / Disarms a component
enums['MAV_CMD'][400] = EnumEntry('MAV_CMD_COMPONENT_ARM_DISARM', '''Arms / Disarms a component''')
enums['MAV_CMD'][400].param[1] = '''1 to arm, 0 to disarm'''
MAV_CMD_GET_HOME_POSITION = 410 # Request the home position from the vehicle.
enums['MAV_CMD'][410] = EnumEntry('MAV_CMD_GET_HOME_POSITION', '''Request the home position from the vehicle.''')
enums['MAV_CMD'][410].param[1] = '''Reserved'''
enums['MAV_CMD'][410].param[2] = '''Reserved'''
enums['MAV_CMD'][410].param[3] = '''Reserved'''
enums['MAV_CMD'][410].param[4] = '''Reserved'''
enums['MAV_CMD'][410].param[5] = '''Reserved'''
enums['MAV_CMD'][410].param[6] = '''Reserved'''
enums['MAV_CMD'][410].param[7] = '''Reserved'''
MAV_CMD_START_RX_PAIR = 500 # Starts receiver pairing
enums['MAV_CMD'][500] = EnumEntry('MAV_CMD_START_RX_PAIR', '''Starts receiver pairing''')
enums['MAV_CMD'][500].param[1] = '''0:Spektrum'''
enums['MAV_CMD'][500].param[2] = '''RC type (see RC_TYPE enum)'''
MAV_CMD_GET_MESSAGE_INTERVAL = 510 # Request the interval between messages for a particular MAVLink message
# ID
enums['MAV_CMD'][510] = EnumEntry('MAV_CMD_GET_MESSAGE_INTERVAL', '''Request the interval between messages for a particular MAVLink message ID''')
enums['MAV_CMD'][510].param[1] = '''The MAVLink message ID'''
MAV_CMD_SET_MESSAGE_INTERVAL = 511 # Set the interval between messages for a particular MAVLink message ID.
# This interface replaces REQUEST_DATA_STREAM
enums['MAV_CMD'][511] = EnumEntry('MAV_CMD_SET_MESSAGE_INTERVAL', '''Set the interval between messages for a particular MAVLink message ID. This interface replaces REQUEST_DATA_STREAM''')
enums['MAV_CMD'][511].param[1] = '''The MAVLink message ID'''
enums['MAV_CMD'][511].param[2] = '''The interval between two messages, in microseconds. Set to -1 to disable and 0 to request default rate.'''
MAV_CMD_REQUEST_PROTOCOL_VERSION = 519 # Request MAVLink protocol version compatibility
enums['MAV_CMD'][519] = EnumEntry('MAV_CMD_REQUEST_PROTOCOL_VERSION', '''Request MAVLink protocol version compatibility''')
enums['MAV_CMD'][519].param[1] = '''1: Request supported protocol versions by all nodes on the network'''
enums['MAV_CMD'][519].param[2] = '''Reserved (all remaining params)'''
MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES = 520 # Request autopilot capabilities
enums['MAV_CMD'][520] = EnumEntry('MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES', '''Request autopilot capabilities''')
enums['MAV_CMD'][520].param[1] = '''1: Request autopilot version'''
enums['MAV_CMD'][520].param[2] = '''Reserved (all remaining params)'''
MAV_CMD_REQUEST_CAMERA_INFORMATION = 521 # Request camera information (CAMERA_INFORMATION).
enums['MAV_CMD'][521] = EnumEntry('MAV_CMD_REQUEST_CAMERA_INFORMATION', '''Request camera information (CAMERA_INFORMATION).''')
enums['MAV_CMD'][521].param[1] = '''0: No action 1: Request camera capabilities'''
enums['MAV_CMD'][521].param[2] = '''Reserved (all remaining params)'''
MAV_CMD_REQUEST_CAMERA_SETTINGS = 522 # Request camera settings (CAMERA_SETTINGS).
enums['MAV_CMD'][522] = EnumEntry('MAV_CMD_REQUEST_CAMERA_SETTINGS', '''Request camera settings (CAMERA_SETTINGS).''')
enums['MAV_CMD'][522].param[1] = '''0: No Action 1: Request camera settings'''
enums['MAV_CMD'][522].param[2] = '''Reserved (all remaining params)'''
MAV_CMD_REQUEST_STORAGE_INFORMATION = 525 # Request storage information (STORAGE_INFORMATION). Use the command's
# target_component to target a specific
# component's storage.
enums['MAV_CMD'][525] = EnumEntry('MAV_CMD_REQUEST_STORAGE_INFORMATION', '''Request storage information (STORAGE_INFORMATION). Use the command's target_component to target a specific component's storage.''')
enums['MAV_CMD'][525].param[1] = '''Storage ID (0 for all, 1 for first, 2 for second, etc.)'''
enums['MAV_CMD'][525].param[2] = '''0: No Action 1: Request storage information'''
enums['MAV_CMD'][525].param[3] = '''Reserved (all remaining params)'''
MAV_CMD_STORAGE_FORMAT = 526 # Format a storage medium. Once format is complete, a
# STORAGE_INFORMATION message is sent. Use the
# command's target_component to target a
# specific component's storage.
enums['MAV_CMD'][526] = EnumEntry('MAV_CMD_STORAGE_FORMAT', '''Format a storage medium. Once format is complete, a STORAGE_INFORMATION message is sent. Use the command's target_component to target a specific component's storage.''')
enums['MAV_CMD'][526].param[1] = '''Storage ID (1 for first, 2 for second, etc.)'''
enums['MAV_CMD'][526].param[2] = '''0: No action 1: Format storage'''
enums['MAV_CMD'][526].param[3] = '''Reserved (all remaining params)'''
MAV_CMD_REQUEST_CAMERA_CAPTURE_STATUS = 527 # Request camera capture status (CAMERA_CAPTURE_STATUS)
enums['MAV_CMD'][527] = EnumEntry('MAV_CMD_REQUEST_CAMERA_CAPTURE_STATUS', '''Request camera capture status (CAMERA_CAPTURE_STATUS)''')
enums['MAV_CMD'][527].param[1] = '''0: No Action 1: Request camera capture status'''
enums['MAV_CMD'][527].param[2] = '''Reserved (all remaining params)'''
MAV_CMD_REQUEST_FLIGHT_INFORMATION = 528 # Request flight information (FLIGHT_INFORMATION)
enums['MAV_CMD'][528] = EnumEntry('MAV_CMD_REQUEST_FLIGHT_INFORMATION', '''Request flight information (FLIGHT_INFORMATION)''')
enums['MAV_CMD'][528].param[1] = '''1: Request flight information'''
enums['MAV_CMD'][528].param[2] = '''Reserved (all remaining params)'''
MAV_CMD_RESET_CAMERA_SETTINGS = 529 # Reset all camera settings to Factory Default
enums['MAV_CMD'][529] = EnumEntry('MAV_CMD_RESET_CAMERA_SETTINGS', '''Reset all camera settings to Factory Default''')
enums['MAV_CMD'][529].param[1] = '''0: No Action 1: Reset all settings'''
enums['MAV_CMD'][529].param[2] = '''Reserved (all remaining params)'''
MAV_CMD_SET_CAMERA_MODE = 530 # Set camera running mode. Use NAN for reserved values.
enums['MAV_CMD'][530] = EnumEntry('MAV_CMD_SET_CAMERA_MODE', '''Set camera running mode. Use NAN for reserved values.''')
enums['MAV_CMD'][530].param[1] = '''Reserved (Set to 0)'''
enums['MAV_CMD'][530].param[2] = '''Camera mode (see CAMERA_MODE enum)'''
enums['MAV_CMD'][530].param[3] = '''Reserved (all remaining params)'''
MAV_CMD_IMAGE_START_CAPTURE = 2000 # Start image capture sequence. Sends CAMERA_IMAGE_CAPTURED after each
# capture. Use NAN for reserved values.
enums['MAV_CMD'][2000] = EnumEntry('MAV_CMD_IMAGE_START_CAPTURE', '''Start image capture sequence. Sends CAMERA_IMAGE_CAPTURED after each capture. Use NAN for reserved values.''')
enums['MAV_CMD'][2000].param[1] = '''Reserved (Set to 0)'''
enums['MAV_CMD'][2000].param[2] = '''Duration between two consecutive pictures (in seconds)'''
enums['MAV_CMD'][2000].param[3] = '''Number of images to capture total - 0 for unlimited capture'''
enums['MAV_CMD'][2000].param[4] = '''Capture sequence (ID to prevent double captures when a command is retransmitted, 0: unused, >= 1: used)'''
enums['MAV_CMD'][2000].param[5] = '''Reserved (all remaining params)'''
MAV_CMD_IMAGE_STOP_CAPTURE = 2001 # Stop image capture sequence Use NAN for reserved values.
enums['MAV_CMD'][2001] = EnumEntry('MAV_CMD_IMAGE_STOP_CAPTURE', '''Stop image capture sequence Use NAN for reserved values.''')
enums['MAV_CMD'][2001].param[1] = '''Reserved (Set to 0)'''
enums['MAV_CMD'][2001].param[2] = '''Reserved (all remaining params)'''
MAV_CMD_REQUEST_CAMERA_IMAGE_CAPTURE = 2002 # Re-request a CAMERA_IMAGE_CAPTURE packet. Use NAN for reserved values.
enums['MAV_CMD'][2002] = EnumEntry('MAV_CMD_REQUEST_CAMERA_IMAGE_CAPTURE', '''Re-request a CAMERA_IMAGE_CAPTURE packet. Use NAN for reserved values.''')
enums['MAV_CMD'][2002].param[1] = '''Sequence number for missing CAMERA_IMAGE_CAPTURE packet'''
enums['MAV_CMD'][2002].param[2] = '''Reserved (all remaining params)'''
MAV_CMD_DO_TRIGGER_CONTROL = 2003 # Enable or disable on-board camera triggering system.
enums['MAV_CMD'][2003] = EnumEntry('MAV_CMD_DO_TRIGGER_CONTROL', '''Enable or disable on-board camera triggering system.''')
enums['MAV_CMD'][2003].param[1] = '''Trigger enable/disable (0 for disable, 1 for start), -1 to ignore'''
enums['MAV_CMD'][2003].param[2] = '''1 to reset the trigger sequence, -1 or 0 to ignore'''
enums['MAV_CMD'][2003].param[3] = '''1 to pause triggering, but without switching the camera off or retracting it. -1 to ignore'''
MAV_CMD_VIDEO_START_CAPTURE = 2500 # Starts video capture (recording). Use NAN for reserved values.
enums['MAV_CMD'][2500] = EnumEntry('MAV_CMD_VIDEO_START_CAPTURE', '''Starts video capture (recording). Use NAN for reserved values.''')
enums['MAV_CMD'][2500].param[1] = '''Reserved (Set to 0)'''
enums['MAV_CMD'][2500].param[2] = '''Frequency CAMERA_CAPTURE_STATUS messages should be sent while recording (0 for no messages, otherwise frequency in Hz)'''
enums['MAV_CMD'][2500].param[3] = '''Reserved (all remaining params)'''
MAV_CMD_VIDEO_STOP_CAPTURE = 2501 # Stop the current video capture (recording). Use NAN for reserved
# values.
enums['MAV_CMD'][2501] = EnumEntry('MAV_CMD_VIDEO_STOP_CAPTURE', '''Stop the current video capture (recording). Use NAN for reserved values.''')
enums['MAV_CMD'][2501].param[1] = '''Reserved (Set to 0)'''
enums['MAV_CMD'][2501].param[2] = '''Reserved (all remaining params)'''
MAV_CMD_VIDEO_START_STREAMING = 2502 # Start video streaming
enums['MAV_CMD'][2502] = EnumEntry('MAV_CMD_VIDEO_START_STREAMING', '''Start video streaming''')
enums['MAV_CMD'][2502].param[1] = '''Camera ID (0 for all cameras, 1 for first, 2 for second, etc.)'''
enums['MAV_CMD'][2502].param[2] = '''Reserved'''
MAV_CMD_VIDEO_STOP_STREAMING = 2503 # Stop the current video streaming
enums['MAV_CMD'][2503] = EnumEntry('MAV_CMD_VIDEO_STOP_STREAMING', '''Stop the current video streaming''')
enums['MAV_CMD'][2503].param[1] = '''Camera ID (0 for all cameras, 1 for first, 2 for second, etc.)'''
enums['MAV_CMD'][2503].param[2] = '''Reserved'''
MAV_CMD_REQUEST_VIDEO_STREAM_INFORMATION = 2504 # Request video stream information (VIDEO_STREAM_INFORMATION)
enums['MAV_CMD'][2504] = EnumEntry('MAV_CMD_REQUEST_VIDEO_STREAM_INFORMATION', '''Request video stream information (VIDEO_STREAM_INFORMATION)''')
enums['MAV_CMD'][2504].param[1] = '''Camera ID (0 for all cameras, 1 for first, 2 for second, etc.)'''
enums['MAV_CMD'][2504].param[2] = '''0: No Action 1: Request video stream information'''
enums['MAV_CMD'][2504].param[3] = '''Reserved (all remaining params)'''
MAV_CMD_LOGGING_START = 2510 # Request to start streaming logging data over MAVLink (see also
# LOGGING_DATA message)
enums['MAV_CMD'][2510] = EnumEntry('MAV_CMD_LOGGING_START', '''Request to start streaming logging data over MAVLink (see also LOGGING_DATA message)''')
enums['MAV_CMD'][2510].param[1] = '''Format: 0: ULog'''
enums['MAV_CMD'][2510].param[2] = '''Reserved (set to 0)'''
enums['MAV_CMD'][2510].param[3] = '''Reserved (set to 0)'''
enums['MAV_CMD'][2510].param[4] = '''Reserved (set to 0)'''
enums['MAV_CMD'][2510].param[5] = '''Reserved (set to 0)'''
enums['MAV_CMD'][2510].param[6] = '''Reserved (set to 0)'''
enums['MAV_CMD'][2510].param[7] = '''Reserved (set to 0)'''
MAV_CMD_LOGGING_STOP = 2511 # Request to stop streaming log data over MAVLink
enums['MAV_CMD'][2511] = EnumEntry('MAV_CMD_LOGGING_STOP', '''Request to stop streaming log data over MAVLink''')
enums['MAV_CMD'][2511].param[1] = '''Reserved (set to 0)'''
enums['MAV_CMD'][2511].param[2] = '''Reserved (set to 0)'''
enums['MAV_CMD'][2511].param[3] = '''Reserved (set to 0)'''
enums['MAV_CMD'][2511].param[4] = '''Reserved (set to 0)'''
enums['MAV_CMD'][2511].param[5] = '''Reserved (set to 0)'''
enums['MAV_CMD'][2511].param[6] = '''Reserved (set to 0)'''
enums['MAV_CMD'][2511].param[7] = '''Reserved (set to 0)'''
MAV_CMD_AIRFRAME_CONFIGURATION = 2520 #
enums['MAV_CMD'][2520] = EnumEntry('MAV_CMD_AIRFRAME_CONFIGURATION', '''''')
enums['MAV_CMD'][2520].param[1] = '''Landing gear ID (default: 0, -1 for all)'''
enums['MAV_CMD'][2520].param[2] = '''Landing gear position (Down: 0, Up: 1, NAN for no change)'''
enums['MAV_CMD'][2520].param[3] = '''Reserved, set to NAN'''
enums['MAV_CMD'][2520].param[4] = '''Reserved, set to NAN'''
enums['MAV_CMD'][2520].param[5] = '''Reserved, set to NAN'''
enums['MAV_CMD'][2520].param[6] = '''Reserved, set to NAN'''
enums['MAV_CMD'][2520].param[7] = '''Reserved, set to NAN'''
MAV_CMD_CONTROL_HIGH_LATENCY = 2600 # Request to start/stop transmitting over the high latency telemetry
enums['MAV_CMD'][2600] = EnumEntry('MAV_CMD_CONTROL_HIGH_LATENCY', '''Request to start/stop transmitting over the high latency telemetry''')
enums['MAV_CMD'][2600].param[1] = '''Control transmission over high latency telemetry (0: stop, 1: start)'''
enums['MAV_CMD'][2600].param[2] = '''Empty'''
enums['MAV_CMD'][2600].param[3] = '''Empty'''
enums['MAV_CMD'][2600].param[4] = '''Empty'''
enums['MAV_CMD'][2600].param[5] = '''Empty'''
enums['MAV_CMD'][2600].param[6] = '''Empty'''
enums['MAV_CMD'][2600].param[7] = '''Empty'''
MAV_CMD_PANORAMA_CREATE = 2800 # Create a panorama at the current position
enums['MAV_CMD'][2800] = EnumEntry('MAV_CMD_PANORAMA_CREATE', '''Create a panorama at the current position''')
enums['MAV_CMD'][2800].param[1] = '''Viewing angle horizontal of the panorama (in degrees, +- 0.5 the total angle)'''
enums['MAV_CMD'][2800].param[2] = '''Viewing angle vertical of panorama (in degrees)'''
enums['MAV_CMD'][2800].param[3] = '''Speed of the horizontal rotation (in degrees per second)'''
enums['MAV_CMD'][2800].param[4] = '''Speed of the vertical rotation (in degrees per second)'''
MAV_CMD_DO_VTOL_TRANSITION = 3000 # Request VTOL transition
enums['MAV_CMD'][3000] = EnumEntry('MAV_CMD_DO_VTOL_TRANSITION', '''Request VTOL transition''')
enums['MAV_CMD'][3000].param[1] = '''The target VTOL state, as defined by ENUM MAV_VTOL_STATE. Only MAV_VTOL_STATE_MC and MAV_VTOL_STATE_FW can be used.'''
MAV_CMD_ARM_AUTHORIZATION_REQUEST = 3001 # Request authorization to arm the vehicle to a external entity, the arm
# authorizer is responsible to request all
# data that is needs from the vehicle before
# authorize or deny the request. If approved
# the progress of command_ack message should
# be set with period of time that this
# authorization is valid in seconds or in case
# it was denied it should be set with one of
# the reasons in ARM_AUTH_DENIED_REASON.
enums['MAV_CMD'][3001] = EnumEntry('MAV_CMD_ARM_AUTHORIZATION_REQUEST', '''Request authorization to arm the vehicle to a external entity, the arm authorizer is responsible to request all data that is needs from the vehicle before authorize or deny the request. If approved the progress of command_ack message should be set with period of time that this authorization is valid in seconds or in case it was denied it should be set with one of the reasons in ARM_AUTH_DENIED_REASON.
''')
enums['MAV_CMD'][3001].param[1] = '''Vehicle system id, this way ground station can request arm authorization on behalf of any vehicle'''
MAV_CMD_SET_GUIDED_SUBMODE_STANDARD = 4000 # This command sets the submode to standard guided when vehicle is in
# guided mode. The vehicle holds position and
# altitude and the user can input the desired
# velocities along all three axes.
enums['MAV_CMD'][4000] = EnumEntry('MAV_CMD_SET_GUIDED_SUBMODE_STANDARD', '''This command sets the submode to standard guided when vehicle is in guided mode. The vehicle holds position and altitude and the user can input the desired velocities along all three axes.
''')
MAV_CMD_SET_GUIDED_SUBMODE_CIRCLE = 4001 # This command sets submode circle when vehicle is in guided mode.
# Vehicle flies along a circle facing the
# center of the circle. The user can input the
# velocity along the circle and change the
# radius. If no input is given the vehicle
# will hold position.
enums['MAV_CMD'][4001] = EnumEntry('MAV_CMD_SET_GUIDED_SUBMODE_CIRCLE', '''This command sets submode circle when vehicle is in guided mode. Vehicle flies along a circle facing the center of the circle. The user can input the velocity along the circle and change the radius. If no input is given the vehicle will hold position.
''')
enums['MAV_CMD'][4001].param[1] = '''Radius of desired circle in CIRCLE_MODE'''
enums['MAV_CMD'][4001].param[2] = '''User defined'''
enums['MAV_CMD'][4001].param[3] = '''User defined'''
enums['MAV_CMD'][4001].param[4] = '''User defined'''
enums['MAV_CMD'][4001].param[5] = '''Unscaled target latitude of center of circle in CIRCLE_MODE'''
enums['MAV_CMD'][4001].param[6] = '''Unscaled target longitude of center of circle in CIRCLE_MODE'''
MAV_CMD_CONDITION_GATE = 4501 # Delay mission state machine until gate has been reached.
enums['MAV_CMD'][4501] = EnumEntry('MAV_CMD_CONDITION_GATE', '''Delay mission state machine until gate has been reached.''')
enums['MAV_CMD'][4501].param[1] = '''Geometry: 0: orthogonal to path between previous and next waypoint.'''
enums['MAV_CMD'][4501].param[2] = '''Altitude: 0: ignore altitude'''
enums['MAV_CMD'][4501].param[3] = '''Empty'''
enums['MAV_CMD'][4501].param[4] = '''Empty'''
enums['MAV_CMD'][4501].param[5] = '''Latitude'''
enums['MAV_CMD'][4501].param[6] = '''Longitude'''
enums['MAV_CMD'][4501].param[7] = '''Altitude'''
MAV_CMD_NAV_FENCE_RETURN_POINT = 5000 # Fence return point. There can only be one fence return point.
enums['MAV_CMD'][5000] = EnumEntry('MAV_CMD_NAV_FENCE_RETURN_POINT', '''Fence return point. There can only be one fence return point.
''')
enums['MAV_CMD'][5000].param[1] = '''Reserved'''
enums['MAV_CMD'][5000].param[2] = '''Reserved'''
enums['MAV_CMD'][5000].param[3] = '''Reserved'''
enums['MAV_CMD'][5000].param[4] = '''Reserved'''
enums['MAV_CMD'][5000].param[5] = '''Latitude'''
enums['MAV_CMD'][5000].param[6] = '''Longitude'''
enums['MAV_CMD'][5000].param[7] = '''Altitude'''
MAV_CMD_NAV_FENCE_POLYGON_VERTEX_INCLUSION = 5001 # Fence vertex for an inclusion polygon (the polygon must not be self-
# intersecting). The vehicle must stay within
# this area. Minimum of 3 vertices required.
enums['MAV_CMD'][5001] = EnumEntry('MAV_CMD_NAV_FENCE_POLYGON_VERTEX_INCLUSION', '''Fence vertex for an inclusion polygon (the polygon must not be self-intersecting). The vehicle must stay within this area. Minimum of 3 vertices required.
''')
enums['MAV_CMD'][5001].param[1] = '''Polygon vertex count'''
enums['MAV_CMD'][5001].param[2] = '''Reserved'''
enums['MAV_CMD'][5001].param[3] = '''Reserved'''
enums['MAV_CMD'][5001].param[4] = '''Reserved'''
enums['MAV_CMD'][5001].param[5] = '''Latitude'''
enums['MAV_CMD'][5001].param[6] = '''Longitude'''
enums['MAV_CMD'][5001].param[7] = '''Reserved'''
MAV_CMD_NAV_FENCE_POLYGON_VERTEX_EXCLUSION = 5002 # Fence vertex for an exclusion polygon (the polygon must not be self-
# intersecting). The vehicle must stay outside
# this area. Minimum of 3 vertices required.
enums['MAV_CMD'][5002] = EnumEntry('MAV_CMD_NAV_FENCE_POLYGON_VERTEX_EXCLUSION', '''Fence vertex for an exclusion polygon (the polygon must not be self-intersecting). The vehicle must stay outside this area. Minimum of 3 vertices required.
''')
enums['MAV_CMD'][5002].param[1] = '''Polygon vertex count'''
enums['MAV_CMD'][5002].param[2] = '''Reserved'''
enums['MAV_CMD'][5002].param[3] = '''Reserved'''
enums['MAV_CMD'][5002].param[4] = '''Reserved'''
enums['MAV_CMD'][5002].param[5] = '''Latitude'''
enums['MAV_CMD'][5002].param[6] = '''Longitude'''
enums['MAV_CMD'][5002].param[7] = '''Reserved'''
MAV_CMD_NAV_FENCE_CIRCLE_INCLUSION = 5003 # Circular fence area. The vehicle must stay inside this area.
enums['MAV_CMD'][5003] = EnumEntry('MAV_CMD_NAV_FENCE_CIRCLE_INCLUSION', '''Circular fence area. The vehicle must stay inside this area.
''')
enums['MAV_CMD'][5003].param[1] = '''radius in meters'''
enums['MAV_CMD'][5003].param[2] = '''Reserved'''
enums['MAV_CMD'][5003].param[3] = '''Reserved'''
enums['MAV_CMD'][5003].param[4] = '''Reserved'''
enums['MAV_CMD'][5003].param[5] = '''Latitude'''
enums['MAV_CMD'][5003].param[6] = '''Longitude'''
enums['MAV_CMD'][5003].param[7] = '''Reserved'''
MAV_CMD_NAV_FENCE_CIRCLE_EXCLUSION = 5004 # Circular fence area. The vehicle must stay outside this area.
enums['MAV_CMD'][5004] = EnumEntry('MAV_CMD_NAV_FENCE_CIRCLE_EXCLUSION', '''Circular fence area. The vehicle must stay outside this area.
''')
enums['MAV_CMD'][5004].param[1] = '''radius in meters'''
enums['MAV_CMD'][5004].param[2] = '''Reserved'''
enums['MAV_CMD'][5004].param[3] = '''Reserved'''
enums['MAV_CMD'][5004].param[4] = '''Reserved'''
enums['MAV_CMD'][5004].param[5] = '''Latitude'''
enums['MAV_CMD'][5004].param[6] = '''Longitude'''
enums['MAV_CMD'][5004].param[7] = '''Reserved'''
MAV_CMD_NAV_RALLY_POINT = 5100 # Rally point. You can have multiple rally points defined.
enums['MAV_CMD'][5100] = EnumEntry('MAV_CMD_NAV_RALLY_POINT', '''Rally point. You can have multiple rally points defined.
''')
enums['MAV_CMD'][5100].param[1] = '''Reserved'''
enums['MAV_CMD'][5100].param[2] = '''Reserved'''
enums['MAV_CMD'][5100].param[3] = '''Reserved'''
enums['MAV_CMD'][5100].param[4] = '''Reserved'''
enums['MAV_CMD'][5100].param[5] = '''Latitude'''
enums['MAV_CMD'][5100].param[6] = '''Longitude'''
enums['MAV_CMD'][5100].param[7] = '''Altitude'''
MAV_CMD_UAVCAN_GET_NODE_INFO = 5200 # Commands the vehicle to respond with a sequence of messages
# UAVCAN_NODE_INFO, one message per every
# UAVCAN node that is online. Note that some
# of the response messages can be lost, which
# the receiver can detect easily by checking
# whether every received UAVCAN_NODE_STATUS
# has a matching message UAVCAN_NODE_INFO
# received earlier; if not, this command
# should be sent again in order to request re-
# transmission of the node information
# messages.
enums['MAV_CMD'][5200] = EnumEntry('MAV_CMD_UAVCAN_GET_NODE_INFO', '''Commands the vehicle to respond with a sequence of messages UAVCAN_NODE_INFO, one message per every UAVCAN node that is online. Note that some of the response messages can be lost, which the receiver can detect easily by checking whether every received UAVCAN_NODE_STATUS has a matching message UAVCAN_NODE_INFO received earlier; if not, this command should be sent again in order to request re-transmission of the node information messages.''')
enums['MAV_CMD'][5200].param[1] = '''Reserved (set to 0)'''
enums['MAV_CMD'][5200].param[2] = '''Reserved (set to 0)'''
enums['MAV_CMD'][5200].param[3] = '''Reserved (set to 0)'''
enums['MAV_CMD'][5200].param[4] = '''Reserved (set to 0)'''
enums['MAV_CMD'][5200].param[5] = '''Reserved (set to 0)'''
enums['MAV_CMD'][5200].param[6] = '''Reserved (set to 0)'''
enums['MAV_CMD'][5200].param[7] = '''Reserved (set to 0)'''
MAV_CMD_PAYLOAD_PREPARE_DEPLOY = 30001 # Deploy payload on a Lat / Lon / Alt position. This includes the
# navigation to reach the required release
# position and velocity.
enums['MAV_CMD'][30001] = EnumEntry('MAV_CMD_PAYLOAD_PREPARE_DEPLOY', '''Deploy payload on a Lat / Lon / Alt position. This includes the navigation to reach the required release position and velocity.''')
enums['MAV_CMD'][30001].param[1] = '''Operation mode. 0: prepare single payload deploy (overwriting previous requests), but do not execute it. 1: execute payload deploy immediately (rejecting further deploy commands during execution, but allowing abort). 2: add payload deploy to existing deployment list.'''
enums['MAV_CMD'][30001].param[2] = '''Desired approach vector in degrees compass heading (0..360). A negative value indicates the system can define the approach vector at will.'''
enums['MAV_CMD'][30001].param[3] = '''Desired ground speed at release time. This can be overridden by the airframe in case it needs to meet minimum airspeed. A negative value indicates the system can define the ground speed at will.'''
enums['MAV_CMD'][30001].param[4] = '''Minimum altitude clearance to the release position in meters. A negative value indicates the system can define the clearance at will.'''
enums['MAV_CMD'][30001].param[5] = '''Latitude unscaled for MISSION_ITEM or in 1e7 degrees for MISSION_ITEM_INT'''
enums['MAV_CMD'][30001].param[6] = '''Longitude unscaled for MISSION_ITEM or in 1e7 degrees for MISSION_ITEM_INT'''
enums['MAV_CMD'][30001].param[7] = '''Altitude (AMSL), in meters'''
MAV_CMD_PAYLOAD_CONTROL_DEPLOY = 30002 # Control the payload deployment.
enums['MAV_CMD'][30002] = EnumEntry('MAV_CMD_PAYLOAD_CONTROL_DEPLOY', '''Control the payload deployment.''')
enums['MAV_CMD'][30002].param[1] = '''Operation mode. 0: Abort deployment, continue normal mission. 1: switch to payload deployment mode. 100: delete first payload deployment request. 101: delete all payload deployment requests.'''
enums['MAV_CMD'][30002].param[2] = '''Reserved'''
enums['MAV_CMD'][30002].param[3] = '''Reserved'''
enums['MAV_CMD'][30002].param[4] = '''Reserved'''
enums['MAV_CMD'][30002].param[5] = '''Reserved'''
enums['MAV_CMD'][30002].param[6] = '''Reserved'''
enums['MAV_CMD'][30002].param[7] = '''Reserved'''
MAV_CMD_WAYPOINT_USER_1 = 31000 # User defined waypoint item. Ground Station will show the Vehicle as
# flying through this item.
enums['MAV_CMD'][31000] = EnumEntry('MAV_CMD_WAYPOINT_USER_1', '''User defined waypoint item. Ground Station will show the Vehicle as flying through this item.''')
enums['MAV_CMD'][31000].param[1] = '''User defined'''
enums['MAV_CMD'][31000].param[2] = '''User defined'''
enums['MAV_CMD'][31000].param[3] = '''User defined'''
enums['MAV_CMD'][31000].param[4] = '''User defined'''
enums['MAV_CMD'][31000].param[5] = '''Latitude unscaled'''
enums['MAV_CMD'][31000].param[6] = '''Longitude unscaled'''
enums['MAV_CMD'][31000].param[7] = '''Altitude (AMSL), in meters'''
MAV_CMD_WAYPOINT_USER_2 = 31001 # User defined waypoint item. Ground Station will show the Vehicle as
# flying through this item.
enums['MAV_CMD'][31001] = EnumEntry('MAV_CMD_WAYPOINT_USER_2', '''User defined waypoint item. Ground Station will show the Vehicle as flying through this item.''')
enums['MAV_CMD'][31001].param[1] = '''User defined'''
enums['MAV_CMD'][31001].param[2] = '''User defined'''
enums['MAV_CMD'][31001].param[3] = '''User defined'''
enums['MAV_CMD'][31001].param[4] = '''User defined'''
enums['MAV_CMD'][31001].param[5] = '''Latitude unscaled'''
enums['MAV_CMD'][31001].param[6] = '''Longitude unscaled'''
enums['MAV_CMD'][31001].param[7] = '''Altitude (AMSL), in meters'''
MAV_CMD_WAYPOINT_USER_3 = 31002 # User defined waypoint item. Ground Station will show the Vehicle as
# flying through this item.
enums['MAV_CMD'][31002] = EnumEntry('MAV_CMD_WAYPOINT_USER_3', '''User defined waypoint item. Ground Station will show the Vehicle as flying through this item.''')
enums['MAV_CMD'][31002].param[1] = '''User defined'''
enums['MAV_CMD'][31002].param[2] = '''User defined'''
enums['MAV_CMD'][31002].param[3] = '''User defined'''
enums['MAV_CMD'][31002].param[4] = '''User defined'''
enums['MAV_CMD'][31002].param[5] = '''Latitude unscaled'''
enums['MAV_CMD'][31002].param[6] = '''Longitude unscaled'''
enums['MAV_CMD'][31002].param[7] = '''Altitude (AMSL), in meters'''
MAV_CMD_WAYPOINT_USER_4 = 31003 # User defined waypoint item. Ground Station will show the Vehicle as
# flying through this item.
enums['MAV_CMD'][31003] = EnumEntry('MAV_CMD_WAYPOINT_USER_4', '''User defined waypoint item. Ground Station will show the Vehicle as flying through this item.''')
enums['MAV_CMD'][31003].param[1] = '''User defined'''
enums['MAV_CMD'][31003].param[2] = '''User defined'''
enums['MAV_CMD'][31003].param[3] = '''User defined'''
enums['MAV_CMD'][31003].param[4] = '''User defined'''
enums['MAV_CMD'][31003].param[5] = '''Latitude unscaled'''
enums['MAV_CMD'][31003].param[6] = '''Longitude unscaled'''
enums['MAV_CMD'][31003].param[7] = '''Altitude (AMSL), in meters'''
MAV_CMD_WAYPOINT_USER_5 = 31004 # User defined waypoint item. Ground Station will show the Vehicle as
# flying through this item.
enums['MAV_CMD'][31004] = EnumEntry('MAV_CMD_WAYPOINT_USER_5', '''User defined waypoint item. Ground Station will show the Vehicle as flying through this item.''')
enums['MAV_CMD'][31004].param[1] = '''User defined'''
enums['MAV_CMD'][31004].param[2] = '''User defined'''
enums['MAV_CMD'][31004].param[3] = '''User defined'''
enums['MAV_CMD'][31004].param[4] = '''User defined'''
enums['MAV_CMD'][31004].param[5] = '''Latitude unscaled'''
enums['MAV_CMD'][31004].param[6] = '''Longitude unscaled'''
enums['MAV_CMD'][31004].param[7] = '''Altitude (AMSL), in meters'''
MAV_CMD_SPATIAL_USER_1 = 31005 # User defined spatial item. Ground Station will not show the Vehicle as
# flying through this item. Example: ROI item.
enums['MAV_CMD'][31005] = EnumEntry('MAV_CMD_SPATIAL_USER_1', '''User defined spatial item. Ground Station will not show the Vehicle as flying through this item. Example: ROI item.''')
enums['MAV_CMD'][31005].param[1] = '''User defined'''
enums['MAV_CMD'][31005].param[2] = '''User defined'''
enums['MAV_CMD'][31005].param[3] = '''User defined'''
enums['MAV_CMD'][31005].param[4] = '''User defined'''
enums['MAV_CMD'][31005].param[5] = '''Latitude unscaled'''
enums['MAV_CMD'][31005].param[6] = '''Longitude unscaled'''
enums['MAV_CMD'][31005].param[7] = '''Altitude (AMSL), in meters'''
MAV_CMD_SPATIAL_USER_2 = 31006 # User defined spatial item. Ground Station will not show the Vehicle as
# flying through this item. Example: ROI item.
enums['MAV_CMD'][31006] = EnumEntry('MAV_CMD_SPATIAL_USER_2', '''User defined spatial item. Ground Station will not show the Vehicle as flying through this item. Example: ROI item.''')
enums['MAV_CMD'][31006].param[1] = '''User defined'''
enums['MAV_CMD'][31006].param[2] = '''User defined'''
enums['MAV_CMD'][31006].param[3] = '''User defined'''
enums['MAV_CMD'][31006].param[4] = '''User defined'''
enums['MAV_CMD'][31006].param[5] = '''Latitude unscaled'''
enums['MAV_CMD'][31006].param[6] = '''Longitude unscaled'''
enums['MAV_CMD'][31006].param[7] = '''Altitude (AMSL), in meters'''
MAV_CMD_SPATIAL_USER_3 = 31007 # User defined spatial item. Ground Station will not show the Vehicle as
# flying through this item. Example: ROI item.
enums['MAV_CMD'][31007] = EnumEntry('MAV_CMD_SPATIAL_USER_3', '''User defined spatial item. Ground Station will not show the Vehicle as flying through this item. Example: ROI item.''')
enums['MAV_CMD'][31007].param[1] = '''User defined'''
enums['MAV_CMD'][31007].param[2] = '''User defined'''
enums['MAV_CMD'][31007].param[3] = '''User defined'''
enums['MAV_CMD'][31007].param[4] = '''User defined'''
enums['MAV_CMD'][31007].param[5] = '''Latitude unscaled'''
enums['MAV_CMD'][31007].param[6] = '''Longitude unscaled'''
enums['MAV_CMD'][31007].param[7] = '''Altitude (AMSL), in meters'''
MAV_CMD_SPATIAL_USER_4 = 31008 # User defined spatial item. Ground Station will not show the Vehicle as
# flying through this item. Example: ROI item.
enums['MAV_CMD'][31008] = EnumEntry('MAV_CMD_SPATIAL_USER_4', '''User defined spatial item. Ground Station will not show the Vehicle as flying through this item. Example: ROI item.''')
enums['MAV_CMD'][31008].param[1] = '''User defined'''
enums['MAV_CMD'][31008].param[2] = '''User defined'''
enums['MAV_CMD'][31008].param[3] = '''User defined'''
enums['MAV_CMD'][31008].param[4] = '''User defined'''
enums['MAV_CMD'][31008].param[5] = '''Latitude unscaled'''
enums['MAV_CMD'][31008].param[6] = '''Longitude unscaled'''
enums['MAV_CMD'][31008].param[7] = '''Altitude (AMSL), in meters'''
MAV_CMD_SPATIAL_USER_5 = 31009 # User defined spatial item. Ground Station will not show the Vehicle as
# flying through this item. Example: ROI item.
enums['MAV_CMD'][31009] = EnumEntry('MAV_CMD_SPATIAL_USER_5', '''User defined spatial item. Ground Station will not show the Vehicle as flying through this item. Example: ROI item.''')
enums['MAV_CMD'][31009].param[1] = '''User defined'''
enums['MAV_CMD'][31009].param[2] = '''User defined'''
enums['MAV_CMD'][31009].param[3] = '''User defined'''
enums['MAV_CMD'][31009].param[4] = '''User defined'''
enums['MAV_CMD'][31009].param[5] = '''Latitude unscaled'''
enums['MAV_CMD'][31009].param[6] = '''Longitude unscaled'''
enums['MAV_CMD'][31009].param[7] = '''Altitude (AMSL), in meters'''
MAV_CMD_USER_1 = 31010 # User defined command. Ground Station will not show the Vehicle as
# flying through this item. Example:
# MAV_CMD_DO_SET_PARAMETER item.
enums['MAV_CMD'][31010] = EnumEntry('MAV_CMD_USER_1', '''User defined command. Ground Station will not show the Vehicle as flying through this item. Example: MAV_CMD_DO_SET_PARAMETER item.''')
enums['MAV_CMD'][31010].param[1] = '''User defined'''
enums['MAV_CMD'][31010].param[2] = '''User defined'''
enums['MAV_CMD'][31010].param[3] = '''User defined'''
enums['MAV_CMD'][31010].param[4] = '''User defined'''
enums['MAV_CMD'][31010].param[5] = '''User defined'''
enums['MAV_CMD'][31010].param[6] = '''User defined'''
enums['MAV_CMD'][31010].param[7] = '''User defined'''
MAV_CMD_USER_2 = 31011 # User defined command. Ground Station will not show the Vehicle as
# flying through this item. Example:
# MAV_CMD_DO_SET_PARAMETER item.
enums['MAV_CMD'][31011] = EnumEntry('MAV_CMD_USER_2', '''User defined command. Ground Station will not show the Vehicle as flying through this item. Example: MAV_CMD_DO_SET_PARAMETER item.''')
enums['MAV_CMD'][31011].param[1] = '''User defined'''
enums['MAV_CMD'][31011].param[2] = '''User defined'''
enums['MAV_CMD'][31011].param[3] = '''User defined'''
enums['MAV_CMD'][31011].param[4] = '''User defined'''
enums['MAV_CMD'][31011].param[5] = '''User defined'''
enums['MAV_CMD'][31011].param[6] = '''User defined'''
enums['MAV_CMD'][31011].param[7] = '''User defined'''
MAV_CMD_USER_3 = 31012 # User defined command. Ground Station will not show the Vehicle as
# flying through this item. Example:
# MAV_CMD_DO_SET_PARAMETER item.
enums['MAV_CMD'][31012] = EnumEntry('MAV_CMD_USER_3', '''User defined command. Ground Station will not show the Vehicle as flying through this item. Example: MAV_CMD_DO_SET_PARAMETER item.''')
enums['MAV_CMD'][31012].param[1] = '''User defined'''
enums['MAV_CMD'][31012].param[2] = '''User defined'''
enums['MAV_CMD'][31012].param[3] = '''User defined'''
enums['MAV_CMD'][31012].param[4] = '''User defined'''
enums['MAV_CMD'][31012].param[5] = '''User defined'''
enums['MAV_CMD'][31012].param[6] = '''User defined'''
enums['MAV_CMD'][31012].param[7] = '''User defined'''
MAV_CMD_USER_4 = 31013 # User defined command. Ground Station will not show the Vehicle as
# flying through this item. Example:
# MAV_CMD_DO_SET_PARAMETER item.
enums['MAV_CMD'][31013] = EnumEntry('MAV_CMD_USER_4', '''User defined command. Ground Station will not show the Vehicle as flying through this item. Example: MAV_CMD_DO_SET_PARAMETER item.''')
enums['MAV_CMD'][31013].param[1] = '''User defined'''
enums['MAV_CMD'][31013].param[2] = '''User defined'''
enums['MAV_CMD'][31013].param[3] = '''User defined'''
enums['MAV_CMD'][31013].param[4] = '''User defined'''
enums['MAV_CMD'][31013].param[5] = '''User defined'''
enums['MAV_CMD'][31013].param[6] = '''User defined'''
enums['MAV_CMD'][31013].param[7] = '''User defined'''
MAV_CMD_USER_5 = 31014 # User defined command. Ground Station will not show the Vehicle as
# flying through this item. Example:
# MAV_CMD_DO_SET_PARAMETER item.
enums['MAV_CMD'][31014] = EnumEntry('MAV_CMD_USER_5', '''User defined command. Ground Station will not show the Vehicle as flying through this item. Example: MAV_CMD_DO_SET_PARAMETER item.''')
enums['MAV_CMD'][31014].param[1] = '''User defined'''
enums['MAV_CMD'][31014].param[2] = '''User defined'''
enums['MAV_CMD'][31014].param[3] = '''User defined'''
enums['MAV_CMD'][31014].param[4] = '''User defined'''
enums['MAV_CMD'][31014].param[5] = '''User defined'''
enums['MAV_CMD'][31014].param[6] = '''User defined'''
enums['MAV_CMD'][31014].param[7] = '''User defined'''
MAV_CMD_ENUM_END = 31015 #
enums['MAV_CMD'][31015] = EnumEntry('MAV_CMD_ENUM_END', '''''')
# MAV_DATA_STREAM
enums['MAV_DATA_STREAM'] = {}
MAV_DATA_STREAM_ALL = 0 # Enable all data streams
enums['MAV_DATA_STREAM'][0] = EnumEntry('MAV_DATA_STREAM_ALL', '''Enable all data streams''')
MAV_DATA_STREAM_RAW_SENSORS = 1 # Enable IMU_RAW, GPS_RAW, GPS_STATUS packets.
enums['MAV_DATA_STREAM'][1] = EnumEntry('MAV_DATA_STREAM_RAW_SENSORS', '''Enable IMU_RAW, GPS_RAW, GPS_STATUS packets.''')
MAV_DATA_STREAM_EXTENDED_STATUS = 2 # Enable GPS_STATUS, CONTROL_STATUS, AUX_STATUS
enums['MAV_DATA_STREAM'][2] = EnumEntry('MAV_DATA_STREAM_EXTENDED_STATUS', '''Enable GPS_STATUS, CONTROL_STATUS, AUX_STATUS''')
MAV_DATA_STREAM_RC_CHANNELS = 3 # Enable RC_CHANNELS_SCALED, RC_CHANNELS_RAW, SERVO_OUTPUT_RAW
enums['MAV_DATA_STREAM'][3] = EnumEntry('MAV_DATA_STREAM_RC_CHANNELS', '''Enable RC_CHANNELS_SCALED, RC_CHANNELS_RAW, SERVO_OUTPUT_RAW''')
MAV_DATA_STREAM_RAW_CONTROLLER = 4 # Enable ATTITUDE_CONTROLLER_OUTPUT, POSITION_CONTROLLER_OUTPUT,
# NAV_CONTROLLER_OUTPUT.
enums['MAV_DATA_STREAM'][4] = EnumEntry('MAV_DATA_STREAM_RAW_CONTROLLER', '''Enable ATTITUDE_CONTROLLER_OUTPUT, POSITION_CONTROLLER_OUTPUT, NAV_CONTROLLER_OUTPUT.''')
MAV_DATA_STREAM_POSITION = 6 # Enable LOCAL_POSITION, GLOBAL_POSITION/GLOBAL_POSITION_INT messages.
enums['MAV_DATA_STREAM'][6] = EnumEntry('MAV_DATA_STREAM_POSITION', '''Enable LOCAL_POSITION, GLOBAL_POSITION/GLOBAL_POSITION_INT messages.''')
MAV_DATA_STREAM_EXTRA1 = 10 # Dependent on the autopilot
enums['MAV_DATA_STREAM'][10] = EnumEntry('MAV_DATA_STREAM_EXTRA1', '''Dependent on the autopilot''')
MAV_DATA_STREAM_EXTRA2 = 11 # Dependent on the autopilot
enums['MAV_DATA_STREAM'][11] = EnumEntry('MAV_DATA_STREAM_EXTRA2', '''Dependent on the autopilot''')
MAV_DATA_STREAM_EXTRA3 = 12 # Dependent on the autopilot
enums['MAV_DATA_STREAM'][12] = EnumEntry('MAV_DATA_STREAM_EXTRA3', '''Dependent on the autopilot''')
MAV_DATA_STREAM_ENUM_END = 13 #
enums['MAV_DATA_STREAM'][13] = EnumEntry('MAV_DATA_STREAM_ENUM_END', '''''')
# MAV_ROI
enums['MAV_ROI'] = {}
MAV_ROI_NONE = 0 # No region of interest.
enums['MAV_ROI'][0] = EnumEntry('MAV_ROI_NONE', '''No region of interest.''')
MAV_ROI_WPNEXT = 1 # Point toward next waypoint, with optional pitch/roll/yaw offset.
enums['MAV_ROI'][1] = EnumEntry('MAV_ROI_WPNEXT', '''Point toward next waypoint, with optional pitch/roll/yaw offset.''')
MAV_ROI_WPINDEX = 2 # Point toward given waypoint.
enums['MAV_ROI'][2] = EnumEntry('MAV_ROI_WPINDEX', '''Point toward given waypoint.''')
MAV_ROI_LOCATION = 3 # Point toward fixed location.
enums['MAV_ROI'][3] = EnumEntry('MAV_ROI_LOCATION', '''Point toward fixed location.''')
MAV_ROI_TARGET = 4 # Point toward of given id.
enums['MAV_ROI'][4] = EnumEntry('MAV_ROI_TARGET', '''Point toward of given id.''')
MAV_ROI_ENUM_END = 5 #
enums['MAV_ROI'][5] = EnumEntry('MAV_ROI_ENUM_END', '''''')
# MAV_CMD_ACK
enums['MAV_CMD_ACK'] = {}
MAV_CMD_ACK_OK = 1 # Command / mission item is ok.
enums['MAV_CMD_ACK'][1] = EnumEntry('MAV_CMD_ACK_OK', '''Command / mission item is ok.''')
MAV_CMD_ACK_ERR_FAIL = 2 # Generic error message if none of the other reasons fails or if no
# detailed error reporting is implemented.
enums['MAV_CMD_ACK'][2] = EnumEntry('MAV_CMD_ACK_ERR_FAIL', '''Generic error message if none of the other reasons fails or if no detailed error reporting is implemented.''')
MAV_CMD_ACK_ERR_ACCESS_DENIED = 3 # The system is refusing to accept this command from this source /
# communication partner.
enums['MAV_CMD_ACK'][3] = EnumEntry('MAV_CMD_ACK_ERR_ACCESS_DENIED', '''The system is refusing to accept this command from this source / communication partner.''')
MAV_CMD_ACK_ERR_NOT_SUPPORTED = 4 # Command or mission item is not supported, other commands would be
# accepted.
enums['MAV_CMD_ACK'][4] = EnumEntry('MAV_CMD_ACK_ERR_NOT_SUPPORTED', '''Command or mission item is not supported, other commands would be accepted.''')
MAV_CMD_ACK_ERR_COORDINATE_FRAME_NOT_SUPPORTED = 5 # The coordinate frame of this command / mission item is not supported.
enums['MAV_CMD_ACK'][5] = EnumEntry('MAV_CMD_ACK_ERR_COORDINATE_FRAME_NOT_SUPPORTED', '''The coordinate frame of this command / mission item is not supported.''')
MAV_CMD_ACK_ERR_COORDINATES_OUT_OF_RANGE = 6 # The coordinate frame of this command is ok, but he coordinate values
# exceed the safety limits of this system.
# This is a generic error, please use the more
# specific error messages below if possible.
enums['MAV_CMD_ACK'][6] = EnumEntry('MAV_CMD_ACK_ERR_COORDINATES_OUT_OF_RANGE', '''The coordinate frame of this command is ok, but he coordinate values exceed the safety limits of this system. This is a generic error, please use the more specific error messages below if possible.''')
MAV_CMD_ACK_ERR_X_LAT_OUT_OF_RANGE = 7 # The X or latitude value is out of range.
enums['MAV_CMD_ACK'][7] = EnumEntry('MAV_CMD_ACK_ERR_X_LAT_OUT_OF_RANGE', '''The X or latitude value is out of range.''')
MAV_CMD_ACK_ERR_Y_LON_OUT_OF_RANGE = 8 # The Y or longitude value is out of range.
enums['MAV_CMD_ACK'][8] = EnumEntry('MAV_CMD_ACK_ERR_Y_LON_OUT_OF_RANGE', '''The Y or longitude value is out of range.''')
MAV_CMD_ACK_ERR_Z_ALT_OUT_OF_RANGE = 9 # The Z or altitude value is out of range.
enums['MAV_CMD_ACK'][9] = EnumEntry('MAV_CMD_ACK_ERR_Z_ALT_OUT_OF_RANGE', '''The Z or altitude value is out of range.''')
MAV_CMD_ACK_ENUM_END = 10 #
enums['MAV_CMD_ACK'][10] = EnumEntry('MAV_CMD_ACK_ENUM_END', '''''')
# MAV_PARAM_TYPE
enums['MAV_PARAM_TYPE'] = {}
MAV_PARAM_TYPE_UINT8 = 1 # 8-bit unsigned integer
enums['MAV_PARAM_TYPE'][1] = EnumEntry('MAV_PARAM_TYPE_UINT8', '''8-bit unsigned integer''')
MAV_PARAM_TYPE_INT8 = 2 # 8-bit signed integer
enums['MAV_PARAM_TYPE'][2] = EnumEntry('MAV_PARAM_TYPE_INT8', '''8-bit signed integer''')
MAV_PARAM_TYPE_UINT16 = 3 # 16-bit unsigned integer
enums['MAV_PARAM_TYPE'][3] = EnumEntry('MAV_PARAM_TYPE_UINT16', '''16-bit unsigned integer''')
MAV_PARAM_TYPE_INT16 = 4 # 16-bit signed integer
enums['MAV_PARAM_TYPE'][4] = EnumEntry('MAV_PARAM_TYPE_INT16', '''16-bit signed integer''')
MAV_PARAM_TYPE_UINT32 = 5 # 32-bit unsigned integer
enums['MAV_PARAM_TYPE'][5] = EnumEntry('MAV_PARAM_TYPE_UINT32', '''32-bit unsigned integer''')
MAV_PARAM_TYPE_INT32 = 6 # 32-bit signed integer
enums['MAV_PARAM_TYPE'][6] = EnumEntry('MAV_PARAM_TYPE_INT32', '''32-bit signed integer''')
MAV_PARAM_TYPE_UINT64 = 7 # 64-bit unsigned integer
enums['MAV_PARAM_TYPE'][7] = EnumEntry('MAV_PARAM_TYPE_UINT64', '''64-bit unsigned integer''')
MAV_PARAM_TYPE_INT64 = 8 # 64-bit signed integer
enums['MAV_PARAM_TYPE'][8] = EnumEntry('MAV_PARAM_TYPE_INT64', '''64-bit signed integer''')
MAV_PARAM_TYPE_REAL32 = 9 # 32-bit floating-point
enums['MAV_PARAM_TYPE'][9] = EnumEntry('MAV_PARAM_TYPE_REAL32', '''32-bit floating-point''')
MAV_PARAM_TYPE_REAL64 = 10 # 64-bit floating-point
enums['MAV_PARAM_TYPE'][10] = EnumEntry('MAV_PARAM_TYPE_REAL64', '''64-bit floating-point''')
MAV_PARAM_TYPE_ENUM_END = 11 #
enums['MAV_PARAM_TYPE'][11] = EnumEntry('MAV_PARAM_TYPE_ENUM_END', '''''')
# MAV_PARAM_EXT_TYPE
enums['MAV_PARAM_EXT_TYPE'] = {}
MAV_PARAM_EXT_TYPE_UINT8 = 1 # 8-bit unsigned integer
enums['MAV_PARAM_EXT_TYPE'][1] = EnumEntry('MAV_PARAM_EXT_TYPE_UINT8', '''8-bit unsigned integer''')
MAV_PARAM_EXT_TYPE_INT8 = 2 # 8-bit signed integer
enums['MAV_PARAM_EXT_TYPE'][2] = EnumEntry('MAV_PARAM_EXT_TYPE_INT8', '''8-bit signed integer''')
MAV_PARAM_EXT_TYPE_UINT16 = 3 # 16-bit unsigned integer
enums['MAV_PARAM_EXT_TYPE'][3] = EnumEntry('MAV_PARAM_EXT_TYPE_UINT16', '''16-bit unsigned integer''')
MAV_PARAM_EXT_TYPE_INT16 = 4 # 16-bit signed integer
enums['MAV_PARAM_EXT_TYPE'][4] = EnumEntry('MAV_PARAM_EXT_TYPE_INT16', '''16-bit signed integer''')
MAV_PARAM_EXT_TYPE_UINT32 = 5 # 32-bit unsigned integer
enums['MAV_PARAM_EXT_TYPE'][5] = EnumEntry('MAV_PARAM_EXT_TYPE_UINT32', '''32-bit unsigned integer''')
MAV_PARAM_EXT_TYPE_INT32 = 6 # 32-bit signed integer
enums['MAV_PARAM_EXT_TYPE'][6] = EnumEntry('MAV_PARAM_EXT_TYPE_INT32', '''32-bit signed integer''')
MAV_PARAM_EXT_TYPE_UINT64 = 7 # 64-bit unsigned integer
enums['MAV_PARAM_EXT_TYPE'][7] = EnumEntry('MAV_PARAM_EXT_TYPE_UINT64', '''64-bit unsigned integer''')
MAV_PARAM_EXT_TYPE_INT64 = 8 # 64-bit signed integer
enums['MAV_PARAM_EXT_TYPE'][8] = EnumEntry('MAV_PARAM_EXT_TYPE_INT64', '''64-bit signed integer''')
MAV_PARAM_EXT_TYPE_REAL32 = 9 # 32-bit floating-point
enums['MAV_PARAM_EXT_TYPE'][9] = EnumEntry('MAV_PARAM_EXT_TYPE_REAL32', '''32-bit floating-point''')
MAV_PARAM_EXT_TYPE_REAL64 = 10 # 64-bit floating-point
enums['MAV_PARAM_EXT_TYPE'][10] = EnumEntry('MAV_PARAM_EXT_TYPE_REAL64', '''64-bit floating-point''')
MAV_PARAM_EXT_TYPE_CUSTOM = 11 # Custom Type
enums['MAV_PARAM_EXT_TYPE'][11] = EnumEntry('MAV_PARAM_EXT_TYPE_CUSTOM', '''Custom Type''')
MAV_PARAM_EXT_TYPE_ENUM_END = 12 #
enums['MAV_PARAM_EXT_TYPE'][12] = EnumEntry('MAV_PARAM_EXT_TYPE_ENUM_END', '''''')
# MAV_RESULT
enums['MAV_RESULT'] = {}
MAV_RESULT_ACCEPTED = 0 # Command ACCEPTED and EXECUTED
enums['MAV_RESULT'][0] = EnumEntry('MAV_RESULT_ACCEPTED', '''Command ACCEPTED and EXECUTED''')
MAV_RESULT_TEMPORARILY_REJECTED = 1 # Command TEMPORARY REJECTED/DENIED
enums['MAV_RESULT'][1] = EnumEntry('MAV_RESULT_TEMPORARILY_REJECTED', '''Command TEMPORARY REJECTED/DENIED''')
MAV_RESULT_DENIED = 2 # Command PERMANENTLY DENIED
enums['MAV_RESULT'][2] = EnumEntry('MAV_RESULT_DENIED', '''Command PERMANENTLY DENIED''')
MAV_RESULT_UNSUPPORTED = 3 # Command UNKNOWN/UNSUPPORTED
enums['MAV_RESULT'][3] = EnumEntry('MAV_RESULT_UNSUPPORTED', '''Command UNKNOWN/UNSUPPORTED''')
MAV_RESULT_FAILED = 4 # Command executed, but failed
enums['MAV_RESULT'][4] = EnumEntry('MAV_RESULT_FAILED', '''Command executed, but failed''')
MAV_RESULT_IN_PROGRESS = 5 # WIP: Command being executed
enums['MAV_RESULT'][5] = EnumEntry('MAV_RESULT_IN_PROGRESS', '''WIP: Command being executed''')
MAV_RESULT_ENUM_END = 6 #
enums['MAV_RESULT'][6] = EnumEntry('MAV_RESULT_ENUM_END', '''''')
# MAV_MISSION_RESULT
enums['MAV_MISSION_RESULT'] = {}
MAV_MISSION_ACCEPTED = 0 # mission accepted OK
enums['MAV_MISSION_RESULT'][0] = EnumEntry('MAV_MISSION_ACCEPTED', '''mission accepted OK''')
MAV_MISSION_ERROR = 1 # generic error / not accepting mission commands at all right now
enums['MAV_MISSION_RESULT'][1] = EnumEntry('MAV_MISSION_ERROR', '''generic error / not accepting mission commands at all right now''')
MAV_MISSION_UNSUPPORTED_FRAME = 2 # coordinate frame is not supported
enums['MAV_MISSION_RESULT'][2] = EnumEntry('MAV_MISSION_UNSUPPORTED_FRAME', '''coordinate frame is not supported''')
MAV_MISSION_UNSUPPORTED = 3 # command is not supported
enums['MAV_MISSION_RESULT'][3] = EnumEntry('MAV_MISSION_UNSUPPORTED', '''command is not supported''')
MAV_MISSION_NO_SPACE = 4 # mission item exceeds storage space
enums['MAV_MISSION_RESULT'][4] = EnumEntry('MAV_MISSION_NO_SPACE', '''mission item exceeds storage space''')
MAV_MISSION_INVALID = 5 # one of the parameters has an invalid value
enums['MAV_MISSION_RESULT'][5] = EnumEntry('MAV_MISSION_INVALID', '''one of the parameters has an invalid value''')
MAV_MISSION_INVALID_PARAM1 = 6 # param1 has an invalid value
enums['MAV_MISSION_RESULT'][6] = EnumEntry('MAV_MISSION_INVALID_PARAM1', '''param1 has an invalid value''')
MAV_MISSION_INVALID_PARAM2 = 7 # param2 has an invalid value
enums['MAV_MISSION_RESULT'][7] = EnumEntry('MAV_MISSION_INVALID_PARAM2', '''param2 has an invalid value''')
MAV_MISSION_INVALID_PARAM3 = 8 # param3 has an invalid value
enums['MAV_MISSION_RESULT'][8] = EnumEntry('MAV_MISSION_INVALID_PARAM3', '''param3 has an invalid value''')
MAV_MISSION_INVALID_PARAM4 = 9 # param4 has an invalid value
enums['MAV_MISSION_RESULT'][9] = EnumEntry('MAV_MISSION_INVALID_PARAM4', '''param4 has an invalid value''')
MAV_MISSION_INVALID_PARAM5_X = 10 # x/param5 has an invalid value
enums['MAV_MISSION_RESULT'][10] = EnumEntry('MAV_MISSION_INVALID_PARAM5_X', '''x/param5 has an invalid value''')
MAV_MISSION_INVALID_PARAM6_Y = 11 # y/param6 has an invalid value
enums['MAV_MISSION_RESULT'][11] = EnumEntry('MAV_MISSION_INVALID_PARAM6_Y', '''y/param6 has an invalid value''')
MAV_MISSION_INVALID_PARAM7 = 12 # param7 has an invalid value
enums['MAV_MISSION_RESULT'][12] = EnumEntry('MAV_MISSION_INVALID_PARAM7', '''param7 has an invalid value''')
MAV_MISSION_INVALID_SEQUENCE = 13 # received waypoint out of sequence
enums['MAV_MISSION_RESULT'][13] = EnumEntry('MAV_MISSION_INVALID_SEQUENCE', '''received waypoint out of sequence''')
MAV_MISSION_DENIED = 14 # not accepting any mission commands from this communication partner
enums['MAV_MISSION_RESULT'][14] = EnumEntry('MAV_MISSION_DENIED', '''not accepting any mission commands from this communication partner''')
MAV_MISSION_RESULT_ENUM_END = 15 #
enums['MAV_MISSION_RESULT'][15] = EnumEntry('MAV_MISSION_RESULT_ENUM_END', '''''')
# MAV_SEVERITY
enums['MAV_SEVERITY'] = {}
MAV_SEVERITY_EMERGENCY = 0 # System is unusable. This is a "panic" condition.
enums['MAV_SEVERITY'][0] = EnumEntry('MAV_SEVERITY_EMERGENCY', '''System is unusable. This is a "panic" condition.''')
MAV_SEVERITY_ALERT = 1 # Action should be taken immediately. Indicates error in non-critical
# systems.
enums['MAV_SEVERITY'][1] = EnumEntry('MAV_SEVERITY_ALERT', '''Action should be taken immediately. Indicates error in non-critical systems.''')
MAV_SEVERITY_CRITICAL = 2 # Action must be taken immediately. Indicates failure in a primary
# system.
enums['MAV_SEVERITY'][2] = EnumEntry('MAV_SEVERITY_CRITICAL', '''Action must be taken immediately. Indicates failure in a primary system.''')
MAV_SEVERITY_ERROR = 3 # Indicates an error in secondary/redundant systems.
enums['MAV_SEVERITY'][3] = EnumEntry('MAV_SEVERITY_ERROR', '''Indicates an error in secondary/redundant systems.''')
MAV_SEVERITY_WARNING = 4 # Indicates about a possible future error if this is not resolved within
# a given timeframe. Example would be a low
# battery warning.
enums['MAV_SEVERITY'][4] = EnumEntry('MAV_SEVERITY_WARNING', '''Indicates about a possible future error if this is not resolved within a given timeframe. Example would be a low battery warning.''')
MAV_SEVERITY_NOTICE = 5 # An unusual event has occurred, though not an error condition. This
# should be investigated for the root cause.
enums['MAV_SEVERITY'][5] = EnumEntry('MAV_SEVERITY_NOTICE', '''An unusual event has occurred, though not an error condition. This should be investigated for the root cause.''')
MAV_SEVERITY_INFO = 6 # Normal operational messages. Useful for logging. No action is required
# for these messages.
enums['MAV_SEVERITY'][6] = EnumEntry('MAV_SEVERITY_INFO', '''Normal operational messages. Useful for logging. No action is required for these messages.''')
MAV_SEVERITY_DEBUG = 7 # Useful non-operational messages that can assist in debugging. These
# should not occur during normal operation.
enums['MAV_SEVERITY'][7] = EnumEntry('MAV_SEVERITY_DEBUG', '''Useful non-operational messages that can assist in debugging. These should not occur during normal operation.''')
MAV_SEVERITY_ENUM_END = 8 #
enums['MAV_SEVERITY'][8] = EnumEntry('MAV_SEVERITY_ENUM_END', '''''')
# MAV_POWER_STATUS
enums['MAV_POWER_STATUS'] = {}
MAV_POWER_STATUS_BRICK_VALID = 1 # main brick power supply valid
enums['MAV_POWER_STATUS'][1] = EnumEntry('MAV_POWER_STATUS_BRICK_VALID', '''main brick power supply valid''')
MAV_POWER_STATUS_SERVO_VALID = 2 # main servo power supply valid for FMU
enums['MAV_POWER_STATUS'][2] = EnumEntry('MAV_POWER_STATUS_SERVO_VALID', '''main servo power supply valid for FMU''')
MAV_POWER_STATUS_USB_CONNECTED = 4 # USB power is connected
enums['MAV_POWER_STATUS'][4] = EnumEntry('MAV_POWER_STATUS_USB_CONNECTED', '''USB power is connected''')
MAV_POWER_STATUS_PERIPH_OVERCURRENT = 8 # peripheral supply is in over-current state
enums['MAV_POWER_STATUS'][8] = EnumEntry('MAV_POWER_STATUS_PERIPH_OVERCURRENT', '''peripheral supply is in over-current state''')
MAV_POWER_STATUS_PERIPH_HIPOWER_OVERCURRENT = 16 # hi-power peripheral supply is in over-current state
enums['MAV_POWER_STATUS'][16] = EnumEntry('MAV_POWER_STATUS_PERIPH_HIPOWER_OVERCURRENT', '''hi-power peripheral supply is in over-current state''')
MAV_POWER_STATUS_CHANGED = 32 # Power status has changed since boot
enums['MAV_POWER_STATUS'][32] = EnumEntry('MAV_POWER_STATUS_CHANGED', '''Power status has changed since boot''')
MAV_POWER_STATUS_ENUM_END = 33 #
enums['MAV_POWER_STATUS'][33] = EnumEntry('MAV_POWER_STATUS_ENUM_END', '''''')
# SERIAL_CONTROL_DEV
enums['SERIAL_CONTROL_DEV'] = {}
SERIAL_CONTROL_DEV_TELEM1 = 0 # First telemetry port
enums['SERIAL_CONTROL_DEV'][0] = EnumEntry('SERIAL_CONTROL_DEV_TELEM1', '''First telemetry port''')
SERIAL_CONTROL_DEV_TELEM2 = 1 # Second telemetry port
enums['SERIAL_CONTROL_DEV'][1] = EnumEntry('SERIAL_CONTROL_DEV_TELEM2', '''Second telemetry port''')
SERIAL_CONTROL_DEV_GPS1 = 2 # First GPS port
enums['SERIAL_CONTROL_DEV'][2] = EnumEntry('SERIAL_CONTROL_DEV_GPS1', '''First GPS port''')
SERIAL_CONTROL_DEV_GPS2 = 3 # Second GPS port
enums['SERIAL_CONTROL_DEV'][3] = EnumEntry('SERIAL_CONTROL_DEV_GPS2', '''Second GPS port''')
SERIAL_CONTROL_DEV_SHELL = 10 # system shell
enums['SERIAL_CONTROL_DEV'][10] = EnumEntry('SERIAL_CONTROL_DEV_SHELL', '''system shell''')
SERIAL_CONTROL_DEV_ENUM_END = 11 #
enums['SERIAL_CONTROL_DEV'][11] = EnumEntry('SERIAL_CONTROL_DEV_ENUM_END', '''''')
# SERIAL_CONTROL_FLAG
enums['SERIAL_CONTROL_FLAG'] = {}
SERIAL_CONTROL_FLAG_REPLY = 1 # Set if this is a reply
enums['SERIAL_CONTROL_FLAG'][1] = EnumEntry('SERIAL_CONTROL_FLAG_REPLY', '''Set if this is a reply''')
SERIAL_CONTROL_FLAG_RESPOND = 2 # Set if the sender wants the receiver to send a response as another
# SERIAL_CONTROL message
enums['SERIAL_CONTROL_FLAG'][2] = EnumEntry('SERIAL_CONTROL_FLAG_RESPOND', '''Set if the sender wants the receiver to send a response as another SERIAL_CONTROL message''')
SERIAL_CONTROL_FLAG_EXCLUSIVE = 4 # Set if access to the serial port should be removed from whatever
# driver is currently using it, giving
# exclusive access to the SERIAL_CONTROL
# protocol. The port can be handed back by
# sending a request without this flag set
enums['SERIAL_CONTROL_FLAG'][4] = EnumEntry('SERIAL_CONTROL_FLAG_EXCLUSIVE', '''Set if access to the serial port should be removed from whatever driver is currently using it, giving exclusive access to the SERIAL_CONTROL protocol. The port can be handed back by sending a request without this flag set''')
SERIAL_CONTROL_FLAG_BLOCKING = 8 # Block on writes to the serial port
enums['SERIAL_CONTROL_FLAG'][8] = EnumEntry('SERIAL_CONTROL_FLAG_BLOCKING', '''Block on writes to the serial port''')
SERIAL_CONTROL_FLAG_MULTI = 16 # Send multiple replies until port is drained
enums['SERIAL_CONTROL_FLAG'][16] = EnumEntry('SERIAL_CONTROL_FLAG_MULTI', '''Send multiple replies until port is drained''')
SERIAL_CONTROL_FLAG_ENUM_END = 17 #
enums['SERIAL_CONTROL_FLAG'][17] = EnumEntry('SERIAL_CONTROL_FLAG_ENUM_END', '''''')
# MAV_DISTANCE_SENSOR
enums['MAV_DISTANCE_SENSOR'] = {}
MAV_DISTANCE_SENSOR_LASER = 0 # Laser rangefinder, e.g. LightWare SF02/F or PulsedLight units
enums['MAV_DISTANCE_SENSOR'][0] = EnumEntry('MAV_DISTANCE_SENSOR_LASER', '''Laser rangefinder, e.g. LightWare SF02/F or PulsedLight units''')
MAV_DISTANCE_SENSOR_ULTRASOUND = 1 # Ultrasound rangefinder, e.g. MaxBotix units
enums['MAV_DISTANCE_SENSOR'][1] = EnumEntry('MAV_DISTANCE_SENSOR_ULTRASOUND', '''Ultrasound rangefinder, e.g. MaxBotix units''')
MAV_DISTANCE_SENSOR_INFRARED = 2 # Infrared rangefinder, e.g. Sharp units
enums['MAV_DISTANCE_SENSOR'][2] = EnumEntry('MAV_DISTANCE_SENSOR_INFRARED', '''Infrared rangefinder, e.g. Sharp units''')
MAV_DISTANCE_SENSOR_RADAR = 3 # Radar type, e.g. uLanding units
enums['MAV_DISTANCE_SENSOR'][3] = EnumEntry('MAV_DISTANCE_SENSOR_RADAR', '''Radar type, e.g. uLanding units''')
MAV_DISTANCE_SENSOR_UNKNOWN = 4 # Broken or unknown type, e.g. analog units
enums['MAV_DISTANCE_SENSOR'][4] = EnumEntry('MAV_DISTANCE_SENSOR_UNKNOWN', '''Broken or unknown type, e.g. analog units''')
MAV_DISTANCE_SENSOR_ENUM_END = 5 #
enums['MAV_DISTANCE_SENSOR'][5] = EnumEntry('MAV_DISTANCE_SENSOR_ENUM_END', '''''')
# MAV_SENSOR_ORIENTATION
enums['MAV_SENSOR_ORIENTATION'] = {}
MAV_SENSOR_ROTATION_NONE = 0 # Roll: 0, Pitch: 0, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][0] = EnumEntry('MAV_SENSOR_ROTATION_NONE', '''Roll: 0, Pitch: 0, Yaw: 0''')
MAV_SENSOR_ROTATION_YAW_45 = 1 # Roll: 0, Pitch: 0, Yaw: 45
enums['MAV_SENSOR_ORIENTATION'][1] = EnumEntry('MAV_SENSOR_ROTATION_YAW_45', '''Roll: 0, Pitch: 0, Yaw: 45''')
MAV_SENSOR_ROTATION_YAW_90 = 2 # Roll: 0, Pitch: 0, Yaw: 90
enums['MAV_SENSOR_ORIENTATION'][2] = EnumEntry('MAV_SENSOR_ROTATION_YAW_90', '''Roll: 0, Pitch: 0, Yaw: 90''')
MAV_SENSOR_ROTATION_YAW_135 = 3 # Roll: 0, Pitch: 0, Yaw: 135
enums['MAV_SENSOR_ORIENTATION'][3] = EnumEntry('MAV_SENSOR_ROTATION_YAW_135', '''Roll: 0, Pitch: 0, Yaw: 135''')
MAV_SENSOR_ROTATION_YAW_180 = 4 # Roll: 0, Pitch: 0, Yaw: 180
enums['MAV_SENSOR_ORIENTATION'][4] = EnumEntry('MAV_SENSOR_ROTATION_YAW_180', '''Roll: 0, Pitch: 0, Yaw: 180''')
MAV_SENSOR_ROTATION_YAW_225 = 5 # Roll: 0, Pitch: 0, Yaw: 225
enums['MAV_SENSOR_ORIENTATION'][5] = EnumEntry('MAV_SENSOR_ROTATION_YAW_225', '''Roll: 0, Pitch: 0, Yaw: 225''')
MAV_SENSOR_ROTATION_YAW_270 = 6 # Roll: 0, Pitch: 0, Yaw: 270
enums['MAV_SENSOR_ORIENTATION'][6] = EnumEntry('MAV_SENSOR_ROTATION_YAW_270', '''Roll: 0, Pitch: 0, Yaw: 270''')
MAV_SENSOR_ROTATION_YAW_315 = 7 # Roll: 0, Pitch: 0, Yaw: 315
enums['MAV_SENSOR_ORIENTATION'][7] = EnumEntry('MAV_SENSOR_ROTATION_YAW_315', '''Roll: 0, Pitch: 0, Yaw: 315''')
MAV_SENSOR_ROTATION_ROLL_180 = 8 # Roll: 180, Pitch: 0, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][8] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_180', '''Roll: 180, Pitch: 0, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_180_YAW_45 = 9 # Roll: 180, Pitch: 0, Yaw: 45
enums['MAV_SENSOR_ORIENTATION'][9] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_180_YAW_45', '''Roll: 180, Pitch: 0, Yaw: 45''')
MAV_SENSOR_ROTATION_ROLL_180_YAW_90 = 10 # Roll: 180, Pitch: 0, Yaw: 90
enums['MAV_SENSOR_ORIENTATION'][10] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_180_YAW_90', '''Roll: 180, Pitch: 0, Yaw: 90''')
MAV_SENSOR_ROTATION_ROLL_180_YAW_135 = 11 # Roll: 180, Pitch: 0, Yaw: 135
enums['MAV_SENSOR_ORIENTATION'][11] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_180_YAW_135', '''Roll: 180, Pitch: 0, Yaw: 135''')
MAV_SENSOR_ROTATION_PITCH_180 = 12 # Roll: 0, Pitch: 180, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][12] = EnumEntry('MAV_SENSOR_ROTATION_PITCH_180', '''Roll: 0, Pitch: 180, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_180_YAW_225 = 13 # Roll: 180, Pitch: 0, Yaw: 225
enums['MAV_SENSOR_ORIENTATION'][13] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_180_YAW_225', '''Roll: 180, Pitch: 0, Yaw: 225''')
MAV_SENSOR_ROTATION_ROLL_180_YAW_270 = 14 # Roll: 180, Pitch: 0, Yaw: 270
enums['MAV_SENSOR_ORIENTATION'][14] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_180_YAW_270', '''Roll: 180, Pitch: 0, Yaw: 270''')
MAV_SENSOR_ROTATION_ROLL_180_YAW_315 = 15 # Roll: 180, Pitch: 0, Yaw: 315
enums['MAV_SENSOR_ORIENTATION'][15] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_180_YAW_315', '''Roll: 180, Pitch: 0, Yaw: 315''')
MAV_SENSOR_ROTATION_ROLL_90 = 16 # Roll: 90, Pitch: 0, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][16] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_90', '''Roll: 90, Pitch: 0, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_90_YAW_45 = 17 # Roll: 90, Pitch: 0, Yaw: 45
enums['MAV_SENSOR_ORIENTATION'][17] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_90_YAW_45', '''Roll: 90, Pitch: 0, Yaw: 45''')
MAV_SENSOR_ROTATION_ROLL_90_YAW_90 = 18 # Roll: 90, Pitch: 0, Yaw: 90
enums['MAV_SENSOR_ORIENTATION'][18] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_90_YAW_90', '''Roll: 90, Pitch: 0, Yaw: 90''')
MAV_SENSOR_ROTATION_ROLL_90_YAW_135 = 19 # Roll: 90, Pitch: 0, Yaw: 135
enums['MAV_SENSOR_ORIENTATION'][19] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_90_YAW_135', '''Roll: 90, Pitch: 0, Yaw: 135''')
MAV_SENSOR_ROTATION_ROLL_270 = 20 # Roll: 270, Pitch: 0, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][20] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_270', '''Roll: 270, Pitch: 0, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_270_YAW_45 = 21 # Roll: 270, Pitch: 0, Yaw: 45
enums['MAV_SENSOR_ORIENTATION'][21] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_270_YAW_45', '''Roll: 270, Pitch: 0, Yaw: 45''')
MAV_SENSOR_ROTATION_ROLL_270_YAW_90 = 22 # Roll: 270, Pitch: 0, Yaw: 90
enums['MAV_SENSOR_ORIENTATION'][22] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_270_YAW_90', '''Roll: 270, Pitch: 0, Yaw: 90''')
MAV_SENSOR_ROTATION_ROLL_270_YAW_135 = 23 # Roll: 270, Pitch: 0, Yaw: 135
enums['MAV_SENSOR_ORIENTATION'][23] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_270_YAW_135', '''Roll: 270, Pitch: 0, Yaw: 135''')
MAV_SENSOR_ROTATION_PITCH_90 = 24 # Roll: 0, Pitch: 90, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][24] = EnumEntry('MAV_SENSOR_ROTATION_PITCH_90', '''Roll: 0, Pitch: 90, Yaw: 0''')
MAV_SENSOR_ROTATION_PITCH_270 = 25 # Roll: 0, Pitch: 270, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][25] = EnumEntry('MAV_SENSOR_ROTATION_PITCH_270', '''Roll: 0, Pitch: 270, Yaw: 0''')
MAV_SENSOR_ROTATION_PITCH_180_YAW_90 = 26 # Roll: 0, Pitch: 180, Yaw: 90
enums['MAV_SENSOR_ORIENTATION'][26] = EnumEntry('MAV_SENSOR_ROTATION_PITCH_180_YAW_90', '''Roll: 0, Pitch: 180, Yaw: 90''')
MAV_SENSOR_ROTATION_PITCH_180_YAW_270 = 27 # Roll: 0, Pitch: 180, Yaw: 270
enums['MAV_SENSOR_ORIENTATION'][27] = EnumEntry('MAV_SENSOR_ROTATION_PITCH_180_YAW_270', '''Roll: 0, Pitch: 180, Yaw: 270''')
MAV_SENSOR_ROTATION_ROLL_90_PITCH_90 = 28 # Roll: 90, Pitch: 90, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][28] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_90_PITCH_90', '''Roll: 90, Pitch: 90, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_180_PITCH_90 = 29 # Roll: 180, Pitch: 90, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][29] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_180_PITCH_90', '''Roll: 180, Pitch: 90, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_270_PITCH_90 = 30 # Roll: 270, Pitch: 90, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][30] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_270_PITCH_90', '''Roll: 270, Pitch: 90, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_90_PITCH_180 = 31 # Roll: 90, Pitch: 180, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][31] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_90_PITCH_180', '''Roll: 90, Pitch: 180, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_270_PITCH_180 = 32 # Roll: 270, Pitch: 180, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][32] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_270_PITCH_180', '''Roll: 270, Pitch: 180, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_90_PITCH_270 = 33 # Roll: 90, Pitch: 270, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][33] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_90_PITCH_270', '''Roll: 90, Pitch: 270, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_180_PITCH_270 = 34 # Roll: 180, Pitch: 270, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][34] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_180_PITCH_270', '''Roll: 180, Pitch: 270, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_270_PITCH_270 = 35 # Roll: 270, Pitch: 270, Yaw: 0
enums['MAV_SENSOR_ORIENTATION'][35] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_270_PITCH_270', '''Roll: 270, Pitch: 270, Yaw: 0''')
MAV_SENSOR_ROTATION_ROLL_90_PITCH_180_YAW_90 = 36 # Roll: 90, Pitch: 180, Yaw: 90
enums['MAV_SENSOR_ORIENTATION'][36] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_90_PITCH_180_YAW_90', '''Roll: 90, Pitch: 180, Yaw: 90''')
MAV_SENSOR_ROTATION_ROLL_90_YAW_270 = 37 # Roll: 90, Pitch: 0, Yaw: 270
enums['MAV_SENSOR_ORIENTATION'][37] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_90_YAW_270', '''Roll: 90, Pitch: 0, Yaw: 270''')
MAV_SENSOR_ROTATION_ROLL_90_PITCH_68_YAW_293 = 38 # Roll: 90, Pitch: 68, Yaw: 293
enums['MAV_SENSOR_ORIENTATION'][38] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_90_PITCH_68_YAW_293', '''Roll: 90, Pitch: 68, Yaw: 293''')
MAV_SENSOR_ROTATION_PITCH_315 = 39 # Pitch: 315
enums['MAV_SENSOR_ORIENTATION'][39] = EnumEntry('MAV_SENSOR_ROTATION_PITCH_315', '''Pitch: 315''')
MAV_SENSOR_ROTATION_ROLL_90_PITCH_315 = 40 # Roll: 90, Pitch: 315
enums['MAV_SENSOR_ORIENTATION'][40] = EnumEntry('MAV_SENSOR_ROTATION_ROLL_90_PITCH_315', '''Roll: 90, Pitch: 315''')
MAV_SENSOR_ROTATION_CUSTOM = 100 # Custom orientation
enums['MAV_SENSOR_ORIENTATION'][100] = EnumEntry('MAV_SENSOR_ROTATION_CUSTOM', '''Custom orientation''')
MAV_SENSOR_ORIENTATION_ENUM_END = 101 #
enums['MAV_SENSOR_ORIENTATION'][101] = EnumEntry('MAV_SENSOR_ORIENTATION_ENUM_END', '''''')
# MAV_PROTOCOL_CAPABILITY
enums['MAV_PROTOCOL_CAPABILITY'] = {}
MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT = 1 # Autopilot supports MISSION float message type.
enums['MAV_PROTOCOL_CAPABILITY'][1] = EnumEntry('MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT', '''Autopilot supports MISSION float message type.''')
MAV_PROTOCOL_CAPABILITY_PARAM_FLOAT = 2 # Autopilot supports the new param float message type.
enums['MAV_PROTOCOL_CAPABILITY'][2] = EnumEntry('MAV_PROTOCOL_CAPABILITY_PARAM_FLOAT', '''Autopilot supports the new param float message type.''')
MAV_PROTOCOL_CAPABILITY_MISSION_INT = 4 # Autopilot supports MISSION_INT scaled integer message type.
enums['MAV_PROTOCOL_CAPABILITY'][4] = EnumEntry('MAV_PROTOCOL_CAPABILITY_MISSION_INT', '''Autopilot supports MISSION_INT scaled integer message type.''')
MAV_PROTOCOL_CAPABILITY_COMMAND_INT = 8 # Autopilot supports COMMAND_INT scaled integer message type.
enums['MAV_PROTOCOL_CAPABILITY'][8] = EnumEntry('MAV_PROTOCOL_CAPABILITY_COMMAND_INT', '''Autopilot supports COMMAND_INT scaled integer message type.''')
MAV_PROTOCOL_CAPABILITY_PARAM_UNION = 16 # Autopilot supports the new param union message type.
enums['MAV_PROTOCOL_CAPABILITY'][16] = EnumEntry('MAV_PROTOCOL_CAPABILITY_PARAM_UNION', '''Autopilot supports the new param union message type.''')
MAV_PROTOCOL_CAPABILITY_FTP = 32 # Autopilot supports the new FILE_TRANSFER_PROTOCOL message type.
enums['MAV_PROTOCOL_CAPABILITY'][32] = EnumEntry('MAV_PROTOCOL_CAPABILITY_FTP', '''Autopilot supports the new FILE_TRANSFER_PROTOCOL message type.''')
MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET = 64 # Autopilot supports commanding attitude offboard.
enums['MAV_PROTOCOL_CAPABILITY'][64] = EnumEntry('MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET', '''Autopilot supports commanding attitude offboard.''')
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED = 128 # Autopilot supports commanding position and velocity targets in local
# NED frame.
enums['MAV_PROTOCOL_CAPABILITY'][128] = EnumEntry('MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED', '''Autopilot supports commanding position and velocity targets in local NED frame.''')
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT = 256 # Autopilot supports commanding position and velocity targets in global
# scaled integers.
enums['MAV_PROTOCOL_CAPABILITY'][256] = EnumEntry('MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT', '''Autopilot supports commanding position and velocity targets in global scaled integers.''')
MAV_PROTOCOL_CAPABILITY_TERRAIN = 512 # Autopilot supports terrain protocol / data handling.
enums['MAV_PROTOCOL_CAPABILITY'][512] = EnumEntry('MAV_PROTOCOL_CAPABILITY_TERRAIN', '''Autopilot supports terrain protocol / data handling.''')
MAV_PROTOCOL_CAPABILITY_SET_ACTUATOR_TARGET = 1024 # Autopilot supports direct actuator control.
enums['MAV_PROTOCOL_CAPABILITY'][1024] = EnumEntry('MAV_PROTOCOL_CAPABILITY_SET_ACTUATOR_TARGET', '''Autopilot supports direct actuator control.''')
MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION = 2048 # Autopilot supports the flight termination command.
enums['MAV_PROTOCOL_CAPABILITY'][2048] = EnumEntry('MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION', '''Autopilot supports the flight termination command.''')
MAV_PROTOCOL_CAPABILITY_COMPASS_CALIBRATION = 4096 # Autopilot supports onboard compass calibration.
enums['MAV_PROTOCOL_CAPABILITY'][4096] = EnumEntry('MAV_PROTOCOL_CAPABILITY_COMPASS_CALIBRATION', '''Autopilot supports onboard compass calibration.''')
MAV_PROTOCOL_CAPABILITY_MAVLINK2 = 8192 # Autopilot supports MAVLink version 2.
enums['MAV_PROTOCOL_CAPABILITY'][8192] = EnumEntry('MAV_PROTOCOL_CAPABILITY_MAVLINK2', '''Autopilot supports MAVLink version 2.''')
MAV_PROTOCOL_CAPABILITY_MISSION_FENCE = 16384 # Autopilot supports mission fence protocol.
enums['MAV_PROTOCOL_CAPABILITY'][16384] = EnumEntry('MAV_PROTOCOL_CAPABILITY_MISSION_FENCE', '''Autopilot supports mission fence protocol.''')
MAV_PROTOCOL_CAPABILITY_MISSION_RALLY = 32768 # Autopilot supports mission rally point protocol.
enums['MAV_PROTOCOL_CAPABILITY'][32768] = EnumEntry('MAV_PROTOCOL_CAPABILITY_MISSION_RALLY', '''Autopilot supports mission rally point protocol.''')
MAV_PROTOCOL_CAPABILITY_FLIGHT_INFORMATION = 65536 # Autopilot supports the flight information protocol.
enums['MAV_PROTOCOL_CAPABILITY'][65536] = EnumEntry('MAV_PROTOCOL_CAPABILITY_FLIGHT_INFORMATION', '''Autopilot supports the flight information protocol.''')
MAV_PROTOCOL_CAPABILITY_ENUM_END = 65537 #
enums['MAV_PROTOCOL_CAPABILITY'][65537] = EnumEntry('MAV_PROTOCOL_CAPABILITY_ENUM_END', '''''')
# MAV_MISSION_TYPE
enums['MAV_MISSION_TYPE'] = {}
MAV_MISSION_TYPE_MISSION = 0 # Items are mission commands for main mission.
enums['MAV_MISSION_TYPE'][0] = EnumEntry('MAV_MISSION_TYPE_MISSION', '''Items are mission commands for main mission.''')
MAV_MISSION_TYPE_FENCE = 1 # Specifies GeoFence area(s). Items are MAV_CMD_FENCE_ GeoFence items.
enums['MAV_MISSION_TYPE'][1] = EnumEntry('MAV_MISSION_TYPE_FENCE', '''Specifies GeoFence area(s). Items are MAV_CMD_FENCE_ GeoFence items.''')
MAV_MISSION_TYPE_RALLY = 2 # Specifies the rally points for the vehicle. Rally points are
# alternative RTL points. Items are
# MAV_CMD_RALLY_POINT rally point items.
enums['MAV_MISSION_TYPE'][2] = EnumEntry('MAV_MISSION_TYPE_RALLY', '''Specifies the rally points for the vehicle. Rally points are alternative RTL points. Items are MAV_CMD_RALLY_POINT rally point items.''')
MAV_MISSION_TYPE_ALL = 255 # Only used in MISSION_CLEAR_ALL to clear all mission types.
enums['MAV_MISSION_TYPE'][255] = EnumEntry('MAV_MISSION_TYPE_ALL', '''Only used in MISSION_CLEAR_ALL to clear all mission types.''')
MAV_MISSION_TYPE_ENUM_END = 256 #
enums['MAV_MISSION_TYPE'][256] = EnumEntry('MAV_MISSION_TYPE_ENUM_END', '''''')
# MAV_ESTIMATOR_TYPE
enums['MAV_ESTIMATOR_TYPE'] = {}
MAV_ESTIMATOR_TYPE_NAIVE = 1 # This is a naive estimator without any real covariance feedback.
enums['MAV_ESTIMATOR_TYPE'][1] = EnumEntry('MAV_ESTIMATOR_TYPE_NAIVE', '''This is a naive estimator without any real covariance feedback.''')
MAV_ESTIMATOR_TYPE_VISION = 2 # Computer vision based estimate. Might be up to scale.
enums['MAV_ESTIMATOR_TYPE'][2] = EnumEntry('MAV_ESTIMATOR_TYPE_VISION', '''Computer vision based estimate. Might be up to scale.''')
MAV_ESTIMATOR_TYPE_VIO = 3 # Visual-inertial estimate.
enums['MAV_ESTIMATOR_TYPE'][3] = EnumEntry('MAV_ESTIMATOR_TYPE_VIO', '''Visual-inertial estimate.''')
MAV_ESTIMATOR_TYPE_GPS = 4 # Plain GPS estimate.
enums['MAV_ESTIMATOR_TYPE'][4] = EnumEntry('MAV_ESTIMATOR_TYPE_GPS', '''Plain GPS estimate.''')
MAV_ESTIMATOR_TYPE_GPS_INS = 5 # Estimator integrating GPS and inertial sensing.
enums['MAV_ESTIMATOR_TYPE'][5] = EnumEntry('MAV_ESTIMATOR_TYPE_GPS_INS', '''Estimator integrating GPS and inertial sensing.''')
MAV_ESTIMATOR_TYPE_ENUM_END = 6 #
enums['MAV_ESTIMATOR_TYPE'][6] = EnumEntry('MAV_ESTIMATOR_TYPE_ENUM_END', '''''')
# MAV_BATTERY_TYPE
enums['MAV_BATTERY_TYPE'] = {}
MAV_BATTERY_TYPE_UNKNOWN = 0 # Not specified.
enums['MAV_BATTERY_TYPE'][0] = EnumEntry('MAV_BATTERY_TYPE_UNKNOWN', '''Not specified.''')
MAV_BATTERY_TYPE_LIPO = 1 # Lithium polymer battery
enums['MAV_BATTERY_TYPE'][1] = EnumEntry('MAV_BATTERY_TYPE_LIPO', '''Lithium polymer battery''')
MAV_BATTERY_TYPE_LIFE = 2 # Lithium-iron-phosphate battery
enums['MAV_BATTERY_TYPE'][2] = EnumEntry('MAV_BATTERY_TYPE_LIFE', '''Lithium-iron-phosphate battery''')
MAV_BATTERY_TYPE_LION = 3 # Lithium-ION battery
enums['MAV_BATTERY_TYPE'][3] = EnumEntry('MAV_BATTERY_TYPE_LION', '''Lithium-ION battery''')
MAV_BATTERY_TYPE_NIMH = 4 # Nickel metal hydride battery
enums['MAV_BATTERY_TYPE'][4] = EnumEntry('MAV_BATTERY_TYPE_NIMH', '''Nickel metal hydride battery''')
MAV_BATTERY_TYPE_ENUM_END = 5 #
enums['MAV_BATTERY_TYPE'][5] = EnumEntry('MAV_BATTERY_TYPE_ENUM_END', '''''')
# MAV_BATTERY_FUNCTION
enums['MAV_BATTERY_FUNCTION'] = {}
MAV_BATTERY_FUNCTION_UNKNOWN = 0 # Battery function is unknown
enums['MAV_BATTERY_FUNCTION'][0] = EnumEntry('MAV_BATTERY_FUNCTION_UNKNOWN', '''Battery function is unknown''')
MAV_BATTERY_FUNCTION_ALL = 1 # Battery supports all flight systems
enums['MAV_BATTERY_FUNCTION'][1] = EnumEntry('MAV_BATTERY_FUNCTION_ALL', '''Battery supports all flight systems''')
MAV_BATTERY_FUNCTION_PROPULSION = 2 # Battery for the propulsion system
enums['MAV_BATTERY_FUNCTION'][2] = EnumEntry('MAV_BATTERY_FUNCTION_PROPULSION', '''Battery for the propulsion system''')
MAV_BATTERY_FUNCTION_AVIONICS = 3 # Avionics battery
enums['MAV_BATTERY_FUNCTION'][3] = EnumEntry('MAV_BATTERY_FUNCTION_AVIONICS', '''Avionics battery''')
MAV_BATTERY_TYPE_PAYLOAD = 4 # Payload battery
enums['MAV_BATTERY_FUNCTION'][4] = EnumEntry('MAV_BATTERY_TYPE_PAYLOAD', '''Payload battery''')
MAV_BATTERY_FUNCTION_ENUM_END = 5 #
enums['MAV_BATTERY_FUNCTION'][5] = EnumEntry('MAV_BATTERY_FUNCTION_ENUM_END', '''''')
# MAV_BATTERY_CHARGE_STATE
enums['MAV_BATTERY_CHARGE_STATE'] = {}
MAV_BATTERY_CHARGE_STATE_UNDEFINED = 0 # Low battery state is not provided
enums['MAV_BATTERY_CHARGE_STATE'][0] = EnumEntry('MAV_BATTERY_CHARGE_STATE_UNDEFINED', '''Low battery state is not provided''')
MAV_BATTERY_CHARGE_STATE_OK = 1 # Battery is not in low state. Normal operation.
enums['MAV_BATTERY_CHARGE_STATE'][1] = EnumEntry('MAV_BATTERY_CHARGE_STATE_OK', '''Battery is not in low state. Normal operation.''')
MAV_BATTERY_CHARGE_STATE_LOW = 2 # Battery state is low, warn and monitor close.
enums['MAV_BATTERY_CHARGE_STATE'][2] = EnumEntry('MAV_BATTERY_CHARGE_STATE_LOW', '''Battery state is low, warn and monitor close.''')
MAV_BATTERY_CHARGE_STATE_CRITICAL = 3 # Battery state is critical, return or abort immediately.
enums['MAV_BATTERY_CHARGE_STATE'][3] = EnumEntry('MAV_BATTERY_CHARGE_STATE_CRITICAL', '''Battery state is critical, return or abort immediately.''')
MAV_BATTERY_CHARGE_STATE_EMERGENCY = 4 # Battery state is too low for ordinary abort sequence. Perform fastest
# possible emergency stop to prevent damage.
enums['MAV_BATTERY_CHARGE_STATE'][4] = EnumEntry('MAV_BATTERY_CHARGE_STATE_EMERGENCY', '''Battery state is too low for ordinary abort sequence. Perform fastest possible emergency stop to prevent damage.''')
MAV_BATTERY_CHARGE_STATE_FAILED = 5 # Battery failed, damage unavoidable.
enums['MAV_BATTERY_CHARGE_STATE'][5] = EnumEntry('MAV_BATTERY_CHARGE_STATE_FAILED', '''Battery failed, damage unavoidable.''')
MAV_BATTERY_CHARGE_STATE_UNHEALTHY = 6 # Battery is diagnosed to be defective or an error occurred, usage is
# discouraged / prohibited.
enums['MAV_BATTERY_CHARGE_STATE'][6] = EnumEntry('MAV_BATTERY_CHARGE_STATE_UNHEALTHY', '''Battery is diagnosed to be defective or an error occurred, usage is discouraged / prohibited.''')
MAV_BATTERY_CHARGE_STATE_ENUM_END = 7 #
enums['MAV_BATTERY_CHARGE_STATE'][7] = EnumEntry('MAV_BATTERY_CHARGE_STATE_ENUM_END', '''''')
# MAV_VTOL_STATE
enums['MAV_VTOL_STATE'] = {}
MAV_VTOL_STATE_UNDEFINED = 0 # MAV is not configured as VTOL
enums['MAV_VTOL_STATE'][0] = EnumEntry('MAV_VTOL_STATE_UNDEFINED', '''MAV is not configured as VTOL''')
MAV_VTOL_STATE_TRANSITION_TO_FW = 1 # VTOL is in transition from multicopter to fixed-wing
enums['MAV_VTOL_STATE'][1] = EnumEntry('MAV_VTOL_STATE_TRANSITION_TO_FW', '''VTOL is in transition from multicopter to fixed-wing''')
MAV_VTOL_STATE_TRANSITION_TO_MC = 2 # VTOL is in transition from fixed-wing to multicopter
enums['MAV_VTOL_STATE'][2] = EnumEntry('MAV_VTOL_STATE_TRANSITION_TO_MC', '''VTOL is in transition from fixed-wing to multicopter''')
MAV_VTOL_STATE_MC = 3 # VTOL is in multicopter state
enums['MAV_VTOL_STATE'][3] = EnumEntry('MAV_VTOL_STATE_MC', '''VTOL is in multicopter state''')
MAV_VTOL_STATE_FW = 4 # VTOL is in fixed-wing state
enums['MAV_VTOL_STATE'][4] = EnumEntry('MAV_VTOL_STATE_FW', '''VTOL is in fixed-wing state''')
MAV_VTOL_STATE_ENUM_END = 5 #
enums['MAV_VTOL_STATE'][5] = EnumEntry('MAV_VTOL_STATE_ENUM_END', '''''')
# MAV_LANDED_STATE
enums['MAV_LANDED_STATE'] = {}
MAV_LANDED_STATE_UNDEFINED = 0 # MAV landed state is unknown
enums['MAV_LANDED_STATE'][0] = EnumEntry('MAV_LANDED_STATE_UNDEFINED', '''MAV landed state is unknown''')
MAV_LANDED_STATE_ON_GROUND = 1 # MAV is landed (on ground)
enums['MAV_LANDED_STATE'][1] = EnumEntry('MAV_LANDED_STATE_ON_GROUND', '''MAV is landed (on ground)''')
MAV_LANDED_STATE_IN_AIR = 2 # MAV is in air
enums['MAV_LANDED_STATE'][2] = EnumEntry('MAV_LANDED_STATE_IN_AIR', '''MAV is in air''')
MAV_LANDED_STATE_TAKEOFF = 3 # MAV currently taking off
enums['MAV_LANDED_STATE'][3] = EnumEntry('MAV_LANDED_STATE_TAKEOFF', '''MAV currently taking off''')
MAV_LANDED_STATE_LANDING = 4 # MAV currently landing
enums['MAV_LANDED_STATE'][4] = EnumEntry('MAV_LANDED_STATE_LANDING', '''MAV currently landing''')
MAV_LANDED_STATE_ENUM_END = 5 #
enums['MAV_LANDED_STATE'][5] = EnumEntry('MAV_LANDED_STATE_ENUM_END', '''''')
# ADSB_ALTITUDE_TYPE
enums['ADSB_ALTITUDE_TYPE'] = {}
ADSB_ALTITUDE_TYPE_PRESSURE_QNH = 0 # Altitude reported from a Baro source using QNH reference
enums['ADSB_ALTITUDE_TYPE'][0] = EnumEntry('ADSB_ALTITUDE_TYPE_PRESSURE_QNH', '''Altitude reported from a Baro source using QNH reference''')
ADSB_ALTITUDE_TYPE_GEOMETRIC = 1 # Altitude reported from a GNSS source
enums['ADSB_ALTITUDE_TYPE'][1] = EnumEntry('ADSB_ALTITUDE_TYPE_GEOMETRIC', '''Altitude reported from a GNSS source''')
ADSB_ALTITUDE_TYPE_ENUM_END = 2 #
enums['ADSB_ALTITUDE_TYPE'][2] = EnumEntry('ADSB_ALTITUDE_TYPE_ENUM_END', '''''')
# ADSB_EMITTER_TYPE
enums['ADSB_EMITTER_TYPE'] = {}
ADSB_EMITTER_TYPE_NO_INFO = 0 #
enums['ADSB_EMITTER_TYPE'][0] = EnumEntry('ADSB_EMITTER_TYPE_NO_INFO', '''''')
ADSB_EMITTER_TYPE_LIGHT = 1 #
enums['ADSB_EMITTER_TYPE'][1] = EnumEntry('ADSB_EMITTER_TYPE_LIGHT', '''''')
ADSB_EMITTER_TYPE_SMALL = 2 #
enums['ADSB_EMITTER_TYPE'][2] = EnumEntry('ADSB_EMITTER_TYPE_SMALL', '''''')
ADSB_EMITTER_TYPE_LARGE = 3 #
enums['ADSB_EMITTER_TYPE'][3] = EnumEntry('ADSB_EMITTER_TYPE_LARGE', '''''')
ADSB_EMITTER_TYPE_HIGH_VORTEX_LARGE = 4 #
enums['ADSB_EMITTER_TYPE'][4] = EnumEntry('ADSB_EMITTER_TYPE_HIGH_VORTEX_LARGE', '''''')
ADSB_EMITTER_TYPE_HEAVY = 5 #
enums['ADSB_EMITTER_TYPE'][5] = EnumEntry('ADSB_EMITTER_TYPE_HEAVY', '''''')
ADSB_EMITTER_TYPE_HIGHLY_MANUV = 6 #
enums['ADSB_EMITTER_TYPE'][6] = EnumEntry('ADSB_EMITTER_TYPE_HIGHLY_MANUV', '''''')
ADSB_EMITTER_TYPE_ROTOCRAFT = 7 #
enums['ADSB_EMITTER_TYPE'][7] = EnumEntry('ADSB_EMITTER_TYPE_ROTOCRAFT', '''''')
ADSB_EMITTER_TYPE_UNASSIGNED = 8 #
enums['ADSB_EMITTER_TYPE'][8] = EnumEntry('ADSB_EMITTER_TYPE_UNASSIGNED', '''''')
ADSB_EMITTER_TYPE_GLIDER = 9 #
enums['ADSB_EMITTER_TYPE'][9] = EnumEntry('ADSB_EMITTER_TYPE_GLIDER', '''''')
ADSB_EMITTER_TYPE_LIGHTER_AIR = 10 #
enums['ADSB_EMITTER_TYPE'][10] = EnumEntry('ADSB_EMITTER_TYPE_LIGHTER_AIR', '''''')
ADSB_EMITTER_TYPE_PARACHUTE = 11 #
enums['ADSB_EMITTER_TYPE'][11] = EnumEntry('ADSB_EMITTER_TYPE_PARACHUTE', '''''')
ADSB_EMITTER_TYPE_ULTRA_LIGHT = 12 #
enums['ADSB_EMITTER_TYPE'][12] = EnumEntry('ADSB_EMITTER_TYPE_ULTRA_LIGHT', '''''')
ADSB_EMITTER_TYPE_UNASSIGNED2 = 13 #
enums['ADSB_EMITTER_TYPE'][13] = EnumEntry('ADSB_EMITTER_TYPE_UNASSIGNED2', '''''')
ADSB_EMITTER_TYPE_UAV = 14 #
enums['ADSB_EMITTER_TYPE'][14] = EnumEntry('ADSB_EMITTER_TYPE_UAV', '''''')
ADSB_EMITTER_TYPE_SPACE = 15 #
enums['ADSB_EMITTER_TYPE'][15] = EnumEntry('ADSB_EMITTER_TYPE_SPACE', '''''')
ADSB_EMITTER_TYPE_UNASSGINED3 = 16 #
enums['ADSB_EMITTER_TYPE'][16] = EnumEntry('ADSB_EMITTER_TYPE_UNASSGINED3', '''''')
ADSB_EMITTER_TYPE_EMERGENCY_SURFACE = 17 #
enums['ADSB_EMITTER_TYPE'][17] = EnumEntry('ADSB_EMITTER_TYPE_EMERGENCY_SURFACE', '''''')
ADSB_EMITTER_TYPE_SERVICE_SURFACE = 18 #
enums['ADSB_EMITTER_TYPE'][18] = EnumEntry('ADSB_EMITTER_TYPE_SERVICE_SURFACE', '''''')
ADSB_EMITTER_TYPE_POINT_OBSTACLE = 19 #
enums['ADSB_EMITTER_TYPE'][19] = EnumEntry('ADSB_EMITTER_TYPE_POINT_OBSTACLE', '''''')
ADSB_EMITTER_TYPE_ENUM_END = 20 #
enums['ADSB_EMITTER_TYPE'][20] = EnumEntry('ADSB_EMITTER_TYPE_ENUM_END', '''''')
# ADSB_FLAGS
enums['ADSB_FLAGS'] = {}
ADSB_FLAGS_VALID_COORDS = 1 #
enums['ADSB_FLAGS'][1] = EnumEntry('ADSB_FLAGS_VALID_COORDS', '''''')
ADSB_FLAGS_VALID_ALTITUDE = 2 #
enums['ADSB_FLAGS'][2] = EnumEntry('ADSB_FLAGS_VALID_ALTITUDE', '''''')
ADSB_FLAGS_VALID_HEADING = 4 #
enums['ADSB_FLAGS'][4] = EnumEntry('ADSB_FLAGS_VALID_HEADING', '''''')
ADSB_FLAGS_VALID_VELOCITY = 8 #
enums['ADSB_FLAGS'][8] = EnumEntry('ADSB_FLAGS_VALID_VELOCITY', '''''')
ADSB_FLAGS_VALID_CALLSIGN = 16 #
enums['ADSB_FLAGS'][16] = EnumEntry('ADSB_FLAGS_VALID_CALLSIGN', '''''')
ADSB_FLAGS_VALID_SQUAWK = 32 #
enums['ADSB_FLAGS'][32] = EnumEntry('ADSB_FLAGS_VALID_SQUAWK', '''''')
ADSB_FLAGS_SIMULATED = 64 #
enums['ADSB_FLAGS'][64] = EnumEntry('ADSB_FLAGS_SIMULATED', '''''')
ADSB_FLAGS_ENUM_END = 65 #
enums['ADSB_FLAGS'][65] = EnumEntry('ADSB_FLAGS_ENUM_END', '''''')
# MAV_DO_REPOSITION_FLAGS
enums['MAV_DO_REPOSITION_FLAGS'] = {}
MAV_DO_REPOSITION_FLAGS_CHANGE_MODE = 1 # The aircraft should immediately transition into guided. This should
# not be set for follow me applications
enums['MAV_DO_REPOSITION_FLAGS'][1] = EnumEntry('MAV_DO_REPOSITION_FLAGS_CHANGE_MODE', '''The aircraft should immediately transition into guided. This should not be set for follow me applications''')
MAV_DO_REPOSITION_FLAGS_ENUM_END = 2 #
enums['MAV_DO_REPOSITION_FLAGS'][2] = EnumEntry('MAV_DO_REPOSITION_FLAGS_ENUM_END', '''''')
# ESTIMATOR_STATUS_FLAGS
enums['ESTIMATOR_STATUS_FLAGS'] = {}
ESTIMATOR_ATTITUDE = 1 # True if the attitude estimate is good
enums['ESTIMATOR_STATUS_FLAGS'][1] = EnumEntry('ESTIMATOR_ATTITUDE', '''True if the attitude estimate is good''')
ESTIMATOR_VELOCITY_HORIZ = 2 # True if the horizontal velocity estimate is good
enums['ESTIMATOR_STATUS_FLAGS'][2] = EnumEntry('ESTIMATOR_VELOCITY_HORIZ', '''True if the horizontal velocity estimate is good''')
ESTIMATOR_VELOCITY_VERT = 4 # True if the vertical velocity estimate is good
enums['ESTIMATOR_STATUS_FLAGS'][4] = EnumEntry('ESTIMATOR_VELOCITY_VERT', '''True if the vertical velocity estimate is good''')
ESTIMATOR_POS_HORIZ_REL = 8 # True if the horizontal position (relative) estimate is good
enums['ESTIMATOR_STATUS_FLAGS'][8] = EnumEntry('ESTIMATOR_POS_HORIZ_REL', '''True if the horizontal position (relative) estimate is good''')
ESTIMATOR_POS_HORIZ_ABS = 16 # True if the horizontal position (absolute) estimate is good
enums['ESTIMATOR_STATUS_FLAGS'][16] = EnumEntry('ESTIMATOR_POS_HORIZ_ABS', '''True if the horizontal position (absolute) estimate is good''')
ESTIMATOR_POS_VERT_ABS = 32 # True if the vertical position (absolute) estimate is good
enums['ESTIMATOR_STATUS_FLAGS'][32] = EnumEntry('ESTIMATOR_POS_VERT_ABS', '''True if the vertical position (absolute) estimate is good''')
ESTIMATOR_POS_VERT_AGL = 64 # True if the vertical position (above ground) estimate is good
enums['ESTIMATOR_STATUS_FLAGS'][64] = EnumEntry('ESTIMATOR_POS_VERT_AGL', '''True if the vertical position (above ground) estimate is good''')
ESTIMATOR_CONST_POS_MODE = 128 # True if the EKF is in a constant position mode and is not using
# external measurements (eg GPS or optical
# flow)
enums['ESTIMATOR_STATUS_FLAGS'][128] = EnumEntry('ESTIMATOR_CONST_POS_MODE', '''True if the EKF is in a constant position mode and is not using external measurements (eg GPS or optical flow)''')
ESTIMATOR_PRED_POS_HORIZ_REL = 256 # True if the EKF has sufficient data to enter a mode that will provide
# a (relative) position estimate
enums['ESTIMATOR_STATUS_FLAGS'][256] = EnumEntry('ESTIMATOR_PRED_POS_HORIZ_REL', '''True if the EKF has sufficient data to enter a mode that will provide a (relative) position estimate''')
ESTIMATOR_PRED_POS_HORIZ_ABS = 512 # True if the EKF has sufficient data to enter a mode that will provide
# a (absolute) position estimate
enums['ESTIMATOR_STATUS_FLAGS'][512] = EnumEntry('ESTIMATOR_PRED_POS_HORIZ_ABS', '''True if the EKF has sufficient data to enter a mode that will provide a (absolute) position estimate''')
ESTIMATOR_GPS_GLITCH = 1024 # True if the EKF has detected a GPS glitch
enums['ESTIMATOR_STATUS_FLAGS'][1024] = EnumEntry('ESTIMATOR_GPS_GLITCH', '''True if the EKF has detected a GPS glitch''')
ESTIMATOR_ACCEL_ERROR = 2048 # True if the EKF has detected bad accelerometer data
enums['ESTIMATOR_STATUS_FLAGS'][2048] = EnumEntry('ESTIMATOR_ACCEL_ERROR', '''True if the EKF has detected bad accelerometer data''')
ESTIMATOR_STATUS_FLAGS_ENUM_END = 2049 #
enums['ESTIMATOR_STATUS_FLAGS'][2049] = EnumEntry('ESTIMATOR_STATUS_FLAGS_ENUM_END', '''''')
# MOTOR_TEST_ORDER
enums['MOTOR_TEST_ORDER'] = {}
MOTOR_TEST_ORDER_DEFAULT = 0 # default autopilot motor test method
enums['MOTOR_TEST_ORDER'][0] = EnumEntry('MOTOR_TEST_ORDER_DEFAULT', '''default autopilot motor test method''')
MOTOR_TEST_ORDER_SEQUENCE = 1 # motor numbers are specified as their index in a predefined vehicle-
# specific sequence
enums['MOTOR_TEST_ORDER'][1] = EnumEntry('MOTOR_TEST_ORDER_SEQUENCE', '''motor numbers are specified as their index in a predefined vehicle-specific sequence''')
MOTOR_TEST_ORDER_BOARD = 2 # motor numbers are specified as the output as labeled on the board
enums['MOTOR_TEST_ORDER'][2] = EnumEntry('MOTOR_TEST_ORDER_BOARD', '''motor numbers are specified as the output as labeled on the board''')
MOTOR_TEST_ORDER_ENUM_END = 3 #
enums['MOTOR_TEST_ORDER'][3] = EnumEntry('MOTOR_TEST_ORDER_ENUM_END', '''''')
# MOTOR_TEST_THROTTLE_TYPE
enums['MOTOR_TEST_THROTTLE_TYPE'] = {}
MOTOR_TEST_THROTTLE_PERCENT = 0 # throttle as a percentage from 0 ~ 100
enums['MOTOR_TEST_THROTTLE_TYPE'][0] = EnumEntry('MOTOR_TEST_THROTTLE_PERCENT', '''throttle as a percentage from 0 ~ 100''')
MOTOR_TEST_THROTTLE_PWM = 1 # throttle as an absolute PWM value (normally in range of 1000~2000)
enums['MOTOR_TEST_THROTTLE_TYPE'][1] = EnumEntry('MOTOR_TEST_THROTTLE_PWM', '''throttle as an absolute PWM value (normally in range of 1000~2000)''')
MOTOR_TEST_THROTTLE_PILOT = 2 # throttle pass-through from pilot's transmitter
enums['MOTOR_TEST_THROTTLE_TYPE'][2] = EnumEntry('MOTOR_TEST_THROTTLE_PILOT', '''throttle pass-through from pilot's transmitter''')
MOTOR_TEST_COMPASS_CAL = 3 # per-motor compass calibration test
enums['MOTOR_TEST_THROTTLE_TYPE'][3] = EnumEntry('MOTOR_TEST_COMPASS_CAL', '''per-motor compass calibration test''')
MOTOR_TEST_THROTTLE_TYPE_ENUM_END = 4 #
enums['MOTOR_TEST_THROTTLE_TYPE'][4] = EnumEntry('MOTOR_TEST_THROTTLE_TYPE_ENUM_END', '''''')
# GPS_INPUT_IGNORE_FLAGS
enums['GPS_INPUT_IGNORE_FLAGS'] = {}
GPS_INPUT_IGNORE_FLAG_ALT = 1 # ignore altitude field
enums['GPS_INPUT_IGNORE_FLAGS'][1] = EnumEntry('GPS_INPUT_IGNORE_FLAG_ALT', '''ignore altitude field''')
GPS_INPUT_IGNORE_FLAG_HDOP = 2 # ignore hdop field
enums['GPS_INPUT_IGNORE_FLAGS'][2] = EnumEntry('GPS_INPUT_IGNORE_FLAG_HDOP', '''ignore hdop field''')
GPS_INPUT_IGNORE_FLAG_VDOP = 4 # ignore vdop field
enums['GPS_INPUT_IGNORE_FLAGS'][4] = EnumEntry('GPS_INPUT_IGNORE_FLAG_VDOP', '''ignore vdop field''')
GPS_INPUT_IGNORE_FLAG_VEL_HORIZ = 8 # ignore horizontal velocity field (vn and ve)
enums['GPS_INPUT_IGNORE_FLAGS'][8] = EnumEntry('GPS_INPUT_IGNORE_FLAG_VEL_HORIZ', '''ignore horizontal velocity field (vn and ve)''')
GPS_INPUT_IGNORE_FLAG_VEL_VERT = 16 # ignore vertical velocity field (vd)
enums['GPS_INPUT_IGNORE_FLAGS'][16] = EnumEntry('GPS_INPUT_IGNORE_FLAG_VEL_VERT', '''ignore vertical velocity field (vd)''')
GPS_INPUT_IGNORE_FLAG_SPEED_ACCURACY = 32 # ignore speed accuracy field
enums['GPS_INPUT_IGNORE_FLAGS'][32] = EnumEntry('GPS_INPUT_IGNORE_FLAG_SPEED_ACCURACY', '''ignore speed accuracy field''')
GPS_INPUT_IGNORE_FLAG_HORIZONTAL_ACCURACY = 64 # ignore horizontal accuracy field
enums['GPS_INPUT_IGNORE_FLAGS'][64] = EnumEntry('GPS_INPUT_IGNORE_FLAG_HORIZONTAL_ACCURACY', '''ignore horizontal accuracy field''')
GPS_INPUT_IGNORE_FLAG_VERTICAL_ACCURACY = 128 # ignore vertical accuracy field
enums['GPS_INPUT_IGNORE_FLAGS'][128] = EnumEntry('GPS_INPUT_IGNORE_FLAG_VERTICAL_ACCURACY', '''ignore vertical accuracy field''')
GPS_INPUT_IGNORE_FLAGS_ENUM_END = 129 #
enums['GPS_INPUT_IGNORE_FLAGS'][129] = EnumEntry('GPS_INPUT_IGNORE_FLAGS_ENUM_END', '''''')
# MAV_COLLISION_ACTION
enums['MAV_COLLISION_ACTION'] = {}
MAV_COLLISION_ACTION_NONE = 0 # Ignore any potential collisions
enums['MAV_COLLISION_ACTION'][0] = EnumEntry('MAV_COLLISION_ACTION_NONE', '''Ignore any potential collisions''')
MAV_COLLISION_ACTION_REPORT = 1 # Report potential collision
enums['MAV_COLLISION_ACTION'][1] = EnumEntry('MAV_COLLISION_ACTION_REPORT', '''Report potential collision''')
MAV_COLLISION_ACTION_ASCEND_OR_DESCEND = 2 # Ascend or Descend to avoid threat
enums['MAV_COLLISION_ACTION'][2] = EnumEntry('MAV_COLLISION_ACTION_ASCEND_OR_DESCEND', '''Ascend or Descend to avoid threat''')
MAV_COLLISION_ACTION_MOVE_HORIZONTALLY = 3 # Move horizontally to avoid threat
enums['MAV_COLLISION_ACTION'][3] = EnumEntry('MAV_COLLISION_ACTION_MOVE_HORIZONTALLY', '''Move horizontally to avoid threat''')
MAV_COLLISION_ACTION_MOVE_PERPENDICULAR = 4 # Aircraft to move perpendicular to the collision's velocity vector
enums['MAV_COLLISION_ACTION'][4] = EnumEntry('MAV_COLLISION_ACTION_MOVE_PERPENDICULAR', '''Aircraft to move perpendicular to the collision's velocity vector''')
MAV_COLLISION_ACTION_RTL = 5 # Aircraft to fly directly back to its launch point
enums['MAV_COLLISION_ACTION'][5] = EnumEntry('MAV_COLLISION_ACTION_RTL', '''Aircraft to fly directly back to its launch point''')
MAV_COLLISION_ACTION_HOVER = 6 # Aircraft to stop in place
enums['MAV_COLLISION_ACTION'][6] = EnumEntry('MAV_COLLISION_ACTION_HOVER', '''Aircraft to stop in place''')
MAV_COLLISION_ACTION_ENUM_END = 7 #
enums['MAV_COLLISION_ACTION'][7] = EnumEntry('MAV_COLLISION_ACTION_ENUM_END', '''''')
# MAV_COLLISION_THREAT_LEVEL
enums['MAV_COLLISION_THREAT_LEVEL'] = {}
MAV_COLLISION_THREAT_LEVEL_NONE = 0 # Not a threat
enums['MAV_COLLISION_THREAT_LEVEL'][0] = EnumEntry('MAV_COLLISION_THREAT_LEVEL_NONE', '''Not a threat''')
MAV_COLLISION_THREAT_LEVEL_LOW = 1 # Craft is mildly concerned about this threat
enums['MAV_COLLISION_THREAT_LEVEL'][1] = EnumEntry('MAV_COLLISION_THREAT_LEVEL_LOW', '''Craft is mildly concerned about this threat''')
MAV_COLLISION_THREAT_LEVEL_HIGH = 2 # Craft is panicing, and may take actions to avoid threat
enums['MAV_COLLISION_THREAT_LEVEL'][2] = EnumEntry('MAV_COLLISION_THREAT_LEVEL_HIGH', '''Craft is panicing, and may take actions to avoid threat''')
MAV_COLLISION_THREAT_LEVEL_ENUM_END = 3 #
enums['MAV_COLLISION_THREAT_LEVEL'][3] = EnumEntry('MAV_COLLISION_THREAT_LEVEL_ENUM_END', '''''')
# MAV_COLLISION_SRC
enums['MAV_COLLISION_SRC'] = {}
MAV_COLLISION_SRC_ADSB = 0 # ID field references ADSB_VEHICLE packets
enums['MAV_COLLISION_SRC'][0] = EnumEntry('MAV_COLLISION_SRC_ADSB', '''ID field references ADSB_VEHICLE packets''')
MAV_COLLISION_SRC_MAVLINK_GPS_GLOBAL_INT = 1 # ID field references MAVLink SRC ID
enums['MAV_COLLISION_SRC'][1] = EnumEntry('MAV_COLLISION_SRC_MAVLINK_GPS_GLOBAL_INT', '''ID field references MAVLink SRC ID''')
MAV_COLLISION_SRC_ENUM_END = 2 #
enums['MAV_COLLISION_SRC'][2] = EnumEntry('MAV_COLLISION_SRC_ENUM_END', '''''')
# GPS_FIX_TYPE
enums['GPS_FIX_TYPE'] = {}
GPS_FIX_TYPE_NO_GPS = 0 # No GPS connected
enums['GPS_FIX_TYPE'][0] = EnumEntry('GPS_FIX_TYPE_NO_GPS', '''No GPS connected''')
GPS_FIX_TYPE_NO_FIX = 1 # No position information, GPS is connected
enums['GPS_FIX_TYPE'][1] = EnumEntry('GPS_FIX_TYPE_NO_FIX', '''No position information, GPS is connected''')
GPS_FIX_TYPE_2D_FIX = 2 # 2D position
enums['GPS_FIX_TYPE'][2] = EnumEntry('GPS_FIX_TYPE_2D_FIX', '''2D position''')
GPS_FIX_TYPE_3D_FIX = 3 # 3D position
enums['GPS_FIX_TYPE'][3] = EnumEntry('GPS_FIX_TYPE_3D_FIX', '''3D position''')
GPS_FIX_TYPE_DGPS = 4 # DGPS/SBAS aided 3D position
enums['GPS_FIX_TYPE'][4] = EnumEntry('GPS_FIX_TYPE_DGPS', '''DGPS/SBAS aided 3D position''')
GPS_FIX_TYPE_RTK_FLOAT = 5 # RTK float, 3D position
enums['GPS_FIX_TYPE'][5] = EnumEntry('GPS_FIX_TYPE_RTK_FLOAT', '''RTK float, 3D position''')
GPS_FIX_TYPE_RTK_FIXED = 6 # RTK Fixed, 3D position
enums['GPS_FIX_TYPE'][6] = EnumEntry('GPS_FIX_TYPE_RTK_FIXED', '''RTK Fixed, 3D position''')
GPS_FIX_TYPE_STATIC = 7 # Static fixed, typically used for base stations
enums['GPS_FIX_TYPE'][7] = EnumEntry('GPS_FIX_TYPE_STATIC', '''Static fixed, typically used for base stations''')
GPS_FIX_TYPE_PPP = 8 # PPP, 3D position.
enums['GPS_FIX_TYPE'][8] = EnumEntry('GPS_FIX_TYPE_PPP', '''PPP, 3D position.''')
GPS_FIX_TYPE_ENUM_END = 9 #
enums['GPS_FIX_TYPE'][9] = EnumEntry('GPS_FIX_TYPE_ENUM_END', '''''')
# RTK_BASELINE_COORDINATE_SYSTEM
enums['RTK_BASELINE_COORDINATE_SYSTEM'] = {}
RTK_BASELINE_COORDINATE_SYSTEM_ECEF = 0 # Earth-centered, Earth-fixed
enums['RTK_BASELINE_COORDINATE_SYSTEM'][0] = EnumEntry('RTK_BASELINE_COORDINATE_SYSTEM_ECEF', '''Earth-centered, Earth-fixed''')
RTK_BASELINE_COORDINATE_SYSTEM_NED = 1 # North, East, Down
enums['RTK_BASELINE_COORDINATE_SYSTEM'][1] = EnumEntry('RTK_BASELINE_COORDINATE_SYSTEM_NED', '''North, East, Down''')
RTK_BASELINE_COORDINATE_SYSTEM_ENUM_END = 2 #
enums['RTK_BASELINE_COORDINATE_SYSTEM'][2] = EnumEntry('RTK_BASELINE_COORDINATE_SYSTEM_ENUM_END', '''''')
# LANDING_TARGET_TYPE
enums['LANDING_TARGET_TYPE'] = {}
LANDING_TARGET_TYPE_LIGHT_BEACON = 0 # Landing target signaled by light beacon (ex: IR-LOCK)
enums['LANDING_TARGET_TYPE'][0] = EnumEntry('LANDING_TARGET_TYPE_LIGHT_BEACON', '''Landing target signaled by light beacon (ex: IR-LOCK)''')
LANDING_TARGET_TYPE_RADIO_BEACON = 1 # Landing target signaled by radio beacon (ex: ILS, NDB)
enums['LANDING_TARGET_TYPE'][1] = EnumEntry('LANDING_TARGET_TYPE_RADIO_BEACON', '''Landing target signaled by radio beacon (ex: ILS, NDB)''')
LANDING_TARGET_TYPE_VISION_FIDUCIAL = 2 # Landing target represented by a fiducial marker (ex: ARTag)
enums['LANDING_TARGET_TYPE'][2] = EnumEntry('LANDING_TARGET_TYPE_VISION_FIDUCIAL', '''Landing target represented by a fiducial marker (ex: ARTag)''')
LANDING_TARGET_TYPE_VISION_OTHER = 3 # Landing target represented by a pre-defined visual shape/feature (ex:
# X-marker, H-marker, square)
enums['LANDING_TARGET_TYPE'][3] = EnumEntry('LANDING_TARGET_TYPE_VISION_OTHER', '''Landing target represented by a pre-defined visual shape/feature (ex: X-marker, H-marker, square)''')
LANDING_TARGET_TYPE_ENUM_END = 4 #
enums['LANDING_TARGET_TYPE'][4] = EnumEntry('LANDING_TARGET_TYPE_ENUM_END', '''''')
# VTOL_TRANSITION_HEADING
enums['VTOL_TRANSITION_HEADING'] = {}
VTOL_TRANSITION_HEADING_VEHICLE_DEFAULT = 0 # Respect the heading configuration of the vehicle.
enums['VTOL_TRANSITION_HEADING'][0] = EnumEntry('VTOL_TRANSITION_HEADING_VEHICLE_DEFAULT', '''Respect the heading configuration of the vehicle.''')
VTOL_TRANSITION_HEADING_NEXT_WAYPOINT = 1 # Use the heading pointing towards the next waypoint.
enums['VTOL_TRANSITION_HEADING'][1] = EnumEntry('VTOL_TRANSITION_HEADING_NEXT_WAYPOINT', '''Use the heading pointing towards the next waypoint.''')
VTOL_TRANSITION_HEADING_TAKEOFF = 2 # Use the heading on takeoff (while sitting on the ground).
enums['VTOL_TRANSITION_HEADING'][2] = EnumEntry('VTOL_TRANSITION_HEADING_TAKEOFF', '''Use the heading on takeoff (while sitting on the ground).''')
VTOL_TRANSITION_HEADING_SPECIFIED = 3 # Use the specified heading in parameter 4.
enums['VTOL_TRANSITION_HEADING'][3] = EnumEntry('VTOL_TRANSITION_HEADING_SPECIFIED', '''Use the specified heading in parameter 4.''')
VTOL_TRANSITION_HEADING_ANY = 4 # Use the current heading when reaching takeoff altitude (potentially
# facing the wind when weather-vaning is
# active).
enums['VTOL_TRANSITION_HEADING'][4] = EnumEntry('VTOL_TRANSITION_HEADING_ANY', '''Use the current heading when reaching takeoff altitude (potentially facing the wind when weather-vaning is active).''')
VTOL_TRANSITION_HEADING_ENUM_END = 5 #
enums['VTOL_TRANSITION_HEADING'][5] = EnumEntry('VTOL_TRANSITION_HEADING_ENUM_END', '''''')
# CAMERA_CAP_FLAGS
enums['CAMERA_CAP_FLAGS'] = {}
CAMERA_CAP_FLAGS_CAPTURE_VIDEO = 1 # Camera is able to record video.
enums['CAMERA_CAP_FLAGS'][1] = EnumEntry('CAMERA_CAP_FLAGS_CAPTURE_VIDEO', '''Camera is able to record video.''')
CAMERA_CAP_FLAGS_CAPTURE_IMAGE = 2 # Camera is able to capture images.
enums['CAMERA_CAP_FLAGS'][2] = EnumEntry('CAMERA_CAP_FLAGS_CAPTURE_IMAGE', '''Camera is able to capture images.''')
CAMERA_CAP_FLAGS_HAS_MODES = 4 # Camera has separate Video and Image/Photo modes
# (MAV_CMD_SET_CAMERA_MODE)
enums['CAMERA_CAP_FLAGS'][4] = EnumEntry('CAMERA_CAP_FLAGS_HAS_MODES', '''Camera has separate Video and Image/Photo modes (MAV_CMD_SET_CAMERA_MODE)''')
CAMERA_CAP_FLAGS_CAN_CAPTURE_IMAGE_IN_VIDEO_MODE = 8 # Camera can capture images while in video mode
enums['CAMERA_CAP_FLAGS'][8] = EnumEntry('CAMERA_CAP_FLAGS_CAN_CAPTURE_IMAGE_IN_VIDEO_MODE', '''Camera can capture images while in video mode''')
CAMERA_CAP_FLAGS_CAN_CAPTURE_VIDEO_IN_IMAGE_MODE = 16 # Camera can capture videos while in Photo/Image mode
enums['CAMERA_CAP_FLAGS'][16] = EnumEntry('CAMERA_CAP_FLAGS_CAN_CAPTURE_VIDEO_IN_IMAGE_MODE', '''Camera can capture videos while in Photo/Image mode''')
CAMERA_CAP_FLAGS_HAS_IMAGE_SURVEY_MODE = 32 # Camera has image survey mode (MAV_CMD_SET_CAMERA_MODE)
enums['CAMERA_CAP_FLAGS'][32] = EnumEntry('CAMERA_CAP_FLAGS_HAS_IMAGE_SURVEY_MODE', '''Camera has image survey mode (MAV_CMD_SET_CAMERA_MODE)''')
CAMERA_CAP_FLAGS_ENUM_END = 33 #
enums['CAMERA_CAP_FLAGS'][33] = EnumEntry('CAMERA_CAP_FLAGS_ENUM_END', '''''')
# PARAM_ACK
enums['PARAM_ACK'] = {}
PARAM_ACK_ACCEPTED = 0 # Parameter value ACCEPTED and SET
enums['PARAM_ACK'][0] = EnumEntry('PARAM_ACK_ACCEPTED', '''Parameter value ACCEPTED and SET''')
PARAM_ACK_VALUE_UNSUPPORTED = 1 # Parameter value UNKNOWN/UNSUPPORTED
enums['PARAM_ACK'][1] = EnumEntry('PARAM_ACK_VALUE_UNSUPPORTED', '''Parameter value UNKNOWN/UNSUPPORTED''')
PARAM_ACK_FAILED = 2 # Parameter failed to set
enums['PARAM_ACK'][2] = EnumEntry('PARAM_ACK_FAILED', '''Parameter failed to set''')
PARAM_ACK_IN_PROGRESS = 3 # Parameter value received but not yet validated or set. A subsequent
# PARAM_EXT_ACK will follow once operation is
# completed with the actual result. These are
# for parameters that may take longer to set.
# Instead of waiting for an ACK and
# potentially timing out, you will immediately
# receive this response to let you know it was
# received.
enums['PARAM_ACK'][3] = EnumEntry('PARAM_ACK_IN_PROGRESS', '''Parameter value received but not yet validated or set. A subsequent PARAM_EXT_ACK will follow once operation is completed with the actual result. These are for parameters that may take longer to set. Instead of waiting for an ACK and potentially timing out, you will immediately receive this response to let you know it was received.''')
PARAM_ACK_ENUM_END = 4 #
enums['PARAM_ACK'][4] = EnumEntry('PARAM_ACK_ENUM_END', '''''')
# CAMERA_MODE
enums['CAMERA_MODE'] = {}
CAMERA_MODE_IMAGE = 0 # Camera is in image/photo capture mode.
enums['CAMERA_MODE'][0] = EnumEntry('CAMERA_MODE_IMAGE', '''Camera is in image/photo capture mode.''')
CAMERA_MODE_VIDEO = 1 # Camera is in video capture mode.
enums['CAMERA_MODE'][1] = EnumEntry('CAMERA_MODE_VIDEO', '''Camera is in video capture mode.''')
CAMERA_MODE_IMAGE_SURVEY = 2 # Camera is in image survey capture mode. It allows for camera
# controller to do specific settings for
# surveys.
enums['CAMERA_MODE'][2] = EnumEntry('CAMERA_MODE_IMAGE_SURVEY', '''Camera is in image survey capture mode. It allows for camera controller to do specific settings for surveys.''')
CAMERA_MODE_ENUM_END = 3 #
enums['CAMERA_MODE'][3] = EnumEntry('CAMERA_MODE_ENUM_END', '''''')
# MAV_ARM_AUTH_DENIED_REASON
enums['MAV_ARM_AUTH_DENIED_REASON'] = {}
MAV_ARM_AUTH_DENIED_REASON_GENERIC = 0 # Not a specific reason
enums['MAV_ARM_AUTH_DENIED_REASON'][0] = EnumEntry('MAV_ARM_AUTH_DENIED_REASON_GENERIC', '''Not a specific reason''')
MAV_ARM_AUTH_DENIED_REASON_NONE = 1 # Authorizer will send the error as string to GCS
enums['MAV_ARM_AUTH_DENIED_REASON'][1] = EnumEntry('MAV_ARM_AUTH_DENIED_REASON_NONE', '''Authorizer will send the error as string to GCS''')
MAV_ARM_AUTH_DENIED_REASON_INVALID_WAYPOINT = 2 # At least one waypoint have a invalid value
enums['MAV_ARM_AUTH_DENIED_REASON'][2] = EnumEntry('MAV_ARM_AUTH_DENIED_REASON_INVALID_WAYPOINT', '''At least one waypoint have a invalid value''')
MAV_ARM_AUTH_DENIED_REASON_TIMEOUT = 3 # Timeout in the authorizer process(in case it depends on network)
enums['MAV_ARM_AUTH_DENIED_REASON'][3] = EnumEntry('MAV_ARM_AUTH_DENIED_REASON_TIMEOUT', '''Timeout in the authorizer process(in case it depends on network)''')
MAV_ARM_AUTH_DENIED_REASON_AIRSPACE_IN_USE = 4 # Airspace of the mission in use by another vehicle, second result
# parameter can have the waypoint id that
# caused it to be denied.
enums['MAV_ARM_AUTH_DENIED_REASON'][4] = EnumEntry('MAV_ARM_AUTH_DENIED_REASON_AIRSPACE_IN_USE', '''Airspace of the mission in use by another vehicle, second result parameter can have the waypoint id that caused it to be denied.''')
MAV_ARM_AUTH_DENIED_REASON_BAD_WEATHER = 5 # Weather is not good to fly
enums['MAV_ARM_AUTH_DENIED_REASON'][5] = EnumEntry('MAV_ARM_AUTH_DENIED_REASON_BAD_WEATHER', '''Weather is not good to fly''')
MAV_ARM_AUTH_DENIED_REASON_ENUM_END = 6 #
enums['MAV_ARM_AUTH_DENIED_REASON'][6] = EnumEntry('MAV_ARM_AUTH_DENIED_REASON_ENUM_END', '''''')
# RC_TYPE
enums['RC_TYPE'] = {}
RC_TYPE_SPEKTRUM_DSM2 = 0 # Spektrum DSM2
enums['RC_TYPE'][0] = EnumEntry('RC_TYPE_SPEKTRUM_DSM2', '''Spektrum DSM2''')
RC_TYPE_SPEKTRUM_DSMX = 1 # Spektrum DSMX
enums['RC_TYPE'][1] = EnumEntry('RC_TYPE_SPEKTRUM_DSMX', '''Spektrum DSMX''')
RC_TYPE_ENUM_END = 2 #
enums['RC_TYPE'][2] = EnumEntry('RC_TYPE_ENUM_END', '''''')
# message IDs
MAVLINK_MSG_ID_BAD_DATA = -1
MAVLINK_MSG_ID_HEARTBEAT = 0
MAVLINK_MSG_ID_SYS_STATUS = 1
MAVLINK_MSG_ID_SYSTEM_TIME = 2
MAVLINK_MSG_ID_PING = 4
MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL = 5
MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL_ACK = 6
MAVLINK_MSG_ID_AUTH_KEY = 7
MAVLINK_MSG_ID_SET_MODE = 11
MAVLINK_MSG_ID_PARAM_REQUEST_READ = 20
MAVLINK_MSG_ID_PARAM_REQUEST_LIST = 21
MAVLINK_MSG_ID_PARAM_VALUE = 22
MAVLINK_MSG_ID_PARAM_SET = 23
MAVLINK_MSG_ID_GPS_RAW_INT = 24
MAVLINK_MSG_ID_GPS_STATUS = 25
MAVLINK_MSG_ID_SCALED_IMU = 26
MAVLINK_MSG_ID_RAW_IMU = 27
MAVLINK_MSG_ID_RAW_PRESSURE = 28
MAVLINK_MSG_ID_SCALED_PRESSURE = 29
MAVLINK_MSG_ID_ATTITUDE = 30
MAVLINK_MSG_ID_ATTITUDE_QUATERNION = 31
MAVLINK_MSG_ID_LOCAL_POSITION_NED = 32
MAVLINK_MSG_ID_GLOBAL_POSITION_INT = 33
MAVLINK_MSG_ID_RC_CHANNELS_SCALED = 34
MAVLINK_MSG_ID_RC_CHANNELS_RAW = 35
MAVLINK_MSG_ID_SERVO_OUTPUT_RAW = 36
MAVLINK_MSG_ID_MISSION_REQUEST_PARTIAL_LIST = 37
MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST = 38
MAVLINK_MSG_ID_MISSION_ITEM = 39
MAVLINK_MSG_ID_MISSION_REQUEST = 40
MAVLINK_MSG_ID_MISSION_SET_CURRENT = 41
MAVLINK_MSG_ID_MISSION_CURRENT = 42
MAVLINK_MSG_ID_MISSION_REQUEST_LIST = 43
MAVLINK_MSG_ID_MISSION_COUNT = 44
MAVLINK_MSG_ID_MISSION_CLEAR_ALL = 45
MAVLINK_MSG_ID_MISSION_ITEM_REACHED = 46
MAVLINK_MSG_ID_MISSION_ACK = 47
MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN = 48
MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN = 49
MAVLINK_MSG_ID_PARAM_MAP_RC = 50
MAVLINK_MSG_ID_MISSION_REQUEST_INT = 51
MAVLINK_MSG_ID_SAFETY_SET_ALLOWED_AREA = 54
MAVLINK_MSG_ID_SAFETY_ALLOWED_AREA = 55
MAVLINK_MSG_ID_ATTITUDE_QUATERNION_COV = 61
MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT = 62
MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV = 63
MAVLINK_MSG_ID_LOCAL_POSITION_NED_COV = 64
MAVLINK_MSG_ID_RC_CHANNELS = 65
MAVLINK_MSG_ID_REQUEST_DATA_STREAM = 66
MAVLINK_MSG_ID_DATA_STREAM = 67
MAVLINK_MSG_ID_MANUAL_CONTROL = 69
MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE = 70
MAVLINK_MSG_ID_MISSION_ITEM_INT = 73
MAVLINK_MSG_ID_VFR_HUD = 74
MAVLINK_MSG_ID_COMMAND_INT = 75
MAVLINK_MSG_ID_COMMAND_LONG = 76
MAVLINK_MSG_ID_COMMAND_ACK = 77
MAVLINK_MSG_ID_MANUAL_SETPOINT = 81
MAVLINK_MSG_ID_SET_ATTITUDE_TARGET = 82
MAVLINK_MSG_ID_ATTITUDE_TARGET = 83
MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED = 84
MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED = 85
MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT = 86
MAVLINK_MSG_ID_POSITION_TARGET_GLOBAL_INT = 87
MAVLINK_MSG_ID_LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET = 89
MAVLINK_MSG_ID_HIL_STATE = 90
MAVLINK_MSG_ID_HIL_CONTROLS = 91
MAVLINK_MSG_ID_HIL_RC_INPUTS_RAW = 92
MAVLINK_MSG_ID_HIL_ACTUATOR_CONTROLS = 93
MAVLINK_MSG_ID_OPTICAL_FLOW = 100
MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE = 101
MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE = 102
MAVLINK_MSG_ID_VISION_SPEED_ESTIMATE = 103
MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE = 104
MAVLINK_MSG_ID_HIGHRES_IMU = 105
MAVLINK_MSG_ID_OPTICAL_FLOW_RAD = 106
MAVLINK_MSG_ID_HIL_SENSOR = 107
MAVLINK_MSG_ID_SIM_STATE = 108
MAVLINK_MSG_ID_RADIO_STATUS = 109
MAVLINK_MSG_ID_FILE_TRANSFER_PROTOCOL = 110
MAVLINK_MSG_ID_TIMESYNC = 111
MAVLINK_MSG_ID_CAMERA_TRIGGER = 112
MAVLINK_MSG_ID_HIL_GPS = 113
MAVLINK_MSG_ID_HIL_OPTICAL_FLOW = 114
MAVLINK_MSG_ID_HIL_STATE_QUATERNION = 115
MAVLINK_MSG_ID_SCALED_IMU2 = 116
MAVLINK_MSG_ID_LOG_REQUEST_LIST = 117
MAVLINK_MSG_ID_LOG_ENTRY = 118
MAVLINK_MSG_ID_LOG_REQUEST_DATA = 119
MAVLINK_MSG_ID_LOG_DATA = 120
MAVLINK_MSG_ID_LOG_ERASE = 121
MAVLINK_MSG_ID_LOG_REQUEST_END = 122
MAVLINK_MSG_ID_GPS_INJECT_DATA = 123
MAVLINK_MSG_ID_GPS2_RAW = 124
MAVLINK_MSG_ID_POWER_STATUS = 125
MAVLINK_MSG_ID_SERIAL_CONTROL = 126
MAVLINK_MSG_ID_GPS_RTK = 127
MAVLINK_MSG_ID_GPS2_RTK = 128
MAVLINK_MSG_ID_SCALED_IMU3 = 129
MAVLINK_MSG_ID_DATA_TRANSMISSION_HANDSHAKE = 130
MAVLINK_MSG_ID_ENCAPSULATED_DATA = 131
MAVLINK_MSG_ID_DISTANCE_SENSOR = 132
MAVLINK_MSG_ID_TERRAIN_REQUEST = 133
MAVLINK_MSG_ID_TERRAIN_DATA = 134
MAVLINK_MSG_ID_TERRAIN_CHECK = 135
MAVLINK_MSG_ID_TERRAIN_REPORT = 136
MAVLINK_MSG_ID_SCALED_PRESSURE2 = 137
MAVLINK_MSG_ID_ATT_POS_MOCAP = 138
MAVLINK_MSG_ID_SET_ACTUATOR_CONTROL_TARGET = 139
MAVLINK_MSG_ID_ACTUATOR_CONTROL_TARGET = 140
MAVLINK_MSG_ID_ALTITUDE = 141
MAVLINK_MSG_ID_RESOURCE_REQUEST = 142
MAVLINK_MSG_ID_SCALED_PRESSURE3 = 143
MAVLINK_MSG_ID_FOLLOW_TARGET = 144
MAVLINK_MSG_ID_CONTROL_SYSTEM_STATE = 146
MAVLINK_MSG_ID_BATTERY_STATUS = 147
MAVLINK_MSG_ID_AUTOPILOT_VERSION = 148
MAVLINK_MSG_ID_LANDING_TARGET = 149
MAVLINK_MSG_ID_ESTIMATOR_STATUS = 230
MAVLINK_MSG_ID_WIND_COV = 231
MAVLINK_MSG_ID_GPS_INPUT = 232
MAVLINK_MSG_ID_GPS_RTCM_DATA = 233
MAVLINK_MSG_ID_HIGH_LATENCY = 234
MAVLINK_MSG_ID_HIGH_LATENCY2 = 235
MAVLINK_MSG_ID_VIBRATION = 241
MAVLINK_MSG_ID_HOME_POSITION = 242
MAVLINK_MSG_ID_SET_HOME_POSITION = 243
MAVLINK_MSG_ID_MESSAGE_INTERVAL = 244
MAVLINK_MSG_ID_EXTENDED_SYS_STATE = 245
MAVLINK_MSG_ID_ADSB_VEHICLE = 246
MAVLINK_MSG_ID_COLLISION = 247
MAVLINK_MSG_ID_V2_EXTENSION = 248
MAVLINK_MSG_ID_MEMORY_VECT = 249
MAVLINK_MSG_ID_DEBUG_VECT = 250
MAVLINK_MSG_ID_NAMED_VALUE_FLOAT = 251
MAVLINK_MSG_ID_NAMED_VALUE_INT = 252
MAVLINK_MSG_ID_STATUSTEXT = 253
MAVLINK_MSG_ID_DEBUG = 254
MAVLINK_MSG_ID_SETUP_SIGNING = 256
MAVLINK_MSG_ID_BUTTON_CHANGE = 257
MAVLINK_MSG_ID_PLAY_TUNE = 258
MAVLINK_MSG_ID_CAMERA_INFORMATION = 259
MAVLINK_MSG_ID_CAMERA_SETTINGS = 260
MAVLINK_MSG_ID_STORAGE_INFORMATION = 261
MAVLINK_MSG_ID_CAMERA_CAPTURE_STATUS = 262
MAVLINK_MSG_ID_CAMERA_IMAGE_CAPTURED = 263
MAVLINK_MSG_ID_FLIGHT_INFORMATION = 264
MAVLINK_MSG_ID_MOUNT_ORIENTATION = 265
MAVLINK_MSG_ID_LOGGING_DATA = 266
MAVLINK_MSG_ID_LOGGING_DATA_ACKED = 267
MAVLINK_MSG_ID_LOGGING_ACK = 268
MAVLINK_MSG_ID_VIDEO_STREAM_INFORMATION = 269
MAVLINK_MSG_ID_SET_VIDEO_STREAM_SETTINGS = 270
MAVLINK_MSG_ID_WIFI_CONFIG_AP = 299
MAVLINK_MSG_ID_PROTOCOL_VERSION = 300
MAVLINK_MSG_ID_UAVCAN_NODE_STATUS = 310
MAVLINK_MSG_ID_UAVCAN_NODE_INFO = 311
MAVLINK_MSG_ID_PARAM_EXT_REQUEST_READ = 320
MAVLINK_MSG_ID_PARAM_EXT_REQUEST_LIST = 321
MAVLINK_MSG_ID_PARAM_EXT_VALUE = 322
MAVLINK_MSG_ID_PARAM_EXT_SET = 323
MAVLINK_MSG_ID_PARAM_EXT_ACK = 324
MAVLINK_MSG_ID_OBSTACLE_DISTANCE = 330
MAVLINK_MSG_ID_ODOMETRY = 331
MAVLINK_MSG_ID_TRAJECTORY_REPRESENTATION_WAYPOINTS = 332
MAVLINK_MSG_ID_TRAJECTORY_REPRESENTATION_BEZIER = 333
class MAVLink_heartbeat_message(MAVLink_message):
'''
The heartbeat message shows that a system is present and
responding. The type of the MAV and Autopilot hardware allow
the receiving system to treat further messages from this
system appropriate (e.g. by laying out the user interface
based on the autopilot).
'''
id = MAVLINK_MSG_ID_HEARTBEAT
name = 'HEARTBEAT'
fieldnames = ['type', 'autopilot', 'base_mode', 'custom_mode', 'system_status', 'mavlink_version']
ordered_fieldnames = [ 'custom_mode', 'type', 'autopilot', 'base_mode', 'system_status', 'mavlink_version' ]
format = '<IBBBBB'
native_format = bytearray('<IBBBBB', 'ascii')
orders = [1, 2, 3, 0, 4, 5]
lengths = [1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0]
crc_extra = 50
def __init__(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version):
MAVLink_message.__init__(self, MAVLink_heartbeat_message.id, MAVLink_heartbeat_message.name)
self._fieldnames = MAVLink_heartbeat_message.fieldnames
self.type = type
self.autopilot = autopilot
self.base_mode = base_mode
self.custom_mode = custom_mode
self.system_status = system_status
self.mavlink_version = mavlink_version
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 50, struct.pack('<IBBBBB', self.custom_mode, self.type, self.autopilot, self.base_mode, self.system_status, self.mavlink_version), force_mavlink1=force_mavlink1)
class MAVLink_sys_status_message(MAVLink_message):
'''
The general system state. If the system is following the
MAVLink standard, the system state is mainly defined by three
orthogonal states/modes: The system mode, which is either
LOCKED (motors shut down and locked), MANUAL (system under RC
control), GUIDED (system with autonomous position control,
position setpoint controlled manually) or AUTO (system guided
by path/waypoint planner). The NAV_MODE defined the current
flight state: LIFTOFF (often an open-loop maneuver), LANDING,
WAYPOINTS or VECTOR. This represents the internal navigation
state machine. The system status shows whether the system is
currently active or not and if an emergency occurred. During
the CRITICAL and EMERGENCY states the MAV is still considered
to be active, but should start emergency procedures
autonomously. After a failure occurred it should first move
from active to critical to allow manual intervention and then
move to emergency after a certain timeout.
'''
id = MAVLINK_MSG_ID_SYS_STATUS
name = 'SYS_STATUS'
fieldnames = ['onboard_control_sensors_present', 'onboard_control_sensors_enabled', 'onboard_control_sensors_health', 'load', 'voltage_battery', 'current_battery', 'battery_remaining', 'drop_rate_comm', 'errors_comm', 'errors_count1', 'errors_count2', 'errors_count3', 'errors_count4']
ordered_fieldnames = [ 'onboard_control_sensors_present', 'onboard_control_sensors_enabled', 'onboard_control_sensors_health', 'load', 'voltage_battery', 'current_battery', 'drop_rate_comm', 'errors_comm', 'errors_count1', 'errors_count2', 'errors_count3', 'errors_count4', 'battery_remaining' ]
format = '<IIIHHhHHHHHHb'
native_format = bytearray('<IIIHHhHHHHHHb', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 12, 6, 7, 8, 9, 10, 11]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 124
def __init__(self, onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4):
MAVLink_message.__init__(self, MAVLink_sys_status_message.id, MAVLink_sys_status_message.name)
self._fieldnames = MAVLink_sys_status_message.fieldnames
self.onboard_control_sensors_present = onboard_control_sensors_present
self.onboard_control_sensors_enabled = onboard_control_sensors_enabled
self.onboard_control_sensors_health = onboard_control_sensors_health
self.load = load
self.voltage_battery = voltage_battery
self.current_battery = current_battery
self.battery_remaining = battery_remaining
self.drop_rate_comm = drop_rate_comm
self.errors_comm = errors_comm
self.errors_count1 = errors_count1
self.errors_count2 = errors_count2
self.errors_count3 = errors_count3
self.errors_count4 = errors_count4
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 124, struct.pack('<IIIHHhHHHHHHb', self.onboard_control_sensors_present, self.onboard_control_sensors_enabled, self.onboard_control_sensors_health, self.load, self.voltage_battery, self.current_battery, self.drop_rate_comm, self.errors_comm, self.errors_count1, self.errors_count2, self.errors_count3, self.errors_count4, self.battery_remaining), force_mavlink1=force_mavlink1)
class MAVLink_system_time_message(MAVLink_message):
'''
The system time is the time of the master clock, typically the
computer clock of the main onboard computer.
'''
id = MAVLINK_MSG_ID_SYSTEM_TIME
name = 'SYSTEM_TIME'
fieldnames = ['time_unix_usec', 'time_boot_ms']
ordered_fieldnames = [ 'time_unix_usec', 'time_boot_ms' ]
format = '<QI'
native_format = bytearray('<QI', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [0, 0]
crc_extra = 137
def __init__(self, time_unix_usec, time_boot_ms):
MAVLink_message.__init__(self, MAVLink_system_time_message.id, MAVLink_system_time_message.name)
self._fieldnames = MAVLink_system_time_message.fieldnames
self.time_unix_usec = time_unix_usec
self.time_boot_ms = time_boot_ms
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 137, struct.pack('<QI', self.time_unix_usec, self.time_boot_ms), force_mavlink1=force_mavlink1)
class MAVLink_ping_message(MAVLink_message):
'''
A ping message either requesting or responding to a ping. This
allows to measure the system latencies, including serial port,
radio modem and UDP connections.
'''
id = MAVLINK_MSG_ID_PING
name = 'PING'
fieldnames = ['time_usec', 'seq', 'target_system', 'target_component']
ordered_fieldnames = [ 'time_usec', 'seq', 'target_system', 'target_component' ]
format = '<QIBB'
native_format = bytearray('<QIBB', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 237
def __init__(self, time_usec, seq, target_system, target_component):
MAVLink_message.__init__(self, MAVLink_ping_message.id, MAVLink_ping_message.name)
self._fieldnames = MAVLink_ping_message.fieldnames
self.time_usec = time_usec
self.seq = seq
self.target_system = target_system
self.target_component = target_component
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 237, struct.pack('<QIBB', self.time_usec, self.seq, self.target_system, self.target_component), force_mavlink1=force_mavlink1)
class MAVLink_change_operator_control_message(MAVLink_message):
'''
Request to control this MAV
'''
id = MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL
name = 'CHANGE_OPERATOR_CONTROL'
fieldnames = ['target_system', 'control_request', 'version', 'passkey']
ordered_fieldnames = [ 'target_system', 'control_request', 'version', 'passkey' ]
format = '<BBB25s'
native_format = bytearray('<BBBc', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 25]
crc_extra = 217
def __init__(self, target_system, control_request, version, passkey):
MAVLink_message.__init__(self, MAVLink_change_operator_control_message.id, MAVLink_change_operator_control_message.name)
self._fieldnames = MAVLink_change_operator_control_message.fieldnames
self.target_system = target_system
self.control_request = control_request
self.version = version
self.passkey = passkey
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 217, struct.pack('<BBB25s', self.target_system, self.control_request, self.version, self.passkey), force_mavlink1=force_mavlink1)
class MAVLink_change_operator_control_ack_message(MAVLink_message):
'''
Accept / deny control of this MAV
'''
id = MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL_ACK
name = 'CHANGE_OPERATOR_CONTROL_ACK'
fieldnames = ['gcs_system_id', 'control_request', 'ack']
ordered_fieldnames = [ 'gcs_system_id', 'control_request', 'ack' ]
format = '<BBB'
native_format = bytearray('<BBB', 'ascii')
orders = [0, 1, 2]
lengths = [1, 1, 1]
array_lengths = [0, 0, 0]
crc_extra = 104
def __init__(self, gcs_system_id, control_request, ack):
MAVLink_message.__init__(self, MAVLink_change_operator_control_ack_message.id, MAVLink_change_operator_control_ack_message.name)
self._fieldnames = MAVLink_change_operator_control_ack_message.fieldnames
self.gcs_system_id = gcs_system_id
self.control_request = control_request
self.ack = ack
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 104, struct.pack('<BBB', self.gcs_system_id, self.control_request, self.ack), force_mavlink1=force_mavlink1)
class MAVLink_auth_key_message(MAVLink_message):
'''
Emit an encrypted signature / key identifying this system.
PLEASE NOTE: This protocol has been kept simple, so
transmitting the key requires an encrypted channel for true
safety.
'''
id = MAVLINK_MSG_ID_AUTH_KEY
name = 'AUTH_KEY'
fieldnames = ['key']
ordered_fieldnames = [ 'key' ]
format = '<32s'
native_format = bytearray('<c', 'ascii')
orders = [0]
lengths = [1]
array_lengths = [32]
crc_extra = 119
def __init__(self, key):
MAVLink_message.__init__(self, MAVLink_auth_key_message.id, MAVLink_auth_key_message.name)
self._fieldnames = MAVLink_auth_key_message.fieldnames
self.key = key
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 119, struct.pack('<32s', self.key), force_mavlink1=force_mavlink1)
class MAVLink_set_mode_message(MAVLink_message):
'''
Set the system mode, as defined by enum MAV_MODE. There is no
target component id as the mode is by definition for the
overall aircraft, not only for one component.
'''
id = MAVLINK_MSG_ID_SET_MODE
name = 'SET_MODE'
fieldnames = ['target_system', 'base_mode', 'custom_mode']
ordered_fieldnames = [ 'custom_mode', 'target_system', 'base_mode' ]
format = '<IBB'
native_format = bytearray('<IBB', 'ascii')
orders = [1, 2, 0]
lengths = [1, 1, 1]
array_lengths = [0, 0, 0]
crc_extra = 89
def __init__(self, target_system, base_mode, custom_mode):
MAVLink_message.__init__(self, MAVLink_set_mode_message.id, MAVLink_set_mode_message.name)
self._fieldnames = MAVLink_set_mode_message.fieldnames
self.target_system = target_system
self.base_mode = base_mode
self.custom_mode = custom_mode
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 89, struct.pack('<IBB', self.custom_mode, self.target_system, self.base_mode), force_mavlink1=force_mavlink1)
class MAVLink_param_request_read_message(MAVLink_message):
'''
Request to read the onboard parameter with the param_id string
id. Onboard parameters are stored as key[const char*] ->
value[float]. This allows to send a parameter to any other
component (such as the GCS) without the need of previous
knowledge of possible parameter names. Thus the same GCS can
store different parameters for different autopilots. See also
https://mavlink.io/en/protocol/parameter.html for a full
documentation of QGroundControl and IMU code.
'''
id = MAVLINK_MSG_ID_PARAM_REQUEST_READ
name = 'PARAM_REQUEST_READ'
fieldnames = ['target_system', 'target_component', 'param_id', 'param_index']
ordered_fieldnames = [ 'param_index', 'target_system', 'target_component', 'param_id' ]
format = '<hBB16s'
native_format = bytearray('<hBBc', 'ascii')
orders = [1, 2, 3, 0]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 16]
crc_extra = 214
def __init__(self, target_system, target_component, param_id, param_index):
MAVLink_message.__init__(self, MAVLink_param_request_read_message.id, MAVLink_param_request_read_message.name)
self._fieldnames = MAVLink_param_request_read_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.param_id = param_id
self.param_index = param_index
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 214, struct.pack('<hBB16s', self.param_index, self.target_system, self.target_component, self.param_id), force_mavlink1=force_mavlink1)
class MAVLink_param_request_list_message(MAVLink_message):
'''
Request all parameters of this component. After this request,
all parameters are emitted.
'''
id = MAVLINK_MSG_ID_PARAM_REQUEST_LIST
name = 'PARAM_REQUEST_LIST'
fieldnames = ['target_system', 'target_component']
ordered_fieldnames = [ 'target_system', 'target_component' ]
format = '<BB'
native_format = bytearray('<BB', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [0, 0]
crc_extra = 159
def __init__(self, target_system, target_component):
MAVLink_message.__init__(self, MAVLink_param_request_list_message.id, MAVLink_param_request_list_message.name)
self._fieldnames = MAVLink_param_request_list_message.fieldnames
self.target_system = target_system
self.target_component = target_component
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 159, struct.pack('<BB', self.target_system, self.target_component), force_mavlink1=force_mavlink1)
class MAVLink_param_value_message(MAVLink_message):
'''
Emit the value of a onboard parameter. The inclusion of
param_count and param_index in the message allows the
recipient to keep track of received parameters and allows him
to re-request missing parameters after a loss or timeout.
'''
id = MAVLINK_MSG_ID_PARAM_VALUE
name = 'PARAM_VALUE'
fieldnames = ['param_id', 'param_value', 'param_type', 'param_count', 'param_index']
ordered_fieldnames = [ 'param_value', 'param_count', 'param_index', 'param_id', 'param_type' ]
format = '<fHH16sB'
native_format = bytearray('<fHHcB', 'ascii')
orders = [3, 0, 4, 1, 2]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 16, 0]
crc_extra = 220
def __init__(self, param_id, param_value, param_type, param_count, param_index):
MAVLink_message.__init__(self, MAVLink_param_value_message.id, MAVLink_param_value_message.name)
self._fieldnames = MAVLink_param_value_message.fieldnames
self.param_id = param_id
self.param_value = param_value
self.param_type = param_type
self.param_count = param_count
self.param_index = param_index
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 220, struct.pack('<fHH16sB', self.param_value, self.param_count, self.param_index, self.param_id, self.param_type), force_mavlink1=force_mavlink1)
class MAVLink_param_set_message(MAVLink_message):
'''
Set a parameter value TEMPORARILY to RAM. It will be reset to
default on system reboot. Send the ACTION
MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM contents
to EEPROM. IMPORTANT: The receiving component should
acknowledge the new parameter value by sending a param_value
message to all communication partners. This will also ensure
that multiple GCS all have an up-to-date list of all
parameters. If the sending GCS did not receive a PARAM_VALUE
message within its timeout time, it should re-send the
PARAM_SET message.
'''
id = MAVLINK_MSG_ID_PARAM_SET
name = 'PARAM_SET'
fieldnames = ['target_system', 'target_component', 'param_id', 'param_value', 'param_type']
ordered_fieldnames = [ 'param_value', 'target_system', 'target_component', 'param_id', 'param_type' ]
format = '<fBB16sB'
native_format = bytearray('<fBBcB', 'ascii')
orders = [1, 2, 3, 0, 4]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 16, 0]
crc_extra = 168
def __init__(self, target_system, target_component, param_id, param_value, param_type):
MAVLink_message.__init__(self, MAVLink_param_set_message.id, MAVLink_param_set_message.name)
self._fieldnames = MAVLink_param_set_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.param_id = param_id
self.param_value = param_value
self.param_type = param_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 168, struct.pack('<fBB16sB', self.param_value, self.target_system, self.target_component, self.param_id, self.param_type), force_mavlink1=force_mavlink1)
class MAVLink_gps_raw_int_message(MAVLink_message):
'''
The global position, as returned by the Global Positioning
System (GPS). This is NOT the global position
estimate of the system, but rather a RAW sensor value. See
message GLOBAL_POSITION for the global position estimate.
'''
id = MAVLINK_MSG_ID_GPS_RAW_INT
name = 'GPS_RAW_INT'
fieldnames = ['time_usec', 'fix_type', 'lat', 'lon', 'alt', 'eph', 'epv', 'vel', 'cog', 'satellites_visible', 'alt_ellipsoid', 'h_acc', 'v_acc', 'vel_acc', 'hdg_acc']
ordered_fieldnames = [ 'time_usec', 'lat', 'lon', 'alt', 'eph', 'epv', 'vel', 'cog', 'fix_type', 'satellites_visible', 'alt_ellipsoid', 'h_acc', 'v_acc', 'vel_acc', 'hdg_acc' ]
format = '<QiiiHHHHBBiIIII'
native_format = bytearray('<QiiiHHHHBBiIIII', 'ascii')
orders = [0, 8, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 24
def __init__(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible, alt_ellipsoid=0, h_acc=0, v_acc=0, vel_acc=0, hdg_acc=0):
MAVLink_message.__init__(self, MAVLink_gps_raw_int_message.id, MAVLink_gps_raw_int_message.name)
self._fieldnames = MAVLink_gps_raw_int_message.fieldnames
self.time_usec = time_usec
self.fix_type = fix_type
self.lat = lat
self.lon = lon
self.alt = alt
self.eph = eph
self.epv = epv
self.vel = vel
self.cog = cog
self.satellites_visible = satellites_visible
self.alt_ellipsoid = alt_ellipsoid
self.h_acc = h_acc
self.v_acc = v_acc
self.vel_acc = vel_acc
self.hdg_acc = hdg_acc
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 24, struct.pack('<QiiiHHHHBBiIIII', self.time_usec, self.lat, self.lon, self.alt, self.eph, self.epv, self.vel, self.cog, self.fix_type, self.satellites_visible, self.alt_ellipsoid, self.h_acc, self.v_acc, self.vel_acc, self.hdg_acc), force_mavlink1=force_mavlink1)
class MAVLink_gps_status_message(MAVLink_message):
'''
The positioning status, as reported by GPS. This message is
intended to display status information about each satellite
visible to the receiver. See message GLOBAL_POSITION for the
global position estimate. This message can contain information
for up to 20 satellites.
'''
id = MAVLINK_MSG_ID_GPS_STATUS
name = 'GPS_STATUS'
fieldnames = ['satellites_visible', 'satellite_prn', 'satellite_used', 'satellite_elevation', 'satellite_azimuth', 'satellite_snr']
ordered_fieldnames = [ 'satellites_visible', 'satellite_prn', 'satellite_used', 'satellite_elevation', 'satellite_azimuth', 'satellite_snr' ]
format = '<B20B20B20B20B20B'
native_format = bytearray('<BBBBBB', 'ascii')
orders = [0, 1, 2, 3, 4, 5]
lengths = [1, 20, 20, 20, 20, 20]
array_lengths = [0, 20, 20, 20, 20, 20]
crc_extra = 23
def __init__(self, satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr):
MAVLink_message.__init__(self, MAVLink_gps_status_message.id, MAVLink_gps_status_message.name)
self._fieldnames = MAVLink_gps_status_message.fieldnames
self.satellites_visible = satellites_visible
self.satellite_prn = satellite_prn
self.satellite_used = satellite_used
self.satellite_elevation = satellite_elevation
self.satellite_azimuth = satellite_azimuth
self.satellite_snr = satellite_snr
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 23, struct.pack('<B20B20B20B20B20B', self.satellites_visible, self.satellite_prn[0], self.satellite_prn[1], self.satellite_prn[2], self.satellite_prn[3], self.satellite_prn[4], self.satellite_prn[5], self.satellite_prn[6], self.satellite_prn[7], self.satellite_prn[8], self.satellite_prn[9], self.satellite_prn[10], self.satellite_prn[11], self.satellite_prn[12], self.satellite_prn[13], self.satellite_prn[14], self.satellite_prn[15], self.satellite_prn[16], self.satellite_prn[17], self.satellite_prn[18], self.satellite_prn[19], self.satellite_used[0], self.satellite_used[1], self.satellite_used[2], self.satellite_used[3], self.satellite_used[4], self.satellite_used[5], self.satellite_used[6], self.satellite_used[7], self.satellite_used[8], self.satellite_used[9], self.satellite_used[10], self.satellite_used[11], self.satellite_used[12], self.satellite_used[13], self.satellite_used[14], self.satellite_used[15], self.satellite_used[16], self.satellite_used[17], self.satellite_used[18], self.satellite_used[19], self.satellite_elevation[0], self.satellite_elevation[1], self.satellite_elevation[2], self.satellite_elevation[3], self.satellite_elevation[4], self.satellite_elevation[5], self.satellite_elevation[6], self.satellite_elevation[7], self.satellite_elevation[8], self.satellite_elevation[9], self.satellite_elevation[10], self.satellite_elevation[11], self.satellite_elevation[12], self.satellite_elevation[13], self.satellite_elevation[14], self.satellite_elevation[15], self.satellite_elevation[16], self.satellite_elevation[17], self.satellite_elevation[18], self.satellite_elevation[19], self.satellite_azimuth[0], self.satellite_azimuth[1], self.satellite_azimuth[2], self.satellite_azimuth[3], self.satellite_azimuth[4], self.satellite_azimuth[5], self.satellite_azimuth[6], self.satellite_azimuth[7], self.satellite_azimuth[8], self.satellite_azimuth[9], self.satellite_azimuth[10], self.satellite_azimuth[11], self.satellite_azimuth[12], self.satellite_azimuth[13], self.satellite_azimuth[14], self.satellite_azimuth[15], self.satellite_azimuth[16], self.satellite_azimuth[17], self.satellite_azimuth[18], self.satellite_azimuth[19], self.satellite_snr[0], self.satellite_snr[1], self.satellite_snr[2], self.satellite_snr[3], self.satellite_snr[4], self.satellite_snr[5], self.satellite_snr[6], self.satellite_snr[7], self.satellite_snr[8], self.satellite_snr[9], self.satellite_snr[10], self.satellite_snr[11], self.satellite_snr[12], self.satellite_snr[13], self.satellite_snr[14], self.satellite_snr[15], self.satellite_snr[16], self.satellite_snr[17], self.satellite_snr[18], self.satellite_snr[19]), force_mavlink1=force_mavlink1)
class MAVLink_scaled_imu_message(MAVLink_message):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This
message should contain the scaled values to the described
units
'''
id = MAVLINK_MSG_ID_SCALED_IMU
name = 'SCALED_IMU'
fieldnames = ['time_boot_ms', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag']
ordered_fieldnames = [ 'time_boot_ms', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag' ]
format = '<Ihhhhhhhhh'
native_format = bytearray('<Ihhhhhhhhh', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 170
def __init__(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
MAVLink_message.__init__(self, MAVLink_scaled_imu_message.id, MAVLink_scaled_imu_message.name)
self._fieldnames = MAVLink_scaled_imu_message.fieldnames
self.time_boot_ms = time_boot_ms
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
self.xgyro = xgyro
self.ygyro = ygyro
self.zgyro = zgyro
self.xmag = xmag
self.ymag = ymag
self.zmag = zmag
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 170, struct.pack('<Ihhhhhhhhh', self.time_boot_ms, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag), force_mavlink1=force_mavlink1)
class MAVLink_raw_imu_message(MAVLink_message):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This
message should always contain the true raw values without any
scaling to allow data capture and system debugging.
'''
id = MAVLINK_MSG_ID_RAW_IMU
name = 'RAW_IMU'
fieldnames = ['time_usec', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag']
ordered_fieldnames = [ 'time_usec', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag' ]
format = '<Qhhhhhhhhh'
native_format = bytearray('<Qhhhhhhhhh', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 144
def __init__(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
MAVLink_message.__init__(self, MAVLink_raw_imu_message.id, MAVLink_raw_imu_message.name)
self._fieldnames = MAVLink_raw_imu_message.fieldnames
self.time_usec = time_usec
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
self.xgyro = xgyro
self.ygyro = ygyro
self.zgyro = zgyro
self.xmag = xmag
self.ymag = ymag
self.zmag = zmag
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 144, struct.pack('<Qhhhhhhhhh', self.time_usec, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag), force_mavlink1=force_mavlink1)
class MAVLink_raw_pressure_message(MAVLink_message):
'''
The RAW pressure readings for the typical setup of one
absolute pressure and one differential pressure sensor. The
sensor values should be the raw, UNSCALED ADC values.
'''
id = MAVLINK_MSG_ID_RAW_PRESSURE
name = 'RAW_PRESSURE'
fieldnames = ['time_usec', 'press_abs', 'press_diff1', 'press_diff2', 'temperature']
ordered_fieldnames = [ 'time_usec', 'press_abs', 'press_diff1', 'press_diff2', 'temperature' ]
format = '<Qhhhh'
native_format = bytearray('<Qhhhh', 'ascii')
orders = [0, 1, 2, 3, 4]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0]
crc_extra = 67
def __init__(self, time_usec, press_abs, press_diff1, press_diff2, temperature):
MAVLink_message.__init__(self, MAVLink_raw_pressure_message.id, MAVLink_raw_pressure_message.name)
self._fieldnames = MAVLink_raw_pressure_message.fieldnames
self.time_usec = time_usec
self.press_abs = press_abs
self.press_diff1 = press_diff1
self.press_diff2 = press_diff2
self.temperature = temperature
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 67, struct.pack('<Qhhhh', self.time_usec, self.press_abs, self.press_diff1, self.press_diff2, self.temperature), force_mavlink1=force_mavlink1)
class MAVLink_scaled_pressure_message(MAVLink_message):
'''
The pressure readings for the typical setup of one absolute
and differential pressure sensor. The units are as specified
in each field.
'''
id = MAVLINK_MSG_ID_SCALED_PRESSURE
name = 'SCALED_PRESSURE'
fieldnames = ['time_boot_ms', 'press_abs', 'press_diff', 'temperature']
ordered_fieldnames = [ 'time_boot_ms', 'press_abs', 'press_diff', 'temperature' ]
format = '<Iffh'
native_format = bytearray('<Iffh', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 115
def __init__(self, time_boot_ms, press_abs, press_diff, temperature):
MAVLink_message.__init__(self, MAVLink_scaled_pressure_message.id, MAVLink_scaled_pressure_message.name)
self._fieldnames = MAVLink_scaled_pressure_message.fieldnames
self.time_boot_ms = time_boot_ms
self.press_abs = press_abs
self.press_diff = press_diff
self.temperature = temperature
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 115, struct.pack('<Iffh', self.time_boot_ms, self.press_abs, self.press_diff, self.temperature), force_mavlink1=force_mavlink1)
class MAVLink_attitude_message(MAVLink_message):
'''
The attitude in the aeronautical frame (right-handed, Z-down,
X-front, Y-right).
'''
id = MAVLINK_MSG_ID_ATTITUDE
name = 'ATTITUDE'
fieldnames = ['time_boot_ms', 'roll', 'pitch', 'yaw', 'rollspeed', 'pitchspeed', 'yawspeed']
ordered_fieldnames = [ 'time_boot_ms', 'roll', 'pitch', 'yaw', 'rollspeed', 'pitchspeed', 'yawspeed' ]
format = '<Iffffff'
native_format = bytearray('<Iffffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0]
crc_extra = 39
def __init__(self, time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed):
MAVLink_message.__init__(self, MAVLink_attitude_message.id, MAVLink_attitude_message.name)
self._fieldnames = MAVLink_attitude_message.fieldnames
self.time_boot_ms = time_boot_ms
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.rollspeed = rollspeed
self.pitchspeed = pitchspeed
self.yawspeed = yawspeed
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 39, struct.pack('<Iffffff', self.time_boot_ms, self.roll, self.pitch, self.yaw, self.rollspeed, self.pitchspeed, self.yawspeed), force_mavlink1=force_mavlink1)
class MAVLink_attitude_quaternion_message(MAVLink_message):
'''
The attitude in the aeronautical frame (right-handed, Z-down,
X-front, Y-right), expressed as quaternion. Quaternion order
is w, x, y, z and a zero rotation would be expressed as (1 0 0
0).
'''
id = MAVLINK_MSG_ID_ATTITUDE_QUATERNION
name = 'ATTITUDE_QUATERNION'
fieldnames = ['time_boot_ms', 'q1', 'q2', 'q3', 'q4', 'rollspeed', 'pitchspeed', 'yawspeed']
ordered_fieldnames = [ 'time_boot_ms', 'q1', 'q2', 'q3', 'q4', 'rollspeed', 'pitchspeed', 'yawspeed' ]
format = '<Ifffffff'
native_format = bytearray('<Ifffffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7]
lengths = [1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 246
def __init__(self, time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed):
MAVLink_message.__init__(self, MAVLink_attitude_quaternion_message.id, MAVLink_attitude_quaternion_message.name)
self._fieldnames = MAVLink_attitude_quaternion_message.fieldnames
self.time_boot_ms = time_boot_ms
self.q1 = q1
self.q2 = q2
self.q3 = q3
self.q4 = q4
self.rollspeed = rollspeed
self.pitchspeed = pitchspeed
self.yawspeed = yawspeed
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 246, struct.pack('<Ifffffff', self.time_boot_ms, self.q1, self.q2, self.q3, self.q4, self.rollspeed, self.pitchspeed, self.yawspeed), force_mavlink1=force_mavlink1)
class MAVLink_local_position_ned_message(MAVLink_message):
'''
The filtered local position (e.g. fused computer vision and
accelerometers). Coordinate frame is right-handed, Z-axis down
(aeronautical frame, NED / north-east-down convention)
'''
id = MAVLINK_MSG_ID_LOCAL_POSITION_NED
name = 'LOCAL_POSITION_NED'
fieldnames = ['time_boot_ms', 'x', 'y', 'z', 'vx', 'vy', 'vz']
ordered_fieldnames = [ 'time_boot_ms', 'x', 'y', 'z', 'vx', 'vy', 'vz' ]
format = '<Iffffff'
native_format = bytearray('<Iffffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0]
crc_extra = 185
def __init__(self, time_boot_ms, x, y, z, vx, vy, vz):
MAVLink_message.__init__(self, MAVLink_local_position_ned_message.id, MAVLink_local_position_ned_message.name)
self._fieldnames = MAVLink_local_position_ned_message.fieldnames
self.time_boot_ms = time_boot_ms
self.x = x
self.y = y
self.z = z
self.vx = vx
self.vy = vy
self.vz = vz
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 185, struct.pack('<Iffffff', self.time_boot_ms, self.x, self.y, self.z, self.vx, self.vy, self.vz), force_mavlink1=force_mavlink1)
class MAVLink_global_position_int_message(MAVLink_message):
'''
The filtered global position (e.g. fused GPS and
accelerometers). The position is in GPS-frame (right-handed,
Z-up). It is designed as scaled integer message
since the resolution of float is not sufficient.
'''
id = MAVLINK_MSG_ID_GLOBAL_POSITION_INT
name = 'GLOBAL_POSITION_INT'
fieldnames = ['time_boot_ms', 'lat', 'lon', 'alt', 'relative_alt', 'vx', 'vy', 'vz', 'hdg']
ordered_fieldnames = [ 'time_boot_ms', 'lat', 'lon', 'alt', 'relative_alt', 'vx', 'vy', 'vz', 'hdg' ]
format = '<IiiiihhhH'
native_format = bytearray('<IiiiihhhH', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 104
def __init__(self, time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg):
MAVLink_message.__init__(self, MAVLink_global_position_int_message.id, MAVLink_global_position_int_message.name)
self._fieldnames = MAVLink_global_position_int_message.fieldnames
self.time_boot_ms = time_boot_ms
self.lat = lat
self.lon = lon
self.alt = alt
self.relative_alt = relative_alt
self.vx = vx
self.vy = vy
self.vz = vz
self.hdg = hdg
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 104, struct.pack('<IiiiihhhH', self.time_boot_ms, self.lat, self.lon, self.alt, self.relative_alt, self.vx, self.vy, self.vz, self.hdg), force_mavlink1=force_mavlink1)
class MAVLink_rc_channels_scaled_message(MAVLink_message):
'''
The scaled values of the RC channels received: (-100%) -10000,
(0%) 0, (100%) 10000. Channels that are inactive should be set
to UINT16_MAX.
'''
id = MAVLINK_MSG_ID_RC_CHANNELS_SCALED
name = 'RC_CHANNELS_SCALED'
fieldnames = ['time_boot_ms', 'port', 'chan1_scaled', 'chan2_scaled', 'chan3_scaled', 'chan4_scaled', 'chan5_scaled', 'chan6_scaled', 'chan7_scaled', 'chan8_scaled', 'rssi']
ordered_fieldnames = [ 'time_boot_ms', 'chan1_scaled', 'chan2_scaled', 'chan3_scaled', 'chan4_scaled', 'chan5_scaled', 'chan6_scaled', 'chan7_scaled', 'chan8_scaled', 'port', 'rssi' ]
format = '<IhhhhhhhhBB'
native_format = bytearray('<IhhhhhhhhBB', 'ascii')
orders = [0, 9, 1, 2, 3, 4, 5, 6, 7, 8, 10]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 237
def __init__(self, time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi):
MAVLink_message.__init__(self, MAVLink_rc_channels_scaled_message.id, MAVLink_rc_channels_scaled_message.name)
self._fieldnames = MAVLink_rc_channels_scaled_message.fieldnames
self.time_boot_ms = time_boot_ms
self.port = port
self.chan1_scaled = chan1_scaled
self.chan2_scaled = chan2_scaled
self.chan3_scaled = chan3_scaled
self.chan4_scaled = chan4_scaled
self.chan5_scaled = chan5_scaled
self.chan6_scaled = chan6_scaled
self.chan7_scaled = chan7_scaled
self.chan8_scaled = chan8_scaled
self.rssi = rssi
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 237, struct.pack('<IhhhhhhhhBB', self.time_boot_ms, self.chan1_scaled, self.chan2_scaled, self.chan3_scaled, self.chan4_scaled, self.chan5_scaled, self.chan6_scaled, self.chan7_scaled, self.chan8_scaled, self.port, self.rssi), force_mavlink1=force_mavlink1)
class MAVLink_rc_channels_raw_message(MAVLink_message):
'''
The RAW values of the RC channels received. The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%. A value of UINT16_MAX implies the channel
is unused. Individual receivers/transmitters might violate
this specification.
'''
id = MAVLINK_MSG_ID_RC_CHANNELS_RAW
name = 'RC_CHANNELS_RAW'
fieldnames = ['time_boot_ms', 'port', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'rssi']
ordered_fieldnames = [ 'time_boot_ms', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'port', 'rssi' ]
format = '<IHHHHHHHHBB'
native_format = bytearray('<IHHHHHHHHBB', 'ascii')
orders = [0, 9, 1, 2, 3, 4, 5, 6, 7, 8, 10]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 244
def __init__(self, time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi):
MAVLink_message.__init__(self, MAVLink_rc_channels_raw_message.id, MAVLink_rc_channels_raw_message.name)
self._fieldnames = MAVLink_rc_channels_raw_message.fieldnames
self.time_boot_ms = time_boot_ms
self.port = port
self.chan1_raw = chan1_raw
self.chan2_raw = chan2_raw
self.chan3_raw = chan3_raw
self.chan4_raw = chan4_raw
self.chan5_raw = chan5_raw
self.chan6_raw = chan6_raw
self.chan7_raw = chan7_raw
self.chan8_raw = chan8_raw
self.rssi = rssi
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 244, struct.pack('<IHHHHHHHHBB', self.time_boot_ms, self.chan1_raw, self.chan2_raw, self.chan3_raw, self.chan4_raw, self.chan5_raw, self.chan6_raw, self.chan7_raw, self.chan8_raw, self.port, self.rssi), force_mavlink1=force_mavlink1)
class MAVLink_servo_output_raw_message(MAVLink_message):
'''
The RAW values of the servo outputs (for RC input from the
remote, use the RC_CHANNELS messages). The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%.
'''
id = MAVLINK_MSG_ID_SERVO_OUTPUT_RAW
name = 'SERVO_OUTPUT_RAW'
fieldnames = ['time_usec', 'port', 'servo1_raw', 'servo2_raw', 'servo3_raw', 'servo4_raw', 'servo5_raw', 'servo6_raw', 'servo7_raw', 'servo8_raw', 'servo9_raw', 'servo10_raw', 'servo11_raw', 'servo12_raw', 'servo13_raw', 'servo14_raw', 'servo15_raw', 'servo16_raw']
ordered_fieldnames = [ 'time_usec', 'servo1_raw', 'servo2_raw', 'servo3_raw', 'servo4_raw', 'servo5_raw', 'servo6_raw', 'servo7_raw', 'servo8_raw', 'port', 'servo9_raw', 'servo10_raw', 'servo11_raw', 'servo12_raw', 'servo13_raw', 'servo14_raw', 'servo15_raw', 'servo16_raw' ]
format = '<IHHHHHHHHBHHHHHHHH'
native_format = bytearray('<IHHHHHHHHBHHHHHHHH', 'ascii')
orders = [0, 9, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 222
def __init__(self, time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw, servo9_raw=0, servo10_raw=0, servo11_raw=0, servo12_raw=0, servo13_raw=0, servo14_raw=0, servo15_raw=0, servo16_raw=0):
MAVLink_message.__init__(self, MAVLink_servo_output_raw_message.id, MAVLink_servo_output_raw_message.name)
self._fieldnames = MAVLink_servo_output_raw_message.fieldnames
self.time_usec = time_usec
self.port = port
self.servo1_raw = servo1_raw
self.servo2_raw = servo2_raw
self.servo3_raw = servo3_raw
self.servo4_raw = servo4_raw
self.servo5_raw = servo5_raw
self.servo6_raw = servo6_raw
self.servo7_raw = servo7_raw
self.servo8_raw = servo8_raw
self.servo9_raw = servo9_raw
self.servo10_raw = servo10_raw
self.servo11_raw = servo11_raw
self.servo12_raw = servo12_raw
self.servo13_raw = servo13_raw
self.servo14_raw = servo14_raw
self.servo15_raw = servo15_raw
self.servo16_raw = servo16_raw
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 222, struct.pack('<IHHHHHHHHBHHHHHHHH', self.time_usec, self.servo1_raw, self.servo2_raw, self.servo3_raw, self.servo4_raw, self.servo5_raw, self.servo6_raw, self.servo7_raw, self.servo8_raw, self.port, self.servo9_raw, self.servo10_raw, self.servo11_raw, self.servo12_raw, self.servo13_raw, self.servo14_raw, self.servo15_raw, self.servo16_raw), force_mavlink1=force_mavlink1)
class MAVLink_mission_request_partial_list_message(MAVLink_message):
'''
Request a partial list of mission items from the
system/component. https://mavlink.io/en/protocol/mission.html.
If start and end index are the same, just send one waypoint.
'''
id = MAVLINK_MSG_ID_MISSION_REQUEST_PARTIAL_LIST
name = 'MISSION_REQUEST_PARTIAL_LIST'
fieldnames = ['target_system', 'target_component', 'start_index', 'end_index', 'mission_type']
ordered_fieldnames = [ 'start_index', 'end_index', 'target_system', 'target_component', 'mission_type' ]
format = '<hhBBB'
native_format = bytearray('<hhBBB', 'ascii')
orders = [2, 3, 0, 1, 4]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0]
crc_extra = 212
def __init__(self, target_system, target_component, start_index, end_index, mission_type=0):
MAVLink_message.__init__(self, MAVLink_mission_request_partial_list_message.id, MAVLink_mission_request_partial_list_message.name)
self._fieldnames = MAVLink_mission_request_partial_list_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.start_index = start_index
self.end_index = end_index
self.mission_type = mission_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 212, struct.pack('<hhBBB', self.start_index, self.end_index, self.target_system, self.target_component, self.mission_type), force_mavlink1=force_mavlink1)
class MAVLink_mission_write_partial_list_message(MAVLink_message):
'''
This message is sent to the MAV to write a partial list. If
start index == end index, only one item will be transmitted /
updated. If the start index is NOT 0 and above the current
list size, this request should be REJECTED!
'''
id = MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST
name = 'MISSION_WRITE_PARTIAL_LIST'
fieldnames = ['target_system', 'target_component', 'start_index', 'end_index', 'mission_type']
ordered_fieldnames = [ 'start_index', 'end_index', 'target_system', 'target_component', 'mission_type' ]
format = '<hhBBB'
native_format = bytearray('<hhBBB', 'ascii')
orders = [2, 3, 0, 1, 4]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0]
crc_extra = 9
def __init__(self, target_system, target_component, start_index, end_index, mission_type=0):
MAVLink_message.__init__(self, MAVLink_mission_write_partial_list_message.id, MAVLink_mission_write_partial_list_message.name)
self._fieldnames = MAVLink_mission_write_partial_list_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.start_index = start_index
self.end_index = end_index
self.mission_type = mission_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 9, struct.pack('<hhBBB', self.start_index, self.end_index, self.target_system, self.target_component, self.mission_type), force_mavlink1=force_mavlink1)
class MAVLink_mission_item_message(MAVLink_message):
'''
Message encoding a mission item. This message is emitted to
announce the presence of a mission item and to
set a mission item on the system. The mission item can be
either in x, y, z meters (type: LOCAL) or x:lat, y:lon,
z:altitude. Local frame is Z-down, right handed (NED), global
frame is Z-up, right handed (ENU). See also
https://mavlink.io/en/protocol/mission.html.
'''
id = MAVLINK_MSG_ID_MISSION_ITEM
name = 'MISSION_ITEM'
fieldnames = ['target_system', 'target_component', 'seq', 'frame', 'command', 'current', 'autocontinue', 'param1', 'param2', 'param3', 'param4', 'x', 'y', 'z', 'mission_type']
ordered_fieldnames = [ 'param1', 'param2', 'param3', 'param4', 'x', 'y', 'z', 'seq', 'command', 'target_system', 'target_component', 'frame', 'current', 'autocontinue', 'mission_type' ]
format = '<fffffffHHBBBBBB'
native_format = bytearray('<fffffffHHBBBBBB', 'ascii')
orders = [9, 10, 7, 11, 8, 12, 13, 0, 1, 2, 3, 4, 5, 6, 14]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 254
def __init__(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, mission_type=0):
MAVLink_message.__init__(self, MAVLink_mission_item_message.id, MAVLink_mission_item_message.name)
self._fieldnames = MAVLink_mission_item_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.seq = seq
self.frame = frame
self.command = command
self.current = current
self.autocontinue = autocontinue
self.param1 = param1
self.param2 = param2
self.param3 = param3
self.param4 = param4
self.x = x
self.y = y
self.z = z
self.mission_type = mission_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 254, struct.pack('<fffffffHHBBBBBB', self.param1, self.param2, self.param3, self.param4, self.x, self.y, self.z, self.seq, self.command, self.target_system, self.target_component, self.frame, self.current, self.autocontinue, self.mission_type), force_mavlink1=force_mavlink1)
class MAVLink_mission_request_message(MAVLink_message):
'''
Request the information of the mission item with the sequence
number seq. The response of the system to this message should
be a MISSION_ITEM message.
https://mavlink.io/en/protocol/mission.html
'''
id = MAVLINK_MSG_ID_MISSION_REQUEST
name = 'MISSION_REQUEST'
fieldnames = ['target_system', 'target_component', 'seq', 'mission_type']
ordered_fieldnames = [ 'seq', 'target_system', 'target_component', 'mission_type' ]
format = '<HBBB'
native_format = bytearray('<HBBB', 'ascii')
orders = [1, 2, 0, 3]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 230
def __init__(self, target_system, target_component, seq, mission_type=0):
MAVLink_message.__init__(self, MAVLink_mission_request_message.id, MAVLink_mission_request_message.name)
self._fieldnames = MAVLink_mission_request_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.seq = seq
self.mission_type = mission_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 230, struct.pack('<HBBB', self.seq, self.target_system, self.target_component, self.mission_type), force_mavlink1=force_mavlink1)
class MAVLink_mission_set_current_message(MAVLink_message):
'''
Set the mission item with sequence number seq as current item.
This means that the MAV will continue to this mission item on
the shortest path (not following the mission items in-
between).
'''
id = MAVLINK_MSG_ID_MISSION_SET_CURRENT
name = 'MISSION_SET_CURRENT'
fieldnames = ['target_system', 'target_component', 'seq']
ordered_fieldnames = [ 'seq', 'target_system', 'target_component' ]
format = '<HBB'
native_format = bytearray('<HBB', 'ascii')
orders = [1, 2, 0]
lengths = [1, 1, 1]
array_lengths = [0, 0, 0]
crc_extra = 28
def __init__(self, target_system, target_component, seq):
MAVLink_message.__init__(self, MAVLink_mission_set_current_message.id, MAVLink_mission_set_current_message.name)
self._fieldnames = MAVLink_mission_set_current_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.seq = seq
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 28, struct.pack('<HBB', self.seq, self.target_system, self.target_component), force_mavlink1=force_mavlink1)
class MAVLink_mission_current_message(MAVLink_message):
'''
Message that announces the sequence number of the current
active mission item. The MAV will fly towards this mission
item.
'''
id = MAVLINK_MSG_ID_MISSION_CURRENT
name = 'MISSION_CURRENT'
fieldnames = ['seq']
ordered_fieldnames = [ 'seq' ]
format = '<H'
native_format = bytearray('<H', 'ascii')
orders = [0]
lengths = [1]
array_lengths = [0]
crc_extra = 28
def __init__(self, seq):
MAVLink_message.__init__(self, MAVLink_mission_current_message.id, MAVLink_mission_current_message.name)
self._fieldnames = MAVLink_mission_current_message.fieldnames
self.seq = seq
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 28, struct.pack('<H', self.seq), force_mavlink1=force_mavlink1)
class MAVLink_mission_request_list_message(MAVLink_message):
'''
Request the overall list of mission items from the
system/component.
'''
id = MAVLINK_MSG_ID_MISSION_REQUEST_LIST
name = 'MISSION_REQUEST_LIST'
fieldnames = ['target_system', 'target_component', 'mission_type']
ordered_fieldnames = [ 'target_system', 'target_component', 'mission_type' ]
format = '<BBB'
native_format = bytearray('<BBB', 'ascii')
orders = [0, 1, 2]
lengths = [1, 1, 1]
array_lengths = [0, 0, 0]
crc_extra = 132
def __init__(self, target_system, target_component, mission_type=0):
MAVLink_message.__init__(self, MAVLink_mission_request_list_message.id, MAVLink_mission_request_list_message.name)
self._fieldnames = MAVLink_mission_request_list_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.mission_type = mission_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 132, struct.pack('<BBB', self.target_system, self.target_component, self.mission_type), force_mavlink1=force_mavlink1)
class MAVLink_mission_count_message(MAVLink_message):
'''
This message is emitted as response to MISSION_REQUEST_LIST by
the MAV and to initiate a write transaction. The GCS can then
request the individual mission item based on the knowledge of
the total number of waypoints.
'''
id = MAVLINK_MSG_ID_MISSION_COUNT
name = 'MISSION_COUNT'
fieldnames = ['target_system', 'target_component', 'count', 'mission_type']
ordered_fieldnames = [ 'count', 'target_system', 'target_component', 'mission_type' ]
format = '<HBBB'
native_format = bytearray('<HBBB', 'ascii')
orders = [1, 2, 0, 3]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 221
def __init__(self, target_system, target_component, count, mission_type=0):
MAVLink_message.__init__(self, MAVLink_mission_count_message.id, MAVLink_mission_count_message.name)
self._fieldnames = MAVLink_mission_count_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.count = count
self.mission_type = mission_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 221, struct.pack('<HBBB', self.count, self.target_system, self.target_component, self.mission_type), force_mavlink1=force_mavlink1)
class MAVLink_mission_clear_all_message(MAVLink_message):
'''
Delete all mission items at once.
'''
id = MAVLINK_MSG_ID_MISSION_CLEAR_ALL
name = 'MISSION_CLEAR_ALL'
fieldnames = ['target_system', 'target_component', 'mission_type']
ordered_fieldnames = [ 'target_system', 'target_component', 'mission_type' ]
format = '<BBB'
native_format = bytearray('<BBB', 'ascii')
orders = [0, 1, 2]
lengths = [1, 1, 1]
array_lengths = [0, 0, 0]
crc_extra = 232
def __init__(self, target_system, target_component, mission_type=0):
MAVLink_message.__init__(self, MAVLink_mission_clear_all_message.id, MAVLink_mission_clear_all_message.name)
self._fieldnames = MAVLink_mission_clear_all_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.mission_type = mission_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 232, struct.pack('<BBB', self.target_system, self.target_component, self.mission_type), force_mavlink1=force_mavlink1)
class MAVLink_mission_item_reached_message(MAVLink_message):
'''
A certain mission item has been reached. The system will
either hold this position (or circle on the orbit) or (if the
autocontinue on the WP was set) continue to the next waypoint.
'''
id = MAVLINK_MSG_ID_MISSION_ITEM_REACHED
name = 'MISSION_ITEM_REACHED'
fieldnames = ['seq']
ordered_fieldnames = [ 'seq' ]
format = '<H'
native_format = bytearray('<H', 'ascii')
orders = [0]
lengths = [1]
array_lengths = [0]
crc_extra = 11
def __init__(self, seq):
MAVLink_message.__init__(self, MAVLink_mission_item_reached_message.id, MAVLink_mission_item_reached_message.name)
self._fieldnames = MAVLink_mission_item_reached_message.fieldnames
self.seq = seq
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 11, struct.pack('<H', self.seq), force_mavlink1=force_mavlink1)
class MAVLink_mission_ack_message(MAVLink_message):
'''
Acknowledgment message during waypoint handling. The type
field states if this message is a positive ack (type=0) or if
an error happened (type=non-zero).
'''
id = MAVLINK_MSG_ID_MISSION_ACK
name = 'MISSION_ACK'
fieldnames = ['target_system', 'target_component', 'type', 'mission_type']
ordered_fieldnames = [ 'target_system', 'target_component', 'type', 'mission_type' ]
format = '<BBBB'
native_format = bytearray('<BBBB', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 153
def __init__(self, target_system, target_component, type, mission_type=0):
MAVLink_message.__init__(self, MAVLink_mission_ack_message.id, MAVLink_mission_ack_message.name)
self._fieldnames = MAVLink_mission_ack_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.type = type
self.mission_type = mission_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 153, struct.pack('<BBBB', self.target_system, self.target_component, self.type, self.mission_type), force_mavlink1=force_mavlink1)
class MAVLink_set_gps_global_origin_message(MAVLink_message):
'''
As local waypoints exist, the global waypoint reference allows
to transform between the local coordinate frame and the global
(GPS) coordinate frame. This can be necessary when e.g. in-
and outdoor settings are connected and the MAV should move
from in- to outdoor.
'''
id = MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN
name = 'SET_GPS_GLOBAL_ORIGIN'
fieldnames = ['target_system', 'latitude', 'longitude', 'altitude', 'time_usec']
ordered_fieldnames = [ 'latitude', 'longitude', 'altitude', 'target_system', 'time_usec' ]
format = '<iiiBQ'
native_format = bytearray('<iiiBQ', 'ascii')
orders = [3, 0, 1, 2, 4]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0]
crc_extra = 41
def __init__(self, target_system, latitude, longitude, altitude, time_usec=0):
MAVLink_message.__init__(self, MAVLink_set_gps_global_origin_message.id, MAVLink_set_gps_global_origin_message.name)
self._fieldnames = MAVLink_set_gps_global_origin_message.fieldnames
self.target_system = target_system
self.latitude = latitude
self.longitude = longitude
self.altitude = altitude
self.time_usec = time_usec
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 41, struct.pack('<iiiBQ', self.latitude, self.longitude, self.altitude, self.target_system, self.time_usec), force_mavlink1=force_mavlink1)
class MAVLink_gps_global_origin_message(MAVLink_message):
'''
Once the MAV sets a new GPS-Local correspondence, this message
announces the origin (0,0,0) position
'''
id = MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN
name = 'GPS_GLOBAL_ORIGIN'
fieldnames = ['latitude', 'longitude', 'altitude', 'time_usec']
ordered_fieldnames = [ 'latitude', 'longitude', 'altitude', 'time_usec' ]
format = '<iiiQ'
native_format = bytearray('<iiiQ', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 39
def __init__(self, latitude, longitude, altitude, time_usec=0):
MAVLink_message.__init__(self, MAVLink_gps_global_origin_message.id, MAVLink_gps_global_origin_message.name)
self._fieldnames = MAVLink_gps_global_origin_message.fieldnames
self.latitude = latitude
self.longitude = longitude
self.altitude = altitude
self.time_usec = time_usec
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 39, struct.pack('<iiiQ', self.latitude, self.longitude, self.altitude, self.time_usec), force_mavlink1=force_mavlink1)
class MAVLink_param_map_rc_message(MAVLink_message):
'''
Bind a RC channel to a parameter. The parameter should change
according to the RC channel value.
'''
id = MAVLINK_MSG_ID_PARAM_MAP_RC
name = 'PARAM_MAP_RC'
fieldnames = ['target_system', 'target_component', 'param_id', 'param_index', 'parameter_rc_channel_index', 'param_value0', 'scale', 'param_value_min', 'param_value_max']
ordered_fieldnames = [ 'param_value0', 'scale', 'param_value_min', 'param_value_max', 'param_index', 'target_system', 'target_component', 'param_id', 'parameter_rc_channel_index' ]
format = '<ffffhBB16sB'
native_format = bytearray('<ffffhBBcB', 'ascii')
orders = [5, 6, 7, 4, 8, 0, 1, 2, 3]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 16, 0]
crc_extra = 78
def __init__(self, target_system, target_component, param_id, param_index, parameter_rc_channel_index, param_value0, scale, param_value_min, param_value_max):
MAVLink_message.__init__(self, MAVLink_param_map_rc_message.id, MAVLink_param_map_rc_message.name)
self._fieldnames = MAVLink_param_map_rc_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.param_id = param_id
self.param_index = param_index
self.parameter_rc_channel_index = parameter_rc_channel_index
self.param_value0 = param_value0
self.scale = scale
self.param_value_min = param_value_min
self.param_value_max = param_value_max
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 78, struct.pack('<ffffhBB16sB', self.param_value0, self.scale, self.param_value_min, self.param_value_max, self.param_index, self.target_system, self.target_component, self.param_id, self.parameter_rc_channel_index), force_mavlink1=force_mavlink1)
class MAVLink_mission_request_int_message(MAVLink_message):
'''
Request the information of the mission item with the sequence
number seq. The response of the system to this message should
be a MISSION_ITEM_INT message.
https://mavlink.io/en/protocol/mission.html
'''
id = MAVLINK_MSG_ID_MISSION_REQUEST_INT
name = 'MISSION_REQUEST_INT'
fieldnames = ['target_system', 'target_component', 'seq', 'mission_type']
ordered_fieldnames = [ 'seq', 'target_system', 'target_component', 'mission_type' ]
format = '<HBBB'
native_format = bytearray('<HBBB', 'ascii')
orders = [1, 2, 0, 3]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 196
def __init__(self, target_system, target_component, seq, mission_type=0):
MAVLink_message.__init__(self, MAVLink_mission_request_int_message.id, MAVLink_mission_request_int_message.name)
self._fieldnames = MAVLink_mission_request_int_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.seq = seq
self.mission_type = mission_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 196, struct.pack('<HBBB', self.seq, self.target_system, self.target_component, self.mission_type), force_mavlink1=force_mavlink1)
class MAVLink_safety_set_allowed_area_message(MAVLink_message):
'''
Set a safety zone (volume), which is defined by two corners of
a cube. This message can be used to tell the MAV which
setpoints/waypoints to accept and which to reject. Safety
areas are often enforced by national or competition
regulations.
'''
id = MAVLINK_MSG_ID_SAFETY_SET_ALLOWED_AREA
name = 'SAFETY_SET_ALLOWED_AREA'
fieldnames = ['target_system', 'target_component', 'frame', 'p1x', 'p1y', 'p1z', 'p2x', 'p2y', 'p2z']
ordered_fieldnames = [ 'p1x', 'p1y', 'p1z', 'p2x', 'p2y', 'p2z', 'target_system', 'target_component', 'frame' ]
format = '<ffffffBBB'
native_format = bytearray('<ffffffBBB', 'ascii')
orders = [6, 7, 8, 0, 1, 2, 3, 4, 5]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 15
def __init__(self, target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z):
MAVLink_message.__init__(self, MAVLink_safety_set_allowed_area_message.id, MAVLink_safety_set_allowed_area_message.name)
self._fieldnames = MAVLink_safety_set_allowed_area_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.frame = frame
self.p1x = p1x
self.p1y = p1y
self.p1z = p1z
self.p2x = p2x
self.p2y = p2y
self.p2z = p2z
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 15, struct.pack('<ffffffBBB', self.p1x, self.p1y, self.p1z, self.p2x, self.p2y, self.p2z, self.target_system, self.target_component, self.frame), force_mavlink1=force_mavlink1)
class MAVLink_safety_allowed_area_message(MAVLink_message):
'''
Read out the safety zone the MAV currently assumes.
'''
id = MAVLINK_MSG_ID_SAFETY_ALLOWED_AREA
name = 'SAFETY_ALLOWED_AREA'
fieldnames = ['frame', 'p1x', 'p1y', 'p1z', 'p2x', 'p2y', 'p2z']
ordered_fieldnames = [ 'p1x', 'p1y', 'p1z', 'p2x', 'p2y', 'p2z', 'frame' ]
format = '<ffffffB'
native_format = bytearray('<ffffffB', 'ascii')
orders = [6, 0, 1, 2, 3, 4, 5]
lengths = [1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0]
crc_extra = 3
def __init__(self, frame, p1x, p1y, p1z, p2x, p2y, p2z):
MAVLink_message.__init__(self, MAVLink_safety_allowed_area_message.id, MAVLink_safety_allowed_area_message.name)
self._fieldnames = MAVLink_safety_allowed_area_message.fieldnames
self.frame = frame
self.p1x = p1x
self.p1y = p1y
self.p1z = p1z
self.p2x = p2x
self.p2y = p2y
self.p2z = p2z
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 3, struct.pack('<ffffffB', self.p1x, self.p1y, self.p1z, self.p2x, self.p2y, self.p2z, self.frame), force_mavlink1=force_mavlink1)
class MAVLink_attitude_quaternion_cov_message(MAVLink_message):
'''
The attitude in the aeronautical frame (right-handed, Z-down,
X-front, Y-right), expressed as quaternion. Quaternion order
is w, x, y, z and a zero rotation would be expressed as (1 0 0
0).
'''
id = MAVLINK_MSG_ID_ATTITUDE_QUATERNION_COV
name = 'ATTITUDE_QUATERNION_COV'
fieldnames = ['time_usec', 'q', 'rollspeed', 'pitchspeed', 'yawspeed', 'covariance']
ordered_fieldnames = [ 'time_usec', 'q', 'rollspeed', 'pitchspeed', 'yawspeed', 'covariance' ]
format = '<Q4ffff9f'
native_format = bytearray('<Qfffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5]
lengths = [1, 4, 1, 1, 1, 9]
array_lengths = [0, 4, 0, 0, 0, 9]
crc_extra = 167
def __init__(self, time_usec, q, rollspeed, pitchspeed, yawspeed, covariance):
MAVLink_message.__init__(self, MAVLink_attitude_quaternion_cov_message.id, MAVLink_attitude_quaternion_cov_message.name)
self._fieldnames = MAVLink_attitude_quaternion_cov_message.fieldnames
self.time_usec = time_usec
self.q = q
self.rollspeed = rollspeed
self.pitchspeed = pitchspeed
self.yawspeed = yawspeed
self.covariance = covariance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 167, struct.pack('<Q4ffff9f', self.time_usec, self.q[0], self.q[1], self.q[2], self.q[3], self.rollspeed, self.pitchspeed, self.yawspeed, self.covariance[0], self.covariance[1], self.covariance[2], self.covariance[3], self.covariance[4], self.covariance[5], self.covariance[6], self.covariance[7], self.covariance[8]), force_mavlink1=force_mavlink1)
class MAVLink_nav_controller_output_message(MAVLink_message):
'''
The state of the fixed wing navigation and position
controller.
'''
id = MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT
name = 'NAV_CONTROLLER_OUTPUT'
fieldnames = ['nav_roll', 'nav_pitch', 'nav_bearing', 'target_bearing', 'wp_dist', 'alt_error', 'aspd_error', 'xtrack_error']
ordered_fieldnames = [ 'nav_roll', 'nav_pitch', 'alt_error', 'aspd_error', 'xtrack_error', 'nav_bearing', 'target_bearing', 'wp_dist' ]
format = '<fffffhhH'
native_format = bytearray('<fffffhhH', 'ascii')
orders = [0, 1, 5, 6, 7, 2, 3, 4]
lengths = [1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 183
def __init__(self, nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error):
MAVLink_message.__init__(self, MAVLink_nav_controller_output_message.id, MAVLink_nav_controller_output_message.name)
self._fieldnames = MAVLink_nav_controller_output_message.fieldnames
self.nav_roll = nav_roll
self.nav_pitch = nav_pitch
self.nav_bearing = nav_bearing
self.target_bearing = target_bearing
self.wp_dist = wp_dist
self.alt_error = alt_error
self.aspd_error = aspd_error
self.xtrack_error = xtrack_error
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 183, struct.pack('<fffffhhH', self.nav_roll, self.nav_pitch, self.alt_error, self.aspd_error, self.xtrack_error, self.nav_bearing, self.target_bearing, self.wp_dist), force_mavlink1=force_mavlink1)
class MAVLink_global_position_int_cov_message(MAVLink_message):
'''
The filtered global position (e.g. fused GPS and
accelerometers). The position is in GPS-frame (right-handed,
Z-up). It is designed as scaled integer message since the
resolution of float is not sufficient. NOTE: This message is
intended for onboard networks / companion computers and
higher-bandwidth links and optimized for accuracy and
completeness. Please use the GLOBAL_POSITION_INT message for a
minimal subset.
'''
id = MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV
name = 'GLOBAL_POSITION_INT_COV'
fieldnames = ['time_usec', 'estimator_type', 'lat', 'lon', 'alt', 'relative_alt', 'vx', 'vy', 'vz', 'covariance']
ordered_fieldnames = [ 'time_usec', 'lat', 'lon', 'alt', 'relative_alt', 'vx', 'vy', 'vz', 'covariance', 'estimator_type' ]
format = '<Qiiiifff36fB'
native_format = bytearray('<QiiiiffffB', 'ascii')
orders = [0, 9, 1, 2, 3, 4, 5, 6, 7, 8]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 36, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 36, 0]
crc_extra = 119
def __init__(self, time_usec, estimator_type, lat, lon, alt, relative_alt, vx, vy, vz, covariance):
MAVLink_message.__init__(self, MAVLink_global_position_int_cov_message.id, MAVLink_global_position_int_cov_message.name)
self._fieldnames = MAVLink_global_position_int_cov_message.fieldnames
self.time_usec = time_usec
self.estimator_type = estimator_type
self.lat = lat
self.lon = lon
self.alt = alt
self.relative_alt = relative_alt
self.vx = vx
self.vy = vy
self.vz = vz
self.covariance = covariance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 119, struct.pack('<Qiiiifff36fB', self.time_usec, self.lat, self.lon, self.alt, self.relative_alt, self.vx, self.vy, self.vz, self.covariance[0], self.covariance[1], self.covariance[2], self.covariance[3], self.covariance[4], self.covariance[5], self.covariance[6], self.covariance[7], self.covariance[8], self.covariance[9], self.covariance[10], self.covariance[11], self.covariance[12], self.covariance[13], self.covariance[14], self.covariance[15], self.covariance[16], self.covariance[17], self.covariance[18], self.covariance[19], self.covariance[20], self.covariance[21], self.covariance[22], self.covariance[23], self.covariance[24], self.covariance[25], self.covariance[26], self.covariance[27], self.covariance[28], self.covariance[29], self.covariance[30], self.covariance[31], self.covariance[32], self.covariance[33], self.covariance[34], self.covariance[35], self.estimator_type), force_mavlink1=force_mavlink1)
class MAVLink_local_position_ned_cov_message(MAVLink_message):
'''
The filtered local position (e.g. fused computer vision and
accelerometers). Coordinate frame is right-handed, Z-axis down
(aeronautical frame, NED / north-east-down convention)
'''
id = MAVLINK_MSG_ID_LOCAL_POSITION_NED_COV
name = 'LOCAL_POSITION_NED_COV'
fieldnames = ['time_usec', 'estimator_type', 'x', 'y', 'z', 'vx', 'vy', 'vz', 'ax', 'ay', 'az', 'covariance']
ordered_fieldnames = [ 'time_usec', 'x', 'y', 'z', 'vx', 'vy', 'vz', 'ax', 'ay', 'az', 'covariance', 'estimator_type' ]
format = '<Qfffffffff45fB'
native_format = bytearray('<QffffffffffB', 'ascii')
orders = [0, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 45, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 45, 0]
crc_extra = 191
def __init__(self, time_usec, estimator_type, x, y, z, vx, vy, vz, ax, ay, az, covariance):
MAVLink_message.__init__(self, MAVLink_local_position_ned_cov_message.id, MAVLink_local_position_ned_cov_message.name)
self._fieldnames = MAVLink_local_position_ned_cov_message.fieldnames
self.time_usec = time_usec
self.estimator_type = estimator_type
self.x = x
self.y = y
self.z = z
self.vx = vx
self.vy = vy
self.vz = vz
self.ax = ax
self.ay = ay
self.az = az
self.covariance = covariance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 191, struct.pack('<Qfffffffff45fB', self.time_usec, self.x, self.y, self.z, self.vx, self.vy, self.vz, self.ax, self.ay, self.az, self.covariance[0], self.covariance[1], self.covariance[2], self.covariance[3], self.covariance[4], self.covariance[5], self.covariance[6], self.covariance[7], self.covariance[8], self.covariance[9], self.covariance[10], self.covariance[11], self.covariance[12], self.covariance[13], self.covariance[14], self.covariance[15], self.covariance[16], self.covariance[17], self.covariance[18], self.covariance[19], self.covariance[20], self.covariance[21], self.covariance[22], self.covariance[23], self.covariance[24], self.covariance[25], self.covariance[26], self.covariance[27], self.covariance[28], self.covariance[29], self.covariance[30], self.covariance[31], self.covariance[32], self.covariance[33], self.covariance[34], self.covariance[35], self.covariance[36], self.covariance[37], self.covariance[38], self.covariance[39], self.covariance[40], self.covariance[41], self.covariance[42], self.covariance[43], self.covariance[44], self.estimator_type), force_mavlink1=force_mavlink1)
class MAVLink_rc_channels_message(MAVLink_message):
'''
The PPM values of the RC channels received. The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%. A value of UINT16_MAX implies the channel
is unused. Individual receivers/transmitters might violate
this specification.
'''
id = MAVLINK_MSG_ID_RC_CHANNELS
name = 'RC_CHANNELS'
fieldnames = ['time_boot_ms', 'chancount', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'chan9_raw', 'chan10_raw', 'chan11_raw', 'chan12_raw', 'chan13_raw', 'chan14_raw', 'chan15_raw', 'chan16_raw', 'chan17_raw', 'chan18_raw', 'rssi']
ordered_fieldnames = [ 'time_boot_ms', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'chan9_raw', 'chan10_raw', 'chan11_raw', 'chan12_raw', 'chan13_raw', 'chan14_raw', 'chan15_raw', 'chan16_raw', 'chan17_raw', 'chan18_raw', 'chancount', 'rssi' ]
format = '<IHHHHHHHHHHHHHHHHHHBB'
native_format = bytearray('<IHHHHHHHHHHHHHHHHHHBB', 'ascii')
orders = [0, 19, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 118
def __init__(self, time_boot_ms, chancount, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, chan13_raw, chan14_raw, chan15_raw, chan16_raw, chan17_raw, chan18_raw, rssi):
MAVLink_message.__init__(self, MAVLink_rc_channels_message.id, MAVLink_rc_channels_message.name)
self._fieldnames = MAVLink_rc_channels_message.fieldnames
self.time_boot_ms = time_boot_ms
self.chancount = chancount
self.chan1_raw = chan1_raw
self.chan2_raw = chan2_raw
self.chan3_raw = chan3_raw
self.chan4_raw = chan4_raw
self.chan5_raw = chan5_raw
self.chan6_raw = chan6_raw
self.chan7_raw = chan7_raw
self.chan8_raw = chan8_raw
self.chan9_raw = chan9_raw
self.chan10_raw = chan10_raw
self.chan11_raw = chan11_raw
self.chan12_raw = chan12_raw
self.chan13_raw = chan13_raw
self.chan14_raw = chan14_raw
self.chan15_raw = chan15_raw
self.chan16_raw = chan16_raw
self.chan17_raw = chan17_raw
self.chan18_raw = chan18_raw
self.rssi = rssi
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 118, struct.pack('<IHHHHHHHHHHHHHHHHHHBB', self.time_boot_ms, self.chan1_raw, self.chan2_raw, self.chan3_raw, self.chan4_raw, self.chan5_raw, self.chan6_raw, self.chan7_raw, self.chan8_raw, self.chan9_raw, self.chan10_raw, self.chan11_raw, self.chan12_raw, self.chan13_raw, self.chan14_raw, self.chan15_raw, self.chan16_raw, self.chan17_raw, self.chan18_raw, self.chancount, self.rssi), force_mavlink1=force_mavlink1)
class MAVLink_request_data_stream_message(MAVLink_message):
'''
Request a data stream.
'''
id = MAVLINK_MSG_ID_REQUEST_DATA_STREAM
name = 'REQUEST_DATA_STREAM'
fieldnames = ['target_system', 'target_component', 'req_stream_id', 'req_message_rate', 'start_stop']
ordered_fieldnames = [ 'req_message_rate', 'target_system', 'target_component', 'req_stream_id', 'start_stop' ]
format = '<HBBBB'
native_format = bytearray('<HBBBB', 'ascii')
orders = [1, 2, 3, 0, 4]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0]
crc_extra = 148
def __init__(self, target_system, target_component, req_stream_id, req_message_rate, start_stop):
MAVLink_message.__init__(self, MAVLink_request_data_stream_message.id, MAVLink_request_data_stream_message.name)
self._fieldnames = MAVLink_request_data_stream_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.req_stream_id = req_stream_id
self.req_message_rate = req_message_rate
self.start_stop = start_stop
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 148, struct.pack('<HBBBB', self.req_message_rate, self.target_system, self.target_component, self.req_stream_id, self.start_stop), force_mavlink1=force_mavlink1)
class MAVLink_data_stream_message(MAVLink_message):
'''
Data stream status information.
'''
id = MAVLINK_MSG_ID_DATA_STREAM
name = 'DATA_STREAM'
fieldnames = ['stream_id', 'message_rate', 'on_off']
ordered_fieldnames = [ 'message_rate', 'stream_id', 'on_off' ]
format = '<HBB'
native_format = bytearray('<HBB', 'ascii')
orders = [1, 0, 2]
lengths = [1, 1, 1]
array_lengths = [0, 0, 0]
crc_extra = 21
def __init__(self, stream_id, message_rate, on_off):
MAVLink_message.__init__(self, MAVLink_data_stream_message.id, MAVLink_data_stream_message.name)
self._fieldnames = MAVLink_data_stream_message.fieldnames
self.stream_id = stream_id
self.message_rate = message_rate
self.on_off = on_off
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 21, struct.pack('<HBB', self.message_rate, self.stream_id, self.on_off), force_mavlink1=force_mavlink1)
class MAVLink_manual_control_message(MAVLink_message):
'''
This message provides an API for manually controlling the
vehicle using standard joystick axes nomenclature, along with
a joystick-like input device. Unused axes can be disabled an
buttons are also transmit as boolean values of their
'''
id = MAVLINK_MSG_ID_MANUAL_CONTROL
name = 'MANUAL_CONTROL'
fieldnames = ['target', 'x', 'y', 'z', 'r', 'buttons']
ordered_fieldnames = [ 'x', 'y', 'z', 'r', 'buttons', 'target' ]
format = '<hhhhHB'
native_format = bytearray('<hhhhHB', 'ascii')
orders = [5, 0, 1, 2, 3, 4]
lengths = [1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0]
crc_extra = 243
def __init__(self, target, x, y, z, r, buttons):
MAVLink_message.__init__(self, MAVLink_manual_control_message.id, MAVLink_manual_control_message.name)
self._fieldnames = MAVLink_manual_control_message.fieldnames
self.target = target
self.x = x
self.y = y
self.z = z
self.r = r
self.buttons = buttons
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 243, struct.pack('<hhhhHB', self.x, self.y, self.z, self.r, self.buttons, self.target), force_mavlink1=force_mavlink1)
class MAVLink_rc_channels_override_message(MAVLink_message):
'''
The RAW values of the RC channels sent to the MAV to override
info received from the RC radio. A value of UINT16_MAX means
no change to that channel. A value of 0 means control of that
channel should be released back to the RC radio. The standard
PPM modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%. Individual receivers/transmitters might
violate this specification.
'''
id = MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE
name = 'RC_CHANNELS_OVERRIDE'
fieldnames = ['target_system', 'target_component', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'chan9_raw', 'chan10_raw', 'chan11_raw', 'chan12_raw', 'chan13_raw', 'chan14_raw', 'chan15_raw', 'chan16_raw', 'chan17_raw', 'chan18_raw']
ordered_fieldnames = [ 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'target_system', 'target_component', 'chan9_raw', 'chan10_raw', 'chan11_raw', 'chan12_raw', 'chan13_raw', 'chan14_raw', 'chan15_raw', 'chan16_raw', 'chan17_raw', 'chan18_raw' ]
format = '<HHHHHHHHBBHHHHHHHHHH'
native_format = bytearray('<HHHHHHHHBBHHHHHHHHHH', 'ascii')
orders = [8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 124
def __init__(self, target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw=0, chan10_raw=0, chan11_raw=0, chan12_raw=0, chan13_raw=0, chan14_raw=0, chan15_raw=0, chan16_raw=0, chan17_raw=0, chan18_raw=0):
MAVLink_message.__init__(self, MAVLink_rc_channels_override_message.id, MAVLink_rc_channels_override_message.name)
self._fieldnames = MAVLink_rc_channels_override_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.chan1_raw = chan1_raw
self.chan2_raw = chan2_raw
self.chan3_raw = chan3_raw
self.chan4_raw = chan4_raw
self.chan5_raw = chan5_raw
self.chan6_raw = chan6_raw
self.chan7_raw = chan7_raw
self.chan8_raw = chan8_raw
self.chan9_raw = chan9_raw
self.chan10_raw = chan10_raw
self.chan11_raw = chan11_raw
self.chan12_raw = chan12_raw
self.chan13_raw = chan13_raw
self.chan14_raw = chan14_raw
self.chan15_raw = chan15_raw
self.chan16_raw = chan16_raw
self.chan17_raw = chan17_raw
self.chan18_raw = chan18_raw
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 124, struct.pack('<HHHHHHHHBBHHHHHHHHHH', self.chan1_raw, self.chan2_raw, self.chan3_raw, self.chan4_raw, self.chan5_raw, self.chan6_raw, self.chan7_raw, self.chan8_raw, self.target_system, self.target_component, self.chan9_raw, self.chan10_raw, self.chan11_raw, self.chan12_raw, self.chan13_raw, self.chan14_raw, self.chan15_raw, self.chan16_raw, self.chan17_raw, self.chan18_raw), force_mavlink1=force_mavlink1)
class MAVLink_mission_item_int_message(MAVLink_message):
'''
Message encoding a mission item. This message is emitted to
announce the presence of a mission item and to
set a mission item on the system. The mission item can be
either in x, y, z meters (type: LOCAL) or x:lat, y:lon,
z:altitude. Local frame is Z-down, right handed (NED), global
frame is Z-up, right handed (ENU). See also
https://mavlink.io/en/protocol/mission.html.
'''
id = MAVLINK_MSG_ID_MISSION_ITEM_INT
name = 'MISSION_ITEM_INT'
fieldnames = ['target_system', 'target_component', 'seq', 'frame', 'command', 'current', 'autocontinue', 'param1', 'param2', 'param3', 'param4', 'x', 'y', 'z', 'mission_type']
ordered_fieldnames = [ 'param1', 'param2', 'param3', 'param4', 'x', 'y', 'z', 'seq', 'command', 'target_system', 'target_component', 'frame', 'current', 'autocontinue', 'mission_type' ]
format = '<ffffiifHHBBBBBB'
native_format = bytearray('<ffffiifHHBBBBBB', 'ascii')
orders = [9, 10, 7, 11, 8, 12, 13, 0, 1, 2, 3, 4, 5, 6, 14]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 38
def __init__(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, mission_type=0):
MAVLink_message.__init__(self, MAVLink_mission_item_int_message.id, MAVLink_mission_item_int_message.name)
self._fieldnames = MAVLink_mission_item_int_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.seq = seq
self.frame = frame
self.command = command
self.current = current
self.autocontinue = autocontinue
self.param1 = param1
self.param2 = param2
self.param3 = param3
self.param4 = param4
self.x = x
self.y = y
self.z = z
self.mission_type = mission_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 38, struct.pack('<ffffiifHHBBBBBB', self.param1, self.param2, self.param3, self.param4, self.x, self.y, self.z, self.seq, self.command, self.target_system, self.target_component, self.frame, self.current, self.autocontinue, self.mission_type), force_mavlink1=force_mavlink1)
class MAVLink_vfr_hud_message(MAVLink_message):
'''
Metrics typically displayed on a HUD for fixed wing aircraft
'''
id = MAVLINK_MSG_ID_VFR_HUD
name = 'VFR_HUD'
fieldnames = ['airspeed', 'groundspeed', 'heading', 'throttle', 'alt', 'climb']
ordered_fieldnames = [ 'airspeed', 'groundspeed', 'alt', 'climb', 'heading', 'throttle' ]
format = '<ffffhH'
native_format = bytearray('<ffffhH', 'ascii')
orders = [0, 1, 4, 5, 2, 3]
lengths = [1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0]
crc_extra = 20
def __init__(self, airspeed, groundspeed, heading, throttle, alt, climb):
MAVLink_message.__init__(self, MAVLink_vfr_hud_message.id, MAVLink_vfr_hud_message.name)
self._fieldnames = MAVLink_vfr_hud_message.fieldnames
self.airspeed = airspeed
self.groundspeed = groundspeed
self.heading = heading
self.throttle = throttle
self.alt = alt
self.climb = climb
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 20, struct.pack('<ffffhH', self.airspeed, self.groundspeed, self.alt, self.climb, self.heading, self.throttle), force_mavlink1=force_mavlink1)
class MAVLink_command_int_message(MAVLink_message):
'''
Message encoding a command with parameters as scaled integers.
Scaling depends on the actual command value.
'''
id = MAVLINK_MSG_ID_COMMAND_INT
name = 'COMMAND_INT'
fieldnames = ['target_system', 'target_component', 'frame', 'command', 'current', 'autocontinue', 'param1', 'param2', 'param3', 'param4', 'x', 'y', 'z']
ordered_fieldnames = [ 'param1', 'param2', 'param3', 'param4', 'x', 'y', 'z', 'command', 'target_system', 'target_component', 'frame', 'current', 'autocontinue' ]
format = '<ffffiifHBBBBB'
native_format = bytearray('<ffffiifHBBBBB', 'ascii')
orders = [8, 9, 10, 7, 11, 12, 0, 1, 2, 3, 4, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 158
def __init__(self, target_system, target_component, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z):
MAVLink_message.__init__(self, MAVLink_command_int_message.id, MAVLink_command_int_message.name)
self._fieldnames = MAVLink_command_int_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.frame = frame
self.command = command
self.current = current
self.autocontinue = autocontinue
self.param1 = param1
self.param2 = param2
self.param3 = param3
self.param4 = param4
self.x = x
self.y = y
self.z = z
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 158, struct.pack('<ffffiifHBBBBB', self.param1, self.param2, self.param3, self.param4, self.x, self.y, self.z, self.command, self.target_system, self.target_component, self.frame, self.current, self.autocontinue), force_mavlink1=force_mavlink1)
class MAVLink_command_long_message(MAVLink_message):
'''
Send a command with up to seven parameters to the MAV
'''
id = MAVLINK_MSG_ID_COMMAND_LONG
name = 'COMMAND_LONG'
fieldnames = ['target_system', 'target_component', 'command', 'confirmation', 'param1', 'param2', 'param3', 'param4', 'param5', 'param6', 'param7']
ordered_fieldnames = [ 'param1', 'param2', 'param3', 'param4', 'param5', 'param6', 'param7', 'command', 'target_system', 'target_component', 'confirmation' ]
format = '<fffffffHBBB'
native_format = bytearray('<fffffffHBBB', 'ascii')
orders = [8, 9, 7, 10, 0, 1, 2, 3, 4, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 152
def __init__(self, target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7):
MAVLink_message.__init__(self, MAVLink_command_long_message.id, MAVLink_command_long_message.name)
self._fieldnames = MAVLink_command_long_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.command = command
self.confirmation = confirmation
self.param1 = param1
self.param2 = param2
self.param3 = param3
self.param4 = param4
self.param5 = param5
self.param6 = param6
self.param7 = param7
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 152, struct.pack('<fffffffHBBB', self.param1, self.param2, self.param3, self.param4, self.param5, self.param6, self.param7, self.command, self.target_system, self.target_component, self.confirmation), force_mavlink1=force_mavlink1)
class MAVLink_command_ack_message(MAVLink_message):
'''
Report status of a command. Includes feedback whether the
command was executed.
'''
id = MAVLINK_MSG_ID_COMMAND_ACK
name = 'COMMAND_ACK'
fieldnames = ['command', 'result', 'progress', 'result_param2', 'target_system', 'target_component']
ordered_fieldnames = [ 'command', 'result', 'progress', 'result_param2', 'target_system', 'target_component' ]
format = '<HBBiBB'
native_format = bytearray('<HBBiBB', 'ascii')
orders = [0, 1, 2, 3, 4, 5]
lengths = [1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0]
crc_extra = 143
def __init__(self, command, result, progress=0, result_param2=0, target_system=0, target_component=0):
MAVLink_message.__init__(self, MAVLink_command_ack_message.id, MAVLink_command_ack_message.name)
self._fieldnames = MAVLink_command_ack_message.fieldnames
self.command = command
self.result = result
self.progress = progress
self.result_param2 = result_param2
self.target_system = target_system
self.target_component = target_component
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 143, struct.pack('<HBBiBB', self.command, self.result, self.progress, self.result_param2, self.target_system, self.target_component), force_mavlink1=force_mavlink1)
class MAVLink_manual_setpoint_message(MAVLink_message):
'''
Setpoint in roll, pitch, yaw and thrust from the operator
'''
id = MAVLINK_MSG_ID_MANUAL_SETPOINT
name = 'MANUAL_SETPOINT'
fieldnames = ['time_boot_ms', 'roll', 'pitch', 'yaw', 'thrust', 'mode_switch', 'manual_override_switch']
ordered_fieldnames = [ 'time_boot_ms', 'roll', 'pitch', 'yaw', 'thrust', 'mode_switch', 'manual_override_switch' ]
format = '<IffffBB'
native_format = bytearray('<IffffBB', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0]
crc_extra = 106
def __init__(self, time_boot_ms, roll, pitch, yaw, thrust, mode_switch, manual_override_switch):
MAVLink_message.__init__(self, MAVLink_manual_setpoint_message.id, MAVLink_manual_setpoint_message.name)
self._fieldnames = MAVLink_manual_setpoint_message.fieldnames
self.time_boot_ms = time_boot_ms
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.thrust = thrust
self.mode_switch = mode_switch
self.manual_override_switch = manual_override_switch
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 106, struct.pack('<IffffBB', self.time_boot_ms, self.roll, self.pitch, self.yaw, self.thrust, self.mode_switch, self.manual_override_switch), force_mavlink1=force_mavlink1)
class MAVLink_set_attitude_target_message(MAVLink_message):
'''
Sets a desired vehicle attitude. Used by an external
controller to command the vehicle (manual controller or other
system).
'''
id = MAVLINK_MSG_ID_SET_ATTITUDE_TARGET
name = 'SET_ATTITUDE_TARGET'
fieldnames = ['time_boot_ms', 'target_system', 'target_component', 'type_mask', 'q', 'body_roll_rate', 'body_pitch_rate', 'body_yaw_rate', 'thrust']
ordered_fieldnames = [ 'time_boot_ms', 'q', 'body_roll_rate', 'body_pitch_rate', 'body_yaw_rate', 'thrust', 'target_system', 'target_component', 'type_mask' ]
format = '<I4fffffBBB'
native_format = bytearray('<IfffffBBB', 'ascii')
orders = [0, 6, 7, 8, 1, 2, 3, 4, 5]
lengths = [1, 4, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 4, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 49
def __init__(self, time_boot_ms, target_system, target_component, type_mask, q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust):
MAVLink_message.__init__(self, MAVLink_set_attitude_target_message.id, MAVLink_set_attitude_target_message.name)
self._fieldnames = MAVLink_set_attitude_target_message.fieldnames
self.time_boot_ms = time_boot_ms
self.target_system = target_system
self.target_component = target_component
self.type_mask = type_mask
self.q = q
self.body_roll_rate = body_roll_rate
self.body_pitch_rate = body_pitch_rate
self.body_yaw_rate = body_yaw_rate
self.thrust = thrust
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 49, struct.pack('<I4fffffBBB', self.time_boot_ms, self.q[0], self.q[1], self.q[2], self.q[3], self.body_roll_rate, self.body_pitch_rate, self.body_yaw_rate, self.thrust, self.target_system, self.target_component, self.type_mask), force_mavlink1=force_mavlink1)
class MAVLink_attitude_target_message(MAVLink_message):
'''
Reports the current commanded attitude of the vehicle as
specified by the autopilot. This should match the commands
sent in a SET_ATTITUDE_TARGET message if the vehicle is being
controlled this way.
'''
id = MAVLINK_MSG_ID_ATTITUDE_TARGET
name = 'ATTITUDE_TARGET'
fieldnames = ['time_boot_ms', 'type_mask', 'q', 'body_roll_rate', 'body_pitch_rate', 'body_yaw_rate', 'thrust']
ordered_fieldnames = [ 'time_boot_ms', 'q', 'body_roll_rate', 'body_pitch_rate', 'body_yaw_rate', 'thrust', 'type_mask' ]
format = '<I4fffffB'
native_format = bytearray('<IfffffB', 'ascii')
orders = [0, 6, 1, 2, 3, 4, 5]
lengths = [1, 4, 1, 1, 1, 1, 1]
array_lengths = [0, 4, 0, 0, 0, 0, 0]
crc_extra = 22
def __init__(self, time_boot_ms, type_mask, q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust):
MAVLink_message.__init__(self, MAVLink_attitude_target_message.id, MAVLink_attitude_target_message.name)
self._fieldnames = MAVLink_attitude_target_message.fieldnames
self.time_boot_ms = time_boot_ms
self.type_mask = type_mask
self.q = q
self.body_roll_rate = body_roll_rate
self.body_pitch_rate = body_pitch_rate
self.body_yaw_rate = body_yaw_rate
self.thrust = thrust
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 22, struct.pack('<I4fffffB', self.time_boot_ms, self.q[0], self.q[1], self.q[2], self.q[3], self.body_roll_rate, self.body_pitch_rate, self.body_yaw_rate, self.thrust, self.type_mask), force_mavlink1=force_mavlink1)
class MAVLink_set_position_target_local_ned_message(MAVLink_message):
'''
Sets a desired vehicle position in a local north-east-down
coordinate frame. Used by an external controller to command
the vehicle (manual controller or other system).
'''
id = MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED
name = 'SET_POSITION_TARGET_LOCAL_NED'
fieldnames = ['time_boot_ms', 'target_system', 'target_component', 'coordinate_frame', 'type_mask', 'x', 'y', 'z', 'vx', 'vy', 'vz', 'afx', 'afy', 'afz', 'yaw', 'yaw_rate']
ordered_fieldnames = [ 'time_boot_ms', 'x', 'y', 'z', 'vx', 'vy', 'vz', 'afx', 'afy', 'afz', 'yaw', 'yaw_rate', 'type_mask', 'target_system', 'target_component', 'coordinate_frame' ]
format = '<IfffffffffffHBBB'
native_format = bytearray('<IfffffffffffHBBB', 'ascii')
orders = [0, 13, 14, 15, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 143
def __init__(self, time_boot_ms, target_system, target_component, coordinate_frame, type_mask, x, y, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate):
MAVLink_message.__init__(self, MAVLink_set_position_target_local_ned_message.id, MAVLink_set_position_target_local_ned_message.name)
self._fieldnames = MAVLink_set_position_target_local_ned_message.fieldnames
self.time_boot_ms = time_boot_ms
self.target_system = target_system
self.target_component = target_component
self.coordinate_frame = coordinate_frame
self.type_mask = type_mask
self.x = x
self.y = y
self.z = z
self.vx = vx
self.vy = vy
self.vz = vz
self.afx = afx
self.afy = afy
self.afz = afz
self.yaw = yaw
self.yaw_rate = yaw_rate
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 143, struct.pack('<IfffffffffffHBBB', self.time_boot_ms, self.x, self.y, self.z, self.vx, self.vy, self.vz, self.afx, self.afy, self.afz, self.yaw, self.yaw_rate, self.type_mask, self.target_system, self.target_component, self.coordinate_frame), force_mavlink1=force_mavlink1)
class MAVLink_position_target_local_ned_message(MAVLink_message):
'''
Reports the current commanded vehicle position, velocity, and
acceleration as specified by the autopilot. This should match
the commands sent in SET_POSITION_TARGET_LOCAL_NED if the
vehicle is being controlled this way.
'''
id = MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED
name = 'POSITION_TARGET_LOCAL_NED'
fieldnames = ['time_boot_ms', 'coordinate_frame', 'type_mask', 'x', 'y', 'z', 'vx', 'vy', 'vz', 'afx', 'afy', 'afz', 'yaw', 'yaw_rate']
ordered_fieldnames = [ 'time_boot_ms', 'x', 'y', 'z', 'vx', 'vy', 'vz', 'afx', 'afy', 'afz', 'yaw', 'yaw_rate', 'type_mask', 'coordinate_frame' ]
format = '<IfffffffffffHB'
native_format = bytearray('<IfffffffffffHB', 'ascii')
orders = [0, 13, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 140
def __init__(self, time_boot_ms, coordinate_frame, type_mask, x, y, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate):
MAVLink_message.__init__(self, MAVLink_position_target_local_ned_message.id, MAVLink_position_target_local_ned_message.name)
self._fieldnames = MAVLink_position_target_local_ned_message.fieldnames
self.time_boot_ms = time_boot_ms
self.coordinate_frame = coordinate_frame
self.type_mask = type_mask
self.x = x
self.y = y
self.z = z
self.vx = vx
self.vy = vy
self.vz = vz
self.afx = afx
self.afy = afy
self.afz = afz
self.yaw = yaw
self.yaw_rate = yaw_rate
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 140, struct.pack('<IfffffffffffHB', self.time_boot_ms, self.x, self.y, self.z, self.vx, self.vy, self.vz, self.afx, self.afy, self.afz, self.yaw, self.yaw_rate, self.type_mask, self.coordinate_frame), force_mavlink1=force_mavlink1)
class MAVLink_set_position_target_global_int_message(MAVLink_message):
'''
Sets a desired vehicle position, velocity, and/or acceleration
in a global coordinate system (WGS84). Used by an external
controller to command the vehicle (manual controller or other
system).
'''
id = MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT
name = 'SET_POSITION_TARGET_GLOBAL_INT'
fieldnames = ['time_boot_ms', 'target_system', 'target_component', 'coordinate_frame', 'type_mask', 'lat_int', 'lon_int', 'alt', 'vx', 'vy', 'vz', 'afx', 'afy', 'afz', 'yaw', 'yaw_rate']
ordered_fieldnames = [ 'time_boot_ms', 'lat_int', 'lon_int', 'alt', 'vx', 'vy', 'vz', 'afx', 'afy', 'afz', 'yaw', 'yaw_rate', 'type_mask', 'target_system', 'target_component', 'coordinate_frame' ]
format = '<IiifffffffffHBBB'
native_format = bytearray('<IiifffffffffHBBB', 'ascii')
orders = [0, 13, 14, 15, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 5
def __init__(self, time_boot_ms, target_system, target_component, coordinate_frame, type_mask, lat_int, lon_int, alt, vx, vy, vz, afx, afy, afz, yaw, yaw_rate):
MAVLink_message.__init__(self, MAVLink_set_position_target_global_int_message.id, MAVLink_set_position_target_global_int_message.name)
self._fieldnames = MAVLink_set_position_target_global_int_message.fieldnames
self.time_boot_ms = time_boot_ms
self.target_system = target_system
self.target_component = target_component
self.coordinate_frame = coordinate_frame
self.type_mask = type_mask
self.lat_int = lat_int
self.lon_int = lon_int
self.alt = alt
self.vx = vx
self.vy = vy
self.vz = vz
self.afx = afx
self.afy = afy
self.afz = afz
self.yaw = yaw
self.yaw_rate = yaw_rate
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 5, struct.pack('<IiifffffffffHBBB', self.time_boot_ms, self.lat_int, self.lon_int, self.alt, self.vx, self.vy, self.vz, self.afx, self.afy, self.afz, self.yaw, self.yaw_rate, self.type_mask, self.target_system, self.target_component, self.coordinate_frame), force_mavlink1=force_mavlink1)
class MAVLink_position_target_global_int_message(MAVLink_message):
'''
Reports the current commanded vehicle position, velocity, and
acceleration as specified by the autopilot. This should match
the commands sent in SET_POSITION_TARGET_GLOBAL_INT if the
vehicle is being controlled this way.
'''
id = MAVLINK_MSG_ID_POSITION_TARGET_GLOBAL_INT
name = 'POSITION_TARGET_GLOBAL_INT'
fieldnames = ['time_boot_ms', 'coordinate_frame', 'type_mask', 'lat_int', 'lon_int', 'alt', 'vx', 'vy', 'vz', 'afx', 'afy', 'afz', 'yaw', 'yaw_rate']
ordered_fieldnames = [ 'time_boot_ms', 'lat_int', 'lon_int', 'alt', 'vx', 'vy', 'vz', 'afx', 'afy', 'afz', 'yaw', 'yaw_rate', 'type_mask', 'coordinate_frame' ]
format = '<IiifffffffffHB'
native_format = bytearray('<IiifffffffffHB', 'ascii')
orders = [0, 13, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 150
def __init__(self, time_boot_ms, coordinate_frame, type_mask, lat_int, lon_int, alt, vx, vy, vz, afx, afy, afz, yaw, yaw_rate):
MAVLink_message.__init__(self, MAVLink_position_target_global_int_message.id, MAVLink_position_target_global_int_message.name)
self._fieldnames = MAVLink_position_target_global_int_message.fieldnames
self.time_boot_ms = time_boot_ms
self.coordinate_frame = coordinate_frame
self.type_mask = type_mask
self.lat_int = lat_int
self.lon_int = lon_int
self.alt = alt
self.vx = vx
self.vy = vy
self.vz = vz
self.afx = afx
self.afy = afy
self.afz = afz
self.yaw = yaw
self.yaw_rate = yaw_rate
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 150, struct.pack('<IiifffffffffHB', self.time_boot_ms, self.lat_int, self.lon_int, self.alt, self.vx, self.vy, self.vz, self.afx, self.afy, self.afz, self.yaw, self.yaw_rate, self.type_mask, self.coordinate_frame), force_mavlink1=force_mavlink1)
class MAVLink_local_position_ned_system_global_offset_message(MAVLink_message):
'''
The offset in X, Y, Z and yaw between the LOCAL_POSITION_NED
messages of MAV X and the global coordinate frame in NED
coordinates. Coordinate frame is right-handed, Z-axis down
(aeronautical frame, NED / north-east-down convention)
'''
id = MAVLINK_MSG_ID_LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET
name = 'LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET'
fieldnames = ['time_boot_ms', 'x', 'y', 'z', 'roll', 'pitch', 'yaw']
ordered_fieldnames = [ 'time_boot_ms', 'x', 'y', 'z', 'roll', 'pitch', 'yaw' ]
format = '<Iffffff'
native_format = bytearray('<Iffffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0]
crc_extra = 231
def __init__(self, time_boot_ms, x, y, z, roll, pitch, yaw):
MAVLink_message.__init__(self, MAVLink_local_position_ned_system_global_offset_message.id, MAVLink_local_position_ned_system_global_offset_message.name)
self._fieldnames = MAVLink_local_position_ned_system_global_offset_message.fieldnames
self.time_boot_ms = time_boot_ms
self.x = x
self.y = y
self.z = z
self.roll = roll
self.pitch = pitch
self.yaw = yaw
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 231, struct.pack('<Iffffff', self.time_boot_ms, self.x, self.y, self.z, self.roll, self.pitch, self.yaw), force_mavlink1=force_mavlink1)
class MAVLink_hil_state_message(MAVLink_message):
'''
Sent from simulation to autopilot. This packet is useful for
high throughput applications such as hardware in the loop
simulations.
'''
id = MAVLINK_MSG_ID_HIL_STATE
name = 'HIL_STATE'
fieldnames = ['time_usec', 'roll', 'pitch', 'yaw', 'rollspeed', 'pitchspeed', 'yawspeed', 'lat', 'lon', 'alt', 'vx', 'vy', 'vz', 'xacc', 'yacc', 'zacc']
ordered_fieldnames = [ 'time_usec', 'roll', 'pitch', 'yaw', 'rollspeed', 'pitchspeed', 'yawspeed', 'lat', 'lon', 'alt', 'vx', 'vy', 'vz', 'xacc', 'yacc', 'zacc' ]
format = '<Qffffffiiihhhhhh'
native_format = bytearray('<Qffffffiiihhhhhh', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 183
def __init__(self, time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc):
MAVLink_message.__init__(self, MAVLink_hil_state_message.id, MAVLink_hil_state_message.name)
self._fieldnames = MAVLink_hil_state_message.fieldnames
self.time_usec = time_usec
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.rollspeed = rollspeed
self.pitchspeed = pitchspeed
self.yawspeed = yawspeed
self.lat = lat
self.lon = lon
self.alt = alt
self.vx = vx
self.vy = vy
self.vz = vz
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 183, struct.pack('<Qffffffiiihhhhhh', self.time_usec, self.roll, self.pitch, self.yaw, self.rollspeed, self.pitchspeed, self.yawspeed, self.lat, self.lon, self.alt, self.vx, self.vy, self.vz, self.xacc, self.yacc, self.zacc), force_mavlink1=force_mavlink1)
class MAVLink_hil_controls_message(MAVLink_message):
'''
Sent from autopilot to simulation. Hardware in the loop
control outputs
'''
id = MAVLINK_MSG_ID_HIL_CONTROLS
name = 'HIL_CONTROLS'
fieldnames = ['time_usec', 'roll_ailerons', 'pitch_elevator', 'yaw_rudder', 'throttle', 'aux1', 'aux2', 'aux3', 'aux4', 'mode', 'nav_mode']
ordered_fieldnames = [ 'time_usec', 'roll_ailerons', 'pitch_elevator', 'yaw_rudder', 'throttle', 'aux1', 'aux2', 'aux3', 'aux4', 'mode', 'nav_mode' ]
format = '<QffffffffBB'
native_format = bytearray('<QffffffffBB', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 63
def __init__(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode):
MAVLink_message.__init__(self, MAVLink_hil_controls_message.id, MAVLink_hil_controls_message.name)
self._fieldnames = MAVLink_hil_controls_message.fieldnames
self.time_usec = time_usec
self.roll_ailerons = roll_ailerons
self.pitch_elevator = pitch_elevator
self.yaw_rudder = yaw_rudder
self.throttle = throttle
self.aux1 = aux1
self.aux2 = aux2
self.aux3 = aux3
self.aux4 = aux4
self.mode = mode
self.nav_mode = nav_mode
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 63, struct.pack('<QffffffffBB', self.time_usec, self.roll_ailerons, self.pitch_elevator, self.yaw_rudder, self.throttle, self.aux1, self.aux2, self.aux3, self.aux4, self.mode, self.nav_mode), force_mavlink1=force_mavlink1)
class MAVLink_hil_rc_inputs_raw_message(MAVLink_message):
'''
Sent from simulation to autopilot. The RAW values of the RC
channels received. The standard PPM modulation is as follows:
1000 microseconds: 0%, 2000 microseconds: 100%. Individual
receivers/transmitters might violate this specification.
'''
id = MAVLINK_MSG_ID_HIL_RC_INPUTS_RAW
name = 'HIL_RC_INPUTS_RAW'
fieldnames = ['time_usec', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'chan9_raw', 'chan10_raw', 'chan11_raw', 'chan12_raw', 'rssi']
ordered_fieldnames = [ 'time_usec', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'chan9_raw', 'chan10_raw', 'chan11_raw', 'chan12_raw', 'rssi' ]
format = '<QHHHHHHHHHHHHB'
native_format = bytearray('<QHHHHHHHHHHHHB', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 54
def __init__(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi):
MAVLink_message.__init__(self, MAVLink_hil_rc_inputs_raw_message.id, MAVLink_hil_rc_inputs_raw_message.name)
self._fieldnames = MAVLink_hil_rc_inputs_raw_message.fieldnames
self.time_usec = time_usec
self.chan1_raw = chan1_raw
self.chan2_raw = chan2_raw
self.chan3_raw = chan3_raw
self.chan4_raw = chan4_raw
self.chan5_raw = chan5_raw
self.chan6_raw = chan6_raw
self.chan7_raw = chan7_raw
self.chan8_raw = chan8_raw
self.chan9_raw = chan9_raw
self.chan10_raw = chan10_raw
self.chan11_raw = chan11_raw
self.chan12_raw = chan12_raw
self.rssi = rssi
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 54, struct.pack('<QHHHHHHHHHHHHB', self.time_usec, self.chan1_raw, self.chan2_raw, self.chan3_raw, self.chan4_raw, self.chan5_raw, self.chan6_raw, self.chan7_raw, self.chan8_raw, self.chan9_raw, self.chan10_raw, self.chan11_raw, self.chan12_raw, self.rssi), force_mavlink1=force_mavlink1)
class MAVLink_hil_actuator_controls_message(MAVLink_message):
'''
Sent from autopilot to simulation. Hardware in the loop
control outputs (replacement for HIL_CONTROLS)
'''
id = MAVLINK_MSG_ID_HIL_ACTUATOR_CONTROLS
name = 'HIL_ACTUATOR_CONTROLS'
fieldnames = ['time_usec', 'controls', 'mode', 'flags']
ordered_fieldnames = [ 'time_usec', 'flags', 'controls', 'mode' ]
format = '<QQ16fB'
native_format = bytearray('<QQfB', 'ascii')
orders = [0, 2, 3, 1]
lengths = [1, 1, 16, 1]
array_lengths = [0, 0, 16, 0]
crc_extra = 47
def __init__(self, time_usec, controls, mode, flags):
MAVLink_message.__init__(self, MAVLink_hil_actuator_controls_message.id, MAVLink_hil_actuator_controls_message.name)
self._fieldnames = MAVLink_hil_actuator_controls_message.fieldnames
self.time_usec = time_usec
self.controls = controls
self.mode = mode
self.flags = flags
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 47, struct.pack('<QQ16fB', self.time_usec, self.flags, self.controls[0], self.controls[1], self.controls[2], self.controls[3], self.controls[4], self.controls[5], self.controls[6], self.controls[7], self.controls[8], self.controls[9], self.controls[10], self.controls[11], self.controls[12], self.controls[13], self.controls[14], self.controls[15], self.mode), force_mavlink1=force_mavlink1)
class MAVLink_optical_flow_message(MAVLink_message):
'''
Optical flow from a flow sensor (e.g. optical mouse sensor)
'''
id = MAVLINK_MSG_ID_OPTICAL_FLOW
name = 'OPTICAL_FLOW'
fieldnames = ['time_usec', 'sensor_id', 'flow_x', 'flow_y', 'flow_comp_m_x', 'flow_comp_m_y', 'quality', 'ground_distance', 'flow_rate_x', 'flow_rate_y']
ordered_fieldnames = [ 'time_usec', 'flow_comp_m_x', 'flow_comp_m_y', 'ground_distance', 'flow_x', 'flow_y', 'sensor_id', 'quality', 'flow_rate_x', 'flow_rate_y' ]
format = '<QfffhhBBff'
native_format = bytearray('<QfffhhBBff', 'ascii')
orders = [0, 6, 4, 5, 1, 2, 7, 3, 8, 9]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 175
def __init__(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance, flow_rate_x=0, flow_rate_y=0):
MAVLink_message.__init__(self, MAVLink_optical_flow_message.id, MAVLink_optical_flow_message.name)
self._fieldnames = MAVLink_optical_flow_message.fieldnames
self.time_usec = time_usec
self.sensor_id = sensor_id
self.flow_x = flow_x
self.flow_y = flow_y
self.flow_comp_m_x = flow_comp_m_x
self.flow_comp_m_y = flow_comp_m_y
self.quality = quality
self.ground_distance = ground_distance
self.flow_rate_x = flow_rate_x
self.flow_rate_y = flow_rate_y
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 175, struct.pack('<QfffhhBBff', self.time_usec, self.flow_comp_m_x, self.flow_comp_m_y, self.ground_distance, self.flow_x, self.flow_y, self.sensor_id, self.quality, self.flow_rate_x, self.flow_rate_y), force_mavlink1=force_mavlink1)
class MAVLink_global_vision_position_estimate_message(MAVLink_message):
'''
'''
id = MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE
name = 'GLOBAL_VISION_POSITION_ESTIMATE'
fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw', 'covariance']
ordered_fieldnames = [ 'usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw', 'covariance' ]
format = '<Qffffff21f'
native_format = bytearray('<Qfffffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7]
lengths = [1, 1, 1, 1, 1, 1, 1, 21]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 21]
crc_extra = 102
def __init__(self, usec, x, y, z, roll, pitch, yaw, covariance=0):
MAVLink_message.__init__(self, MAVLink_global_vision_position_estimate_message.id, MAVLink_global_vision_position_estimate_message.name)
self._fieldnames = MAVLink_global_vision_position_estimate_message.fieldnames
self.usec = usec
self.x = x
self.y = y
self.z = z
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.covariance = covariance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 102, struct.pack('<Qffffff21f', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw, self.covariance[0], self.covariance[1], self.covariance[2], self.covariance[3], self.covariance[4], self.covariance[5], self.covariance[6], self.covariance[7], self.covariance[8], self.covariance[9], self.covariance[10], self.covariance[11], self.covariance[12], self.covariance[13], self.covariance[14], self.covariance[15], self.covariance[16], self.covariance[17], self.covariance[18], self.covariance[19], self.covariance[20]), force_mavlink1=force_mavlink1)
class MAVLink_vision_position_estimate_message(MAVLink_message):
'''
'''
id = MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE
name = 'VISION_POSITION_ESTIMATE'
fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw', 'covariance']
ordered_fieldnames = [ 'usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw', 'covariance' ]
format = '<Qffffff21f'
native_format = bytearray('<Qfffffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7]
lengths = [1, 1, 1, 1, 1, 1, 1, 21]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 21]
crc_extra = 158
def __init__(self, usec, x, y, z, roll, pitch, yaw, covariance=0):
MAVLink_message.__init__(self, MAVLink_vision_position_estimate_message.id, MAVLink_vision_position_estimate_message.name)
self._fieldnames = MAVLink_vision_position_estimate_message.fieldnames
self.usec = usec
self.x = x
self.y = y
self.z = z
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.covariance = covariance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 158, struct.pack('<Qffffff21f', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw, self.covariance[0], self.covariance[1], self.covariance[2], self.covariance[3], self.covariance[4], self.covariance[5], self.covariance[6], self.covariance[7], self.covariance[8], self.covariance[9], self.covariance[10], self.covariance[11], self.covariance[12], self.covariance[13], self.covariance[14], self.covariance[15], self.covariance[16], self.covariance[17], self.covariance[18], self.covariance[19], self.covariance[20]), force_mavlink1=force_mavlink1)
class MAVLink_vision_speed_estimate_message(MAVLink_message):
'''
'''
id = MAVLINK_MSG_ID_VISION_SPEED_ESTIMATE
name = 'VISION_SPEED_ESTIMATE'
fieldnames = ['usec', 'x', 'y', 'z', 'covariance']
ordered_fieldnames = [ 'usec', 'x', 'y', 'z', 'covariance' ]
format = '<Qfff9f'
native_format = bytearray('<Qffff', 'ascii')
orders = [0, 1, 2, 3, 4]
lengths = [1, 1, 1, 1, 9]
array_lengths = [0, 0, 0, 0, 9]
crc_extra = 208
def __init__(self, usec, x, y, z, covariance=0):
MAVLink_message.__init__(self, MAVLink_vision_speed_estimate_message.id, MAVLink_vision_speed_estimate_message.name)
self._fieldnames = MAVLink_vision_speed_estimate_message.fieldnames
self.usec = usec
self.x = x
self.y = y
self.z = z
self.covariance = covariance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 208, struct.pack('<Qfff9f', self.usec, self.x, self.y, self.z, self.covariance[0], self.covariance[1], self.covariance[2], self.covariance[3], self.covariance[4], self.covariance[5], self.covariance[6], self.covariance[7], self.covariance[8]), force_mavlink1=force_mavlink1)
class MAVLink_vicon_position_estimate_message(MAVLink_message):
'''
'''
id = MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE
name = 'VICON_POSITION_ESTIMATE'
fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw', 'covariance']
ordered_fieldnames = [ 'usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw', 'covariance' ]
format = '<Qffffff21f'
native_format = bytearray('<Qfffffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7]
lengths = [1, 1, 1, 1, 1, 1, 1, 21]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 21]
crc_extra = 56
def __init__(self, usec, x, y, z, roll, pitch, yaw, covariance=0):
MAVLink_message.__init__(self, MAVLink_vicon_position_estimate_message.id, MAVLink_vicon_position_estimate_message.name)
self._fieldnames = MAVLink_vicon_position_estimate_message.fieldnames
self.usec = usec
self.x = x
self.y = y
self.z = z
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.covariance = covariance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 56, struct.pack('<Qffffff21f', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw, self.covariance[0], self.covariance[1], self.covariance[2], self.covariance[3], self.covariance[4], self.covariance[5], self.covariance[6], self.covariance[7], self.covariance[8], self.covariance[9], self.covariance[10], self.covariance[11], self.covariance[12], self.covariance[13], self.covariance[14], self.covariance[15], self.covariance[16], self.covariance[17], self.covariance[18], self.covariance[19], self.covariance[20]), force_mavlink1=force_mavlink1)
class MAVLink_highres_imu_message(MAVLink_message):
'''
The IMU readings in SI units in NED body frame
'''
id = MAVLINK_MSG_ID_HIGHRES_IMU
name = 'HIGHRES_IMU'
fieldnames = ['time_usec', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag', 'abs_pressure', 'diff_pressure', 'pressure_alt', 'temperature', 'fields_updated']
ordered_fieldnames = [ 'time_usec', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag', 'abs_pressure', 'diff_pressure', 'pressure_alt', 'temperature', 'fields_updated' ]
format = '<QfffffffffffffH'
native_format = bytearray('<QfffffffffffffH', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 93
def __init__(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated):
MAVLink_message.__init__(self, MAVLink_highres_imu_message.id, MAVLink_highres_imu_message.name)
self._fieldnames = MAVLink_highres_imu_message.fieldnames
self.time_usec = time_usec
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
self.xgyro = xgyro
self.ygyro = ygyro
self.zgyro = zgyro
self.xmag = xmag
self.ymag = ymag
self.zmag = zmag
self.abs_pressure = abs_pressure
self.diff_pressure = diff_pressure
self.pressure_alt = pressure_alt
self.temperature = temperature
self.fields_updated = fields_updated
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 93, struct.pack('<QfffffffffffffH', self.time_usec, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag, self.abs_pressure, self.diff_pressure, self.pressure_alt, self.temperature, self.fields_updated), force_mavlink1=force_mavlink1)
class MAVLink_optical_flow_rad_message(MAVLink_message):
'''
Optical flow from an angular rate flow sensor (e.g. PX4FLOW or
mouse sensor)
'''
id = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD
name = 'OPTICAL_FLOW_RAD'
fieldnames = ['time_usec', 'sensor_id', 'integration_time_us', 'integrated_x', 'integrated_y', 'integrated_xgyro', 'integrated_ygyro', 'integrated_zgyro', 'temperature', 'quality', 'time_delta_distance_us', 'distance']
ordered_fieldnames = [ 'time_usec', 'integration_time_us', 'integrated_x', 'integrated_y', 'integrated_xgyro', 'integrated_ygyro', 'integrated_zgyro', 'time_delta_distance_us', 'distance', 'temperature', 'sensor_id', 'quality' ]
format = '<QIfffffIfhBB'
native_format = bytearray('<QIfffffIfhBB', 'ascii')
orders = [0, 10, 1, 2, 3, 4, 5, 6, 9, 11, 7, 8]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 138
def __init__(self, time_usec, sensor_id, integration_time_us, integrated_x, integrated_y, integrated_xgyro, integrated_ygyro, integrated_zgyro, temperature, quality, time_delta_distance_us, distance):
MAVLink_message.__init__(self, MAVLink_optical_flow_rad_message.id, MAVLink_optical_flow_rad_message.name)
self._fieldnames = MAVLink_optical_flow_rad_message.fieldnames
self.time_usec = time_usec
self.sensor_id = sensor_id
self.integration_time_us = integration_time_us
self.integrated_x = integrated_x
self.integrated_y = integrated_y
self.integrated_xgyro = integrated_xgyro
self.integrated_ygyro = integrated_ygyro
self.integrated_zgyro = integrated_zgyro
self.temperature = temperature
self.quality = quality
self.time_delta_distance_us = time_delta_distance_us
self.distance = distance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 138, struct.pack('<QIfffffIfhBB', self.time_usec, self.integration_time_us, self.integrated_x, self.integrated_y, self.integrated_xgyro, self.integrated_ygyro, self.integrated_zgyro, self.time_delta_distance_us, self.distance, self.temperature, self.sensor_id, self.quality), force_mavlink1=force_mavlink1)
class MAVLink_hil_sensor_message(MAVLink_message):
'''
The IMU readings in SI units in NED body frame
'''
id = MAVLINK_MSG_ID_HIL_SENSOR
name = 'HIL_SENSOR'
fieldnames = ['time_usec', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag', 'abs_pressure', 'diff_pressure', 'pressure_alt', 'temperature', 'fields_updated']
ordered_fieldnames = [ 'time_usec', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag', 'abs_pressure', 'diff_pressure', 'pressure_alt', 'temperature', 'fields_updated' ]
format = '<QfffffffffffffI'
native_format = bytearray('<QfffffffffffffI', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 108
def __init__(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated):
MAVLink_message.__init__(self, MAVLink_hil_sensor_message.id, MAVLink_hil_sensor_message.name)
self._fieldnames = MAVLink_hil_sensor_message.fieldnames
self.time_usec = time_usec
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
self.xgyro = xgyro
self.ygyro = ygyro
self.zgyro = zgyro
self.xmag = xmag
self.ymag = ymag
self.zmag = zmag
self.abs_pressure = abs_pressure
self.diff_pressure = diff_pressure
self.pressure_alt = pressure_alt
self.temperature = temperature
self.fields_updated = fields_updated
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 108, struct.pack('<QfffffffffffffI', self.time_usec, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag, self.abs_pressure, self.diff_pressure, self.pressure_alt, self.temperature, self.fields_updated), force_mavlink1=force_mavlink1)
class MAVLink_sim_state_message(MAVLink_message):
'''
Status of simulation environment, if used
'''
id = MAVLINK_MSG_ID_SIM_STATE
name = 'SIM_STATE'
fieldnames = ['q1', 'q2', 'q3', 'q4', 'roll', 'pitch', 'yaw', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'lat', 'lon', 'alt', 'std_dev_horz', 'std_dev_vert', 'vn', 've', 'vd']
ordered_fieldnames = [ 'q1', 'q2', 'q3', 'q4', 'roll', 'pitch', 'yaw', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'lat', 'lon', 'alt', 'std_dev_horz', 'std_dev_vert', 'vn', 've', 'vd' ]
format = '<fffffffffffffffffffff'
native_format = bytearray('<fffffffffffffffffffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 32
def __init__(self, q1, q2, q3, q4, roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro, lat, lon, alt, std_dev_horz, std_dev_vert, vn, ve, vd):
MAVLink_message.__init__(self, MAVLink_sim_state_message.id, MAVLink_sim_state_message.name)
self._fieldnames = MAVLink_sim_state_message.fieldnames
self.q1 = q1
self.q2 = q2
self.q3 = q3
self.q4 = q4
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
self.xgyro = xgyro
self.ygyro = ygyro
self.zgyro = zgyro
self.lat = lat
self.lon = lon
self.alt = alt
self.std_dev_horz = std_dev_horz
self.std_dev_vert = std_dev_vert
self.vn = vn
self.ve = ve
self.vd = vd
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 32, struct.pack('<fffffffffffffffffffff', self.q1, self.q2, self.q3, self.q4, self.roll, self.pitch, self.yaw, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.lat, self.lon, self.alt, self.std_dev_horz, self.std_dev_vert, self.vn, self.ve, self.vd), force_mavlink1=force_mavlink1)
class MAVLink_radio_status_message(MAVLink_message):
'''
Status generated by radio and injected into MAVLink stream.
'''
id = MAVLINK_MSG_ID_RADIO_STATUS
name = 'RADIO_STATUS'
fieldnames = ['rssi', 'remrssi', 'txbuf', 'noise', 'remnoise', 'rxerrors', 'fixed']
ordered_fieldnames = [ 'rxerrors', 'fixed', 'rssi', 'remrssi', 'txbuf', 'noise', 'remnoise' ]
format = '<HHBBBBB'
native_format = bytearray('<HHBBBBB', 'ascii')
orders = [2, 3, 4, 5, 6, 0, 1]
lengths = [1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0]
crc_extra = 185
def __init__(self, rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed):
MAVLink_message.__init__(self, MAVLink_radio_status_message.id, MAVLink_radio_status_message.name)
self._fieldnames = MAVLink_radio_status_message.fieldnames
self.rssi = rssi
self.remrssi = remrssi
self.txbuf = txbuf
self.noise = noise
self.remnoise = remnoise
self.rxerrors = rxerrors
self.fixed = fixed
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 185, struct.pack('<HHBBBBB', self.rxerrors, self.fixed, self.rssi, self.remrssi, self.txbuf, self.noise, self.remnoise), force_mavlink1=force_mavlink1)
class MAVLink_file_transfer_protocol_message(MAVLink_message):
'''
File transfer message
'''
id = MAVLINK_MSG_ID_FILE_TRANSFER_PROTOCOL
name = 'FILE_TRANSFER_PROTOCOL'
fieldnames = ['target_network', 'target_system', 'target_component', 'payload']
ordered_fieldnames = [ 'target_network', 'target_system', 'target_component', 'payload' ]
format = '<BBB251B'
native_format = bytearray('<BBBB', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 251]
array_lengths = [0, 0, 0, 251]
crc_extra = 84
def __init__(self, target_network, target_system, target_component, payload):
MAVLink_message.__init__(self, MAVLink_file_transfer_protocol_message.id, MAVLink_file_transfer_protocol_message.name)
self._fieldnames = MAVLink_file_transfer_protocol_message.fieldnames
self.target_network = target_network
self.target_system = target_system
self.target_component = target_component
self.payload = payload
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 84, struct.pack('<BBB251B', self.target_network, self.target_system, self.target_component, self.payload[0], self.payload[1], self.payload[2], self.payload[3], self.payload[4], self.payload[5], self.payload[6], self.payload[7], self.payload[8], self.payload[9], self.payload[10], self.payload[11], self.payload[12], self.payload[13], self.payload[14], self.payload[15], self.payload[16], self.payload[17], self.payload[18], self.payload[19], self.payload[20], self.payload[21], self.payload[22], self.payload[23], self.payload[24], self.payload[25], self.payload[26], self.payload[27], self.payload[28], self.payload[29], self.payload[30], self.payload[31], self.payload[32], self.payload[33], self.payload[34], self.payload[35], self.payload[36], self.payload[37], self.payload[38], self.payload[39], self.payload[40], self.payload[41], self.payload[42], self.payload[43], self.payload[44], self.payload[45], self.payload[46], self.payload[47], self.payload[48], self.payload[49], self.payload[50], self.payload[51], self.payload[52], self.payload[53], self.payload[54], self.payload[55], self.payload[56], self.payload[57], self.payload[58], self.payload[59], self.payload[60], self.payload[61], self.payload[62], self.payload[63], self.payload[64], self.payload[65], self.payload[66], self.payload[67], self.payload[68], self.payload[69], self.payload[70], self.payload[71], self.payload[72], self.payload[73], self.payload[74], self.payload[75], self.payload[76], self.payload[77], self.payload[78], self.payload[79], self.payload[80], self.payload[81], self.payload[82], self.payload[83], self.payload[84], self.payload[85], self.payload[86], self.payload[87], self.payload[88], self.payload[89], self.payload[90], self.payload[91], self.payload[92], self.payload[93], self.payload[94], self.payload[95], self.payload[96], self.payload[97], self.payload[98], self.payload[99], self.payload[100], self.payload[101], self.payload[102], self.payload[103], self.payload[104], self.payload[105], self.payload[106], self.payload[107], self.payload[108], self.payload[109], self.payload[110], self.payload[111], self.payload[112], self.payload[113], self.payload[114], self.payload[115], self.payload[116], self.payload[117], self.payload[118], self.payload[119], self.payload[120], self.payload[121], self.payload[122], self.payload[123], self.payload[124], self.payload[125], self.payload[126], self.payload[127], self.payload[128], self.payload[129], self.payload[130], self.payload[131], self.payload[132], self.payload[133], self.payload[134], self.payload[135], self.payload[136], self.payload[137], self.payload[138], self.payload[139], self.payload[140], self.payload[141], self.payload[142], self.payload[143], self.payload[144], self.payload[145], self.payload[146], self.payload[147], self.payload[148], self.payload[149], self.payload[150], self.payload[151], self.payload[152], self.payload[153], self.payload[154], self.payload[155], self.payload[156], self.payload[157], self.payload[158], self.payload[159], self.payload[160], self.payload[161], self.payload[162], self.payload[163], self.payload[164], self.payload[165], self.payload[166], self.payload[167], self.payload[168], self.payload[169], self.payload[170], self.payload[171], self.payload[172], self.payload[173], self.payload[174], self.payload[175], self.payload[176], self.payload[177], self.payload[178], self.payload[179], self.payload[180], self.payload[181], self.payload[182], self.payload[183], self.payload[184], self.payload[185], self.payload[186], self.payload[187], self.payload[188], self.payload[189], self.payload[190], self.payload[191], self.payload[192], self.payload[193], self.payload[194], self.payload[195], self.payload[196], self.payload[197], self.payload[198], self.payload[199], self.payload[200], self.payload[201], self.payload[202], self.payload[203], self.payload[204], self.payload[205], self.payload[206], self.payload[207], self.payload[208], self.payload[209], self.payload[210], self.payload[211], self.payload[212], self.payload[213], self.payload[214], self.payload[215], self.payload[216], self.payload[217], self.payload[218], self.payload[219], self.payload[220], self.payload[221], self.payload[222], self.payload[223], self.payload[224], self.payload[225], self.payload[226], self.payload[227], self.payload[228], self.payload[229], self.payload[230], self.payload[231], self.payload[232], self.payload[233], self.payload[234], self.payload[235], self.payload[236], self.payload[237], self.payload[238], self.payload[239], self.payload[240], self.payload[241], self.payload[242], self.payload[243], self.payload[244], self.payload[245], self.payload[246], self.payload[247], self.payload[248], self.payload[249], self.payload[250]), force_mavlink1=force_mavlink1)
class MAVLink_timesync_message(MAVLink_message):
'''
Time synchronization message.
'''
id = MAVLINK_MSG_ID_TIMESYNC
name = 'TIMESYNC'
fieldnames = ['tc1', 'ts1']
ordered_fieldnames = [ 'tc1', 'ts1' ]
format = '<qq'
native_format = bytearray('<qq', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [0, 0]
crc_extra = 34
def __init__(self, tc1, ts1):
MAVLink_message.__init__(self, MAVLink_timesync_message.id, MAVLink_timesync_message.name)
self._fieldnames = MAVLink_timesync_message.fieldnames
self.tc1 = tc1
self.ts1 = ts1
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 34, struct.pack('<qq', self.tc1, self.ts1), force_mavlink1=force_mavlink1)
class MAVLink_camera_trigger_message(MAVLink_message):
'''
Camera-IMU triggering and synchronisation message.
'''
id = MAVLINK_MSG_ID_CAMERA_TRIGGER
name = 'CAMERA_TRIGGER'
fieldnames = ['time_usec', 'seq']
ordered_fieldnames = [ 'time_usec', 'seq' ]
format = '<QI'
native_format = bytearray('<QI', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [0, 0]
crc_extra = 174
def __init__(self, time_usec, seq):
MAVLink_message.__init__(self, MAVLink_camera_trigger_message.id, MAVLink_camera_trigger_message.name)
self._fieldnames = MAVLink_camera_trigger_message.fieldnames
self.time_usec = time_usec
self.seq = seq
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 174, struct.pack('<QI', self.time_usec, self.seq), force_mavlink1=force_mavlink1)
class MAVLink_hil_gps_message(MAVLink_message):
'''
The global position, as returned by the Global Positioning
System (GPS). This is NOT the global position
estimate of the sytem, but rather a RAW sensor value. See
message GLOBAL_POSITION for the global position estimate.
'''
id = MAVLINK_MSG_ID_HIL_GPS
name = 'HIL_GPS'
fieldnames = ['time_usec', 'fix_type', 'lat', 'lon', 'alt', 'eph', 'epv', 'vel', 'vn', 've', 'vd', 'cog', 'satellites_visible']
ordered_fieldnames = [ 'time_usec', 'lat', 'lon', 'alt', 'eph', 'epv', 'vel', 'vn', 've', 'vd', 'cog', 'fix_type', 'satellites_visible' ]
format = '<QiiiHHHhhhHBB'
native_format = bytearray('<QiiiHHHhhhHBB', 'ascii')
orders = [0, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 124
def __init__(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, vn, ve, vd, cog, satellites_visible):
MAVLink_message.__init__(self, MAVLink_hil_gps_message.id, MAVLink_hil_gps_message.name)
self._fieldnames = MAVLink_hil_gps_message.fieldnames
self.time_usec = time_usec
self.fix_type = fix_type
self.lat = lat
self.lon = lon
self.alt = alt
self.eph = eph
self.epv = epv
self.vel = vel
self.vn = vn
self.ve = ve
self.vd = vd
self.cog = cog
self.satellites_visible = satellites_visible
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 124, struct.pack('<QiiiHHHhhhHBB', self.time_usec, self.lat, self.lon, self.alt, self.eph, self.epv, self.vel, self.vn, self.ve, self.vd, self.cog, self.fix_type, self.satellites_visible), force_mavlink1=force_mavlink1)
class MAVLink_hil_optical_flow_message(MAVLink_message):
'''
Simulated optical flow from a flow sensor (e.g. PX4FLOW or
optical mouse sensor)
'''
id = MAVLINK_MSG_ID_HIL_OPTICAL_FLOW
name = 'HIL_OPTICAL_FLOW'
fieldnames = ['time_usec', 'sensor_id', 'integration_time_us', 'integrated_x', 'integrated_y', 'integrated_xgyro', 'integrated_ygyro', 'integrated_zgyro', 'temperature', 'quality', 'time_delta_distance_us', 'distance']
ordered_fieldnames = [ 'time_usec', 'integration_time_us', 'integrated_x', 'integrated_y', 'integrated_xgyro', 'integrated_ygyro', 'integrated_zgyro', 'time_delta_distance_us', 'distance', 'temperature', 'sensor_id', 'quality' ]
format = '<QIfffffIfhBB'
native_format = bytearray('<QIfffffIfhBB', 'ascii')
orders = [0, 10, 1, 2, 3, 4, 5, 6, 9, 11, 7, 8]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 237
def __init__(self, time_usec, sensor_id, integration_time_us, integrated_x, integrated_y, integrated_xgyro, integrated_ygyro, integrated_zgyro, temperature, quality, time_delta_distance_us, distance):
MAVLink_message.__init__(self, MAVLink_hil_optical_flow_message.id, MAVLink_hil_optical_flow_message.name)
self._fieldnames = MAVLink_hil_optical_flow_message.fieldnames
self.time_usec = time_usec
self.sensor_id = sensor_id
self.integration_time_us = integration_time_us
self.integrated_x = integrated_x
self.integrated_y = integrated_y
self.integrated_xgyro = integrated_xgyro
self.integrated_ygyro = integrated_ygyro
self.integrated_zgyro = integrated_zgyro
self.temperature = temperature
self.quality = quality
self.time_delta_distance_us = time_delta_distance_us
self.distance = distance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 237, struct.pack('<QIfffffIfhBB', self.time_usec, self.integration_time_us, self.integrated_x, self.integrated_y, self.integrated_xgyro, self.integrated_ygyro, self.integrated_zgyro, self.time_delta_distance_us, self.distance, self.temperature, self.sensor_id, self.quality), force_mavlink1=force_mavlink1)
class MAVLink_hil_state_quaternion_message(MAVLink_message):
'''
Sent from simulation to autopilot, avoids in contrast to
HIL_STATE singularities. This packet is useful for high
throughput applications such as hardware in the loop
simulations.
'''
id = MAVLINK_MSG_ID_HIL_STATE_QUATERNION
name = 'HIL_STATE_QUATERNION'
fieldnames = ['time_usec', 'attitude_quaternion', 'rollspeed', 'pitchspeed', 'yawspeed', 'lat', 'lon', 'alt', 'vx', 'vy', 'vz', 'ind_airspeed', 'true_airspeed', 'xacc', 'yacc', 'zacc']
ordered_fieldnames = [ 'time_usec', 'attitude_quaternion', 'rollspeed', 'pitchspeed', 'yawspeed', 'lat', 'lon', 'alt', 'vx', 'vy', 'vz', 'ind_airspeed', 'true_airspeed', 'xacc', 'yacc', 'zacc' ]
format = '<Q4ffffiiihhhHHhhh'
native_format = bytearray('<QffffiiihhhHHhhh', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
lengths = [1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 4
def __init__(self, time_usec, attitude_quaternion, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, ind_airspeed, true_airspeed, xacc, yacc, zacc):
MAVLink_message.__init__(self, MAVLink_hil_state_quaternion_message.id, MAVLink_hil_state_quaternion_message.name)
self._fieldnames = MAVLink_hil_state_quaternion_message.fieldnames
self.time_usec = time_usec
self.attitude_quaternion = attitude_quaternion
self.rollspeed = rollspeed
self.pitchspeed = pitchspeed
self.yawspeed = yawspeed
self.lat = lat
self.lon = lon
self.alt = alt
self.vx = vx
self.vy = vy
self.vz = vz
self.ind_airspeed = ind_airspeed
self.true_airspeed = true_airspeed
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 4, struct.pack('<Q4ffffiiihhhHHhhh', self.time_usec, self.attitude_quaternion[0], self.attitude_quaternion[1], self.attitude_quaternion[2], self.attitude_quaternion[3], self.rollspeed, self.pitchspeed, self.yawspeed, self.lat, self.lon, self.alt, self.vx, self.vy, self.vz, self.ind_airspeed, self.true_airspeed, self.xacc, self.yacc, self.zacc), force_mavlink1=force_mavlink1)
class MAVLink_scaled_imu2_message(MAVLink_message):
'''
The RAW IMU readings for secondary 9DOF sensor setup. This
message should contain the scaled values to the described
units
'''
id = MAVLINK_MSG_ID_SCALED_IMU2
name = 'SCALED_IMU2'
fieldnames = ['time_boot_ms', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag']
ordered_fieldnames = [ 'time_boot_ms', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag' ]
format = '<Ihhhhhhhhh'
native_format = bytearray('<Ihhhhhhhhh', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 76
def __init__(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
MAVLink_message.__init__(self, MAVLink_scaled_imu2_message.id, MAVLink_scaled_imu2_message.name)
self._fieldnames = MAVLink_scaled_imu2_message.fieldnames
self.time_boot_ms = time_boot_ms
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
self.xgyro = xgyro
self.ygyro = ygyro
self.zgyro = zgyro
self.xmag = xmag
self.ymag = ymag
self.zmag = zmag
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 76, struct.pack('<Ihhhhhhhhh', self.time_boot_ms, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag), force_mavlink1=force_mavlink1)
class MAVLink_log_request_list_message(MAVLink_message):
'''
Request a list of available logs. On some systems calling this
may stop on-board logging until LOG_REQUEST_END is called.
'''
id = MAVLINK_MSG_ID_LOG_REQUEST_LIST
name = 'LOG_REQUEST_LIST'
fieldnames = ['target_system', 'target_component', 'start', 'end']
ordered_fieldnames = [ 'start', 'end', 'target_system', 'target_component' ]
format = '<HHBB'
native_format = bytearray('<HHBB', 'ascii')
orders = [2, 3, 0, 1]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 128
def __init__(self, target_system, target_component, start, end):
MAVLink_message.__init__(self, MAVLink_log_request_list_message.id, MAVLink_log_request_list_message.name)
self._fieldnames = MAVLink_log_request_list_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.start = start
self.end = end
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 128, struct.pack('<HHBB', self.start, self.end, self.target_system, self.target_component), force_mavlink1=force_mavlink1)
class MAVLink_log_entry_message(MAVLink_message):
'''
Reply to LOG_REQUEST_LIST
'''
id = MAVLINK_MSG_ID_LOG_ENTRY
name = 'LOG_ENTRY'
fieldnames = ['id', 'num_logs', 'last_log_num', 'time_utc', 'size']
ordered_fieldnames = [ 'time_utc', 'size', 'id', 'num_logs', 'last_log_num' ]
format = '<IIHHH'
native_format = bytearray('<IIHHH', 'ascii')
orders = [2, 3, 4, 0, 1]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0]
crc_extra = 56
def __init__(self, id, num_logs, last_log_num, time_utc, size):
MAVLink_message.__init__(self, MAVLink_log_entry_message.id, MAVLink_log_entry_message.name)
self._fieldnames = MAVLink_log_entry_message.fieldnames
self.id = id
self.num_logs = num_logs
self.last_log_num = last_log_num
self.time_utc = time_utc
self.size = size
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 56, struct.pack('<IIHHH', self.time_utc, self.size, self.id, self.num_logs, self.last_log_num), force_mavlink1=force_mavlink1)
class MAVLink_log_request_data_message(MAVLink_message):
'''
Request a chunk of a log
'''
id = MAVLINK_MSG_ID_LOG_REQUEST_DATA
name = 'LOG_REQUEST_DATA'
fieldnames = ['target_system', 'target_component', 'id', 'ofs', 'count']
ordered_fieldnames = [ 'ofs', 'count', 'id', 'target_system', 'target_component' ]
format = '<IIHBB'
native_format = bytearray('<IIHBB', 'ascii')
orders = [3, 4, 2, 0, 1]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0]
crc_extra = 116
def __init__(self, target_system, target_component, id, ofs, count):
MAVLink_message.__init__(self, MAVLink_log_request_data_message.id, MAVLink_log_request_data_message.name)
self._fieldnames = MAVLink_log_request_data_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.id = id
self.ofs = ofs
self.count = count
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 116, struct.pack('<IIHBB', self.ofs, self.count, self.id, self.target_system, self.target_component), force_mavlink1=force_mavlink1)
class MAVLink_log_data_message(MAVLink_message):
'''
Reply to LOG_REQUEST_DATA
'''
id = MAVLINK_MSG_ID_LOG_DATA
name = 'LOG_DATA'
fieldnames = ['id', 'ofs', 'count', 'data']
ordered_fieldnames = [ 'ofs', 'id', 'count', 'data' ]
format = '<IHB90B'
native_format = bytearray('<IHBB', 'ascii')
orders = [1, 0, 2, 3]
lengths = [1, 1, 1, 90]
array_lengths = [0, 0, 0, 90]
crc_extra = 134
def __init__(self, id, ofs, count, data):
MAVLink_message.__init__(self, MAVLink_log_data_message.id, MAVLink_log_data_message.name)
self._fieldnames = MAVLink_log_data_message.fieldnames
self.id = id
self.ofs = ofs
self.count = count
self.data = data
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 134, struct.pack('<IHB90B', self.ofs, self.id, self.count, self.data[0], self.data[1], self.data[2], self.data[3], self.data[4], self.data[5], self.data[6], self.data[7], self.data[8], self.data[9], self.data[10], self.data[11], self.data[12], self.data[13], self.data[14], self.data[15], self.data[16], self.data[17], self.data[18], self.data[19], self.data[20], self.data[21], self.data[22], self.data[23], self.data[24], self.data[25], self.data[26], self.data[27], self.data[28], self.data[29], self.data[30], self.data[31], self.data[32], self.data[33], self.data[34], self.data[35], self.data[36], self.data[37], self.data[38], self.data[39], self.data[40], self.data[41], self.data[42], self.data[43], self.data[44], self.data[45], self.data[46], self.data[47], self.data[48], self.data[49], self.data[50], self.data[51], self.data[52], self.data[53], self.data[54], self.data[55], self.data[56], self.data[57], self.data[58], self.data[59], self.data[60], self.data[61], self.data[62], self.data[63], self.data[64], self.data[65], self.data[66], self.data[67], self.data[68], self.data[69], self.data[70], self.data[71], self.data[72], self.data[73], self.data[74], self.data[75], self.data[76], self.data[77], self.data[78], self.data[79], self.data[80], self.data[81], self.data[82], self.data[83], self.data[84], self.data[85], self.data[86], self.data[87], self.data[88], self.data[89]), force_mavlink1=force_mavlink1)
class MAVLink_log_erase_message(MAVLink_message):
'''
Erase all logs
'''
id = MAVLINK_MSG_ID_LOG_ERASE
name = 'LOG_ERASE'
fieldnames = ['target_system', 'target_component']
ordered_fieldnames = [ 'target_system', 'target_component' ]
format = '<BB'
native_format = bytearray('<BB', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [0, 0]
crc_extra = 237
def __init__(self, target_system, target_component):
MAVLink_message.__init__(self, MAVLink_log_erase_message.id, MAVLink_log_erase_message.name)
self._fieldnames = MAVLink_log_erase_message.fieldnames
self.target_system = target_system
self.target_component = target_component
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 237, struct.pack('<BB', self.target_system, self.target_component), force_mavlink1=force_mavlink1)
class MAVLink_log_request_end_message(MAVLink_message):
'''
Stop log transfer and resume normal logging
'''
id = MAVLINK_MSG_ID_LOG_REQUEST_END
name = 'LOG_REQUEST_END'
fieldnames = ['target_system', 'target_component']
ordered_fieldnames = [ 'target_system', 'target_component' ]
format = '<BB'
native_format = bytearray('<BB', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [0, 0]
crc_extra = 203
def __init__(self, target_system, target_component):
MAVLink_message.__init__(self, MAVLink_log_request_end_message.id, MAVLink_log_request_end_message.name)
self._fieldnames = MAVLink_log_request_end_message.fieldnames
self.target_system = target_system
self.target_component = target_component
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 203, struct.pack('<BB', self.target_system, self.target_component), force_mavlink1=force_mavlink1)
class MAVLink_gps_inject_data_message(MAVLink_message):
'''
data for injecting into the onboard GPS (used for DGPS)
'''
id = MAVLINK_MSG_ID_GPS_INJECT_DATA
name = 'GPS_INJECT_DATA'
fieldnames = ['target_system', 'target_component', 'len', 'data']
ordered_fieldnames = [ 'target_system', 'target_component', 'len', 'data' ]
format = '<BBB110B'
native_format = bytearray('<BBBB', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 110]
array_lengths = [0, 0, 0, 110]
crc_extra = 250
def __init__(self, target_system, target_component, len, data):
MAVLink_message.__init__(self, MAVLink_gps_inject_data_message.id, MAVLink_gps_inject_data_message.name)
self._fieldnames = MAVLink_gps_inject_data_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.len = len
self.data = data
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 250, struct.pack('<BBB110B', self.target_system, self.target_component, self.len, self.data[0], self.data[1], self.data[2], self.data[3], self.data[4], self.data[5], self.data[6], self.data[7], self.data[8], self.data[9], self.data[10], self.data[11], self.data[12], self.data[13], self.data[14], self.data[15], self.data[16], self.data[17], self.data[18], self.data[19], self.data[20], self.data[21], self.data[22], self.data[23], self.data[24], self.data[25], self.data[26], self.data[27], self.data[28], self.data[29], self.data[30], self.data[31], self.data[32], self.data[33], self.data[34], self.data[35], self.data[36], self.data[37], self.data[38], self.data[39], self.data[40], self.data[41], self.data[42], self.data[43], self.data[44], self.data[45], self.data[46], self.data[47], self.data[48], self.data[49], self.data[50], self.data[51], self.data[52], self.data[53], self.data[54], self.data[55], self.data[56], self.data[57], self.data[58], self.data[59], self.data[60], self.data[61], self.data[62], self.data[63], self.data[64], self.data[65], self.data[66], self.data[67], self.data[68], self.data[69], self.data[70], self.data[71], self.data[72], self.data[73], self.data[74], self.data[75], self.data[76], self.data[77], self.data[78], self.data[79], self.data[80], self.data[81], self.data[82], self.data[83], self.data[84], self.data[85], self.data[86], self.data[87], self.data[88], self.data[89], self.data[90], self.data[91], self.data[92], self.data[93], self.data[94], self.data[95], self.data[96], self.data[97], self.data[98], self.data[99], self.data[100], self.data[101], self.data[102], self.data[103], self.data[104], self.data[105], self.data[106], self.data[107], self.data[108], self.data[109]), force_mavlink1=force_mavlink1)
class MAVLink_gps2_raw_message(MAVLink_message):
'''
Second GPS data.
'''
id = MAVLINK_MSG_ID_GPS2_RAW
name = 'GPS2_RAW'
fieldnames = ['time_usec', 'fix_type', 'lat', 'lon', 'alt', 'eph', 'epv', 'vel', 'cog', 'satellites_visible', 'dgps_numch', 'dgps_age']
ordered_fieldnames = [ 'time_usec', 'lat', 'lon', 'alt', 'dgps_age', 'eph', 'epv', 'vel', 'cog', 'fix_type', 'satellites_visible', 'dgps_numch' ]
format = '<QiiiIHHHHBBB'
native_format = bytearray('<QiiiIHHHHBBB', 'ascii')
orders = [0, 9, 1, 2, 3, 5, 6, 7, 8, 10, 11, 4]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 87
def __init__(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible, dgps_numch, dgps_age):
MAVLink_message.__init__(self, MAVLink_gps2_raw_message.id, MAVLink_gps2_raw_message.name)
self._fieldnames = MAVLink_gps2_raw_message.fieldnames
self.time_usec = time_usec
self.fix_type = fix_type
self.lat = lat
self.lon = lon
self.alt = alt
self.eph = eph
self.epv = epv
self.vel = vel
self.cog = cog
self.satellites_visible = satellites_visible
self.dgps_numch = dgps_numch
self.dgps_age = dgps_age
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 87, struct.pack('<QiiiIHHHHBBB', self.time_usec, self.lat, self.lon, self.alt, self.dgps_age, self.eph, self.epv, self.vel, self.cog, self.fix_type, self.satellites_visible, self.dgps_numch), force_mavlink1=force_mavlink1)
class MAVLink_power_status_message(MAVLink_message):
'''
Power supply status
'''
id = MAVLINK_MSG_ID_POWER_STATUS
name = 'POWER_STATUS'
fieldnames = ['Vcc', 'Vservo', 'flags']
ordered_fieldnames = [ 'Vcc', 'Vservo', 'flags' ]
format = '<HHH'
native_format = bytearray('<HHH', 'ascii')
orders = [0, 1, 2]
lengths = [1, 1, 1]
array_lengths = [0, 0, 0]
crc_extra = 203
def __init__(self, Vcc, Vservo, flags):
MAVLink_message.__init__(self, MAVLink_power_status_message.id, MAVLink_power_status_message.name)
self._fieldnames = MAVLink_power_status_message.fieldnames
self.Vcc = Vcc
self.Vservo = Vservo
self.flags = flags
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 203, struct.pack('<HHH', self.Vcc, self.Vservo, self.flags), force_mavlink1=force_mavlink1)
class MAVLink_serial_control_message(MAVLink_message):
'''
Control a serial port. This can be used for raw access to an
onboard serial peripheral such as a GPS or telemetry radio. It
is designed to make it possible to update the devices firmware
via MAVLink messages or change the devices settings. A message
with zero bytes can be used to change just the baudrate.
'''
id = MAVLINK_MSG_ID_SERIAL_CONTROL
name = 'SERIAL_CONTROL'
fieldnames = ['device', 'flags', 'timeout', 'baudrate', 'count', 'data']
ordered_fieldnames = [ 'baudrate', 'timeout', 'device', 'flags', 'count', 'data' ]
format = '<IHBBB70B'
native_format = bytearray('<IHBBBB', 'ascii')
orders = [2, 3, 1, 0, 4, 5]
lengths = [1, 1, 1, 1, 1, 70]
array_lengths = [0, 0, 0, 0, 0, 70]
crc_extra = 220
def __init__(self, device, flags, timeout, baudrate, count, data):
MAVLink_message.__init__(self, MAVLink_serial_control_message.id, MAVLink_serial_control_message.name)
self._fieldnames = MAVLink_serial_control_message.fieldnames
self.device = device
self.flags = flags
self.timeout = timeout
self.baudrate = baudrate
self.count = count
self.data = data
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 220, struct.pack('<IHBBB70B', self.baudrate, self.timeout, self.device, self.flags, self.count, self.data[0], self.data[1], self.data[2], self.data[3], self.data[4], self.data[5], self.data[6], self.data[7], self.data[8], self.data[9], self.data[10], self.data[11], self.data[12], self.data[13], self.data[14], self.data[15], self.data[16], self.data[17], self.data[18], self.data[19], self.data[20], self.data[21], self.data[22], self.data[23], self.data[24], self.data[25], self.data[26], self.data[27], self.data[28], self.data[29], self.data[30], self.data[31], self.data[32], self.data[33], self.data[34], self.data[35], self.data[36], self.data[37], self.data[38], self.data[39], self.data[40], self.data[41], self.data[42], self.data[43], self.data[44], self.data[45], self.data[46], self.data[47], self.data[48], self.data[49], self.data[50], self.data[51], self.data[52], self.data[53], self.data[54], self.data[55], self.data[56], self.data[57], self.data[58], self.data[59], self.data[60], self.data[61], self.data[62], self.data[63], self.data[64], self.data[65], self.data[66], self.data[67], self.data[68], self.data[69]), force_mavlink1=force_mavlink1)
class MAVLink_gps_rtk_message(MAVLink_message):
'''
RTK GPS data. Gives information on the relative baseline
calculation the GPS is reporting
'''
id = MAVLINK_MSG_ID_GPS_RTK
name = 'GPS_RTK'
fieldnames = ['time_last_baseline_ms', 'rtk_receiver_id', 'wn', 'tow', 'rtk_health', 'rtk_rate', 'nsats', 'baseline_coords_type', 'baseline_a_mm', 'baseline_b_mm', 'baseline_c_mm', 'accuracy', 'iar_num_hypotheses']
ordered_fieldnames = [ 'time_last_baseline_ms', 'tow', 'baseline_a_mm', 'baseline_b_mm', 'baseline_c_mm', 'accuracy', 'iar_num_hypotheses', 'wn', 'rtk_receiver_id', 'rtk_health', 'rtk_rate', 'nsats', 'baseline_coords_type' ]
format = '<IIiiiIiHBBBBB'
native_format = bytearray('<IIiiiIiHBBBBB', 'ascii')
orders = [0, 8, 7, 1, 9, 10, 11, 12, 2, 3, 4, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 25
def __init__(self, time_last_baseline_ms, rtk_receiver_id, wn, tow, rtk_health, rtk_rate, nsats, baseline_coords_type, baseline_a_mm, baseline_b_mm, baseline_c_mm, accuracy, iar_num_hypotheses):
MAVLink_message.__init__(self, MAVLink_gps_rtk_message.id, MAVLink_gps_rtk_message.name)
self._fieldnames = MAVLink_gps_rtk_message.fieldnames
self.time_last_baseline_ms = time_last_baseline_ms
self.rtk_receiver_id = rtk_receiver_id
self.wn = wn
self.tow = tow
self.rtk_health = rtk_health
self.rtk_rate = rtk_rate
self.nsats = nsats
self.baseline_coords_type = baseline_coords_type
self.baseline_a_mm = baseline_a_mm
self.baseline_b_mm = baseline_b_mm
self.baseline_c_mm = baseline_c_mm
self.accuracy = accuracy
self.iar_num_hypotheses = iar_num_hypotheses
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 25, struct.pack('<IIiiiIiHBBBBB', self.time_last_baseline_ms, self.tow, self.baseline_a_mm, self.baseline_b_mm, self.baseline_c_mm, self.accuracy, self.iar_num_hypotheses, self.wn, self.rtk_receiver_id, self.rtk_health, self.rtk_rate, self.nsats, self.baseline_coords_type), force_mavlink1=force_mavlink1)
class MAVLink_gps2_rtk_message(MAVLink_message):
'''
RTK GPS data. Gives information on the relative baseline
calculation the GPS is reporting
'''
id = MAVLINK_MSG_ID_GPS2_RTK
name = 'GPS2_RTK'
fieldnames = ['time_last_baseline_ms', 'rtk_receiver_id', 'wn', 'tow', 'rtk_health', 'rtk_rate', 'nsats', 'baseline_coords_type', 'baseline_a_mm', 'baseline_b_mm', 'baseline_c_mm', 'accuracy', 'iar_num_hypotheses']
ordered_fieldnames = [ 'time_last_baseline_ms', 'tow', 'baseline_a_mm', 'baseline_b_mm', 'baseline_c_mm', 'accuracy', 'iar_num_hypotheses', 'wn', 'rtk_receiver_id', 'rtk_health', 'rtk_rate', 'nsats', 'baseline_coords_type' ]
format = '<IIiiiIiHBBBBB'
native_format = bytearray('<IIiiiIiHBBBBB', 'ascii')
orders = [0, 8, 7, 1, 9, 10, 11, 12, 2, 3, 4, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 226
def __init__(self, time_last_baseline_ms, rtk_receiver_id, wn, tow, rtk_health, rtk_rate, nsats, baseline_coords_type, baseline_a_mm, baseline_b_mm, baseline_c_mm, accuracy, iar_num_hypotheses):
MAVLink_message.__init__(self, MAVLink_gps2_rtk_message.id, MAVLink_gps2_rtk_message.name)
self._fieldnames = MAVLink_gps2_rtk_message.fieldnames
self.time_last_baseline_ms = time_last_baseline_ms
self.rtk_receiver_id = rtk_receiver_id
self.wn = wn
self.tow = tow
self.rtk_health = rtk_health
self.rtk_rate = rtk_rate
self.nsats = nsats
self.baseline_coords_type = baseline_coords_type
self.baseline_a_mm = baseline_a_mm
self.baseline_b_mm = baseline_b_mm
self.baseline_c_mm = baseline_c_mm
self.accuracy = accuracy
self.iar_num_hypotheses = iar_num_hypotheses
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 226, struct.pack('<IIiiiIiHBBBBB', self.time_last_baseline_ms, self.tow, self.baseline_a_mm, self.baseline_b_mm, self.baseline_c_mm, self.accuracy, self.iar_num_hypotheses, self.wn, self.rtk_receiver_id, self.rtk_health, self.rtk_rate, self.nsats, self.baseline_coords_type), force_mavlink1=force_mavlink1)
class MAVLink_scaled_imu3_message(MAVLink_message):
'''
The RAW IMU readings for 3rd 9DOF sensor setup. This message
should contain the scaled values to the described units
'''
id = MAVLINK_MSG_ID_SCALED_IMU3
name = 'SCALED_IMU3'
fieldnames = ['time_boot_ms', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag']
ordered_fieldnames = [ 'time_boot_ms', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag' ]
format = '<Ihhhhhhhhh'
native_format = bytearray('<Ihhhhhhhhh', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 46
def __init__(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
MAVLink_message.__init__(self, MAVLink_scaled_imu3_message.id, MAVLink_scaled_imu3_message.name)
self._fieldnames = MAVLink_scaled_imu3_message.fieldnames
self.time_boot_ms = time_boot_ms
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
self.xgyro = xgyro
self.ygyro = ygyro
self.zgyro = zgyro
self.xmag = xmag
self.ymag = ymag
self.zmag = zmag
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 46, struct.pack('<Ihhhhhhhhh', self.time_boot_ms, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag), force_mavlink1=force_mavlink1)
class MAVLink_data_transmission_handshake_message(MAVLink_message):
'''
'''
id = MAVLINK_MSG_ID_DATA_TRANSMISSION_HANDSHAKE
name = 'DATA_TRANSMISSION_HANDSHAKE'
fieldnames = ['type', 'size', 'width', 'height', 'packets', 'payload', 'jpg_quality']
ordered_fieldnames = [ 'size', 'width', 'height', 'packets', 'type', 'payload', 'jpg_quality' ]
format = '<IHHHBBB'
native_format = bytearray('<IHHHBBB', 'ascii')
orders = [4, 0, 1, 2, 3, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0]
crc_extra = 29
def __init__(self, type, size, width, height, packets, payload, jpg_quality):
MAVLink_message.__init__(self, MAVLink_data_transmission_handshake_message.id, MAVLink_data_transmission_handshake_message.name)
self._fieldnames = MAVLink_data_transmission_handshake_message.fieldnames
self.type = type
self.size = size
self.width = width
self.height = height
self.packets = packets
self.payload = payload
self.jpg_quality = jpg_quality
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 29, struct.pack('<IHHHBBB', self.size, self.width, self.height, self.packets, self.type, self.payload, self.jpg_quality), force_mavlink1=force_mavlink1)
class MAVLink_encapsulated_data_message(MAVLink_message):
'''
'''
id = MAVLINK_MSG_ID_ENCAPSULATED_DATA
name = 'ENCAPSULATED_DATA'
fieldnames = ['seqnr', 'data']
ordered_fieldnames = [ 'seqnr', 'data' ]
format = '<H253B'
native_format = bytearray('<HB', 'ascii')
orders = [0, 1]
lengths = [1, 253]
array_lengths = [0, 253]
crc_extra = 223
def __init__(self, seqnr, data):
MAVLink_message.__init__(self, MAVLink_encapsulated_data_message.id, MAVLink_encapsulated_data_message.name)
self._fieldnames = MAVLink_encapsulated_data_message.fieldnames
self.seqnr = seqnr
self.data = data
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 223, struct.pack('<H253B', self.seqnr, self.data[0], self.data[1], self.data[2], self.data[3], self.data[4], self.data[5], self.data[6], self.data[7], self.data[8], self.data[9], self.data[10], self.data[11], self.data[12], self.data[13], self.data[14], self.data[15], self.data[16], self.data[17], self.data[18], self.data[19], self.data[20], self.data[21], self.data[22], self.data[23], self.data[24], self.data[25], self.data[26], self.data[27], self.data[28], self.data[29], self.data[30], self.data[31], self.data[32], self.data[33], self.data[34], self.data[35], self.data[36], self.data[37], self.data[38], self.data[39], self.data[40], self.data[41], self.data[42], self.data[43], self.data[44], self.data[45], self.data[46], self.data[47], self.data[48], self.data[49], self.data[50], self.data[51], self.data[52], self.data[53], self.data[54], self.data[55], self.data[56], self.data[57], self.data[58], self.data[59], self.data[60], self.data[61], self.data[62], self.data[63], self.data[64], self.data[65], self.data[66], self.data[67], self.data[68], self.data[69], self.data[70], self.data[71], self.data[72], self.data[73], self.data[74], self.data[75], self.data[76], self.data[77], self.data[78], self.data[79], self.data[80], self.data[81], self.data[82], self.data[83], self.data[84], self.data[85], self.data[86], self.data[87], self.data[88], self.data[89], self.data[90], self.data[91], self.data[92], self.data[93], self.data[94], self.data[95], self.data[96], self.data[97], self.data[98], self.data[99], self.data[100], self.data[101], self.data[102], self.data[103], self.data[104], self.data[105], self.data[106], self.data[107], self.data[108], self.data[109], self.data[110], self.data[111], self.data[112], self.data[113], self.data[114], self.data[115], self.data[116], self.data[117], self.data[118], self.data[119], self.data[120], self.data[121], self.data[122], self.data[123], self.data[124], self.data[125], self.data[126], self.data[127], self.data[128], self.data[129], self.data[130], self.data[131], self.data[132], self.data[133], self.data[134], self.data[135], self.data[136], self.data[137], self.data[138], self.data[139], self.data[140], self.data[141], self.data[142], self.data[143], self.data[144], self.data[145], self.data[146], self.data[147], self.data[148], self.data[149], self.data[150], self.data[151], self.data[152], self.data[153], self.data[154], self.data[155], self.data[156], self.data[157], self.data[158], self.data[159], self.data[160], self.data[161], self.data[162], self.data[163], self.data[164], self.data[165], self.data[166], self.data[167], self.data[168], self.data[169], self.data[170], self.data[171], self.data[172], self.data[173], self.data[174], self.data[175], self.data[176], self.data[177], self.data[178], self.data[179], self.data[180], self.data[181], self.data[182], self.data[183], self.data[184], self.data[185], self.data[186], self.data[187], self.data[188], self.data[189], self.data[190], self.data[191], self.data[192], self.data[193], self.data[194], self.data[195], self.data[196], self.data[197], self.data[198], self.data[199], self.data[200], self.data[201], self.data[202], self.data[203], self.data[204], self.data[205], self.data[206], self.data[207], self.data[208], self.data[209], self.data[210], self.data[211], self.data[212], self.data[213], self.data[214], self.data[215], self.data[216], self.data[217], self.data[218], self.data[219], self.data[220], self.data[221], self.data[222], self.data[223], self.data[224], self.data[225], self.data[226], self.data[227], self.data[228], self.data[229], self.data[230], self.data[231], self.data[232], self.data[233], self.data[234], self.data[235], self.data[236], self.data[237], self.data[238], self.data[239], self.data[240], self.data[241], self.data[242], self.data[243], self.data[244], self.data[245], self.data[246], self.data[247], self.data[248], self.data[249], self.data[250], self.data[251], self.data[252]), force_mavlink1=force_mavlink1)
class MAVLink_distance_sensor_message(MAVLink_message):
'''
'''
id = MAVLINK_MSG_ID_DISTANCE_SENSOR
name = 'DISTANCE_SENSOR'
fieldnames = ['time_boot_ms', 'min_distance', 'max_distance', 'current_distance', 'type', 'id', 'orientation', 'covariance']
ordered_fieldnames = [ 'time_boot_ms', 'min_distance', 'max_distance', 'current_distance', 'type', 'id', 'orientation', 'covariance' ]
format = '<IHHHBBBB'
native_format = bytearray('<IHHHBBBB', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7]
lengths = [1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 85
def __init__(self, time_boot_ms, min_distance, max_distance, current_distance, type, id, orientation, covariance):
MAVLink_message.__init__(self, MAVLink_distance_sensor_message.id, MAVLink_distance_sensor_message.name)
self._fieldnames = MAVLink_distance_sensor_message.fieldnames
self.time_boot_ms = time_boot_ms
self.min_distance = min_distance
self.max_distance = max_distance
self.current_distance = current_distance
self.type = type
self.id = id
self.orientation = orientation
self.covariance = covariance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 85, struct.pack('<IHHHBBBB', self.time_boot_ms, self.min_distance, self.max_distance, self.current_distance, self.type, self.id, self.orientation, self.covariance), force_mavlink1=force_mavlink1)
class MAVLink_terrain_request_message(MAVLink_message):
'''
Request for terrain data and terrain status
'''
id = MAVLINK_MSG_ID_TERRAIN_REQUEST
name = 'TERRAIN_REQUEST'
fieldnames = ['lat', 'lon', 'grid_spacing', 'mask']
ordered_fieldnames = [ 'mask', 'lat', 'lon', 'grid_spacing' ]
format = '<QiiH'
native_format = bytearray('<QiiH', 'ascii')
orders = [1, 2, 3, 0]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 6
def __init__(self, lat, lon, grid_spacing, mask):
MAVLink_message.__init__(self, MAVLink_terrain_request_message.id, MAVLink_terrain_request_message.name)
self._fieldnames = MAVLink_terrain_request_message.fieldnames
self.lat = lat
self.lon = lon
self.grid_spacing = grid_spacing
self.mask = mask
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 6, struct.pack('<QiiH', self.mask, self.lat, self.lon, self.grid_spacing), force_mavlink1=force_mavlink1)
class MAVLink_terrain_data_message(MAVLink_message):
'''
Terrain data sent from GCS. The lat/lon and grid_spacing must
be the same as a lat/lon from a TERRAIN_REQUEST
'''
id = MAVLINK_MSG_ID_TERRAIN_DATA
name = 'TERRAIN_DATA'
fieldnames = ['lat', 'lon', 'grid_spacing', 'gridbit', 'data']
ordered_fieldnames = [ 'lat', 'lon', 'grid_spacing', 'data', 'gridbit' ]
format = '<iiH16hB'
native_format = bytearray('<iiHhB', 'ascii')
orders = [0, 1, 2, 4, 3]
lengths = [1, 1, 1, 16, 1]
array_lengths = [0, 0, 0, 16, 0]
crc_extra = 229
def __init__(self, lat, lon, grid_spacing, gridbit, data):
MAVLink_message.__init__(self, MAVLink_terrain_data_message.id, MAVLink_terrain_data_message.name)
self._fieldnames = MAVLink_terrain_data_message.fieldnames
self.lat = lat
self.lon = lon
self.grid_spacing = grid_spacing
self.gridbit = gridbit
self.data = data
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 229, struct.pack('<iiH16hB', self.lat, self.lon, self.grid_spacing, self.data[0], self.data[1], self.data[2], self.data[3], self.data[4], self.data[5], self.data[6], self.data[7], self.data[8], self.data[9], self.data[10], self.data[11], self.data[12], self.data[13], self.data[14], self.data[15], self.gridbit), force_mavlink1=force_mavlink1)
class MAVLink_terrain_check_message(MAVLink_message):
'''
Request that the vehicle report terrain height at the given
location. Used by GCS to check if vehicle has all terrain data
needed for a mission.
'''
id = MAVLINK_MSG_ID_TERRAIN_CHECK
name = 'TERRAIN_CHECK'
fieldnames = ['lat', 'lon']
ordered_fieldnames = [ 'lat', 'lon' ]
format = '<ii'
native_format = bytearray('<ii', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [0, 0]
crc_extra = 203
def __init__(self, lat, lon):
MAVLink_message.__init__(self, MAVLink_terrain_check_message.id, MAVLink_terrain_check_message.name)
self._fieldnames = MAVLink_terrain_check_message.fieldnames
self.lat = lat
self.lon = lon
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 203, struct.pack('<ii', self.lat, self.lon), force_mavlink1=force_mavlink1)
class MAVLink_terrain_report_message(MAVLink_message):
'''
Response from a TERRAIN_CHECK request
'''
id = MAVLINK_MSG_ID_TERRAIN_REPORT
name = 'TERRAIN_REPORT'
fieldnames = ['lat', 'lon', 'spacing', 'terrain_height', 'current_height', 'pending', 'loaded']
ordered_fieldnames = [ 'lat', 'lon', 'terrain_height', 'current_height', 'spacing', 'pending', 'loaded' ]
format = '<iiffHHH'
native_format = bytearray('<iiffHHH', 'ascii')
orders = [0, 1, 4, 2, 3, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0]
crc_extra = 1
def __init__(self, lat, lon, spacing, terrain_height, current_height, pending, loaded):
MAVLink_message.__init__(self, MAVLink_terrain_report_message.id, MAVLink_terrain_report_message.name)
self._fieldnames = MAVLink_terrain_report_message.fieldnames
self.lat = lat
self.lon = lon
self.spacing = spacing
self.terrain_height = terrain_height
self.current_height = current_height
self.pending = pending
self.loaded = loaded
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 1, struct.pack('<iiffHHH', self.lat, self.lon, self.terrain_height, self.current_height, self.spacing, self.pending, self.loaded), force_mavlink1=force_mavlink1)
class MAVLink_scaled_pressure2_message(MAVLink_message):
'''
Barometer readings for 2nd barometer
'''
id = MAVLINK_MSG_ID_SCALED_PRESSURE2
name = 'SCALED_PRESSURE2'
fieldnames = ['time_boot_ms', 'press_abs', 'press_diff', 'temperature']
ordered_fieldnames = [ 'time_boot_ms', 'press_abs', 'press_diff', 'temperature' ]
format = '<Iffh'
native_format = bytearray('<Iffh', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 195
def __init__(self, time_boot_ms, press_abs, press_diff, temperature):
MAVLink_message.__init__(self, MAVLink_scaled_pressure2_message.id, MAVLink_scaled_pressure2_message.name)
self._fieldnames = MAVLink_scaled_pressure2_message.fieldnames
self.time_boot_ms = time_boot_ms
self.press_abs = press_abs
self.press_diff = press_diff
self.temperature = temperature
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 195, struct.pack('<Iffh', self.time_boot_ms, self.press_abs, self.press_diff, self.temperature), force_mavlink1=force_mavlink1)
class MAVLink_att_pos_mocap_message(MAVLink_message):
'''
Motion capture attitude and position
'''
id = MAVLINK_MSG_ID_ATT_POS_MOCAP
name = 'ATT_POS_MOCAP'
fieldnames = ['time_usec', 'q', 'x', 'y', 'z', 'covariance']
ordered_fieldnames = [ 'time_usec', 'q', 'x', 'y', 'z', 'covariance' ]
format = '<Q4ffff21f'
native_format = bytearray('<Qfffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5]
lengths = [1, 4, 1, 1, 1, 21]
array_lengths = [0, 4, 0, 0, 0, 21]
crc_extra = 109
def __init__(self, time_usec, q, x, y, z, covariance=0):
MAVLink_message.__init__(self, MAVLink_att_pos_mocap_message.id, MAVLink_att_pos_mocap_message.name)
self._fieldnames = MAVLink_att_pos_mocap_message.fieldnames
self.time_usec = time_usec
self.q = q
self.x = x
self.y = y
self.z = z
self.covariance = covariance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 109, struct.pack('<Q4ffff21f', self.time_usec, self.q[0], self.q[1], self.q[2], self.q[3], self.x, self.y, self.z, self.covariance[0], self.covariance[1], self.covariance[2], self.covariance[3], self.covariance[4], self.covariance[5], self.covariance[6], self.covariance[7], self.covariance[8], self.covariance[9], self.covariance[10], self.covariance[11], self.covariance[12], self.covariance[13], self.covariance[14], self.covariance[15], self.covariance[16], self.covariance[17], self.covariance[18], self.covariance[19], self.covariance[20]), force_mavlink1=force_mavlink1)
class MAVLink_set_actuator_control_target_message(MAVLink_message):
'''
Set the vehicle attitude and body angular rates.
'''
id = MAVLINK_MSG_ID_SET_ACTUATOR_CONTROL_TARGET
name = 'SET_ACTUATOR_CONTROL_TARGET'
fieldnames = ['time_usec', 'group_mlx', 'target_system', 'target_component', 'controls']
ordered_fieldnames = [ 'time_usec', 'controls', 'group_mlx', 'target_system', 'target_component' ]
format = '<Q8fBBB'
native_format = bytearray('<QfBBB', 'ascii')
orders = [0, 2, 3, 4, 1]
lengths = [1, 8, 1, 1, 1]
array_lengths = [0, 8, 0, 0, 0]
crc_extra = 168
def __init__(self, time_usec, group_mlx, target_system, target_component, controls):
MAVLink_message.__init__(self, MAVLink_set_actuator_control_target_message.id, MAVLink_set_actuator_control_target_message.name)
self._fieldnames = MAVLink_set_actuator_control_target_message.fieldnames
self.time_usec = time_usec
self.group_mlx = group_mlx
self.target_system = target_system
self.target_component = target_component
self.controls = controls
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 168, struct.pack('<Q8fBBB', self.time_usec, self.controls[0], self.controls[1], self.controls[2], self.controls[3], self.controls[4], self.controls[5], self.controls[6], self.controls[7], self.group_mlx, self.target_system, self.target_component), force_mavlink1=force_mavlink1)
class MAVLink_actuator_control_target_message(MAVLink_message):
'''
Set the vehicle attitude and body angular rates.
'''
id = MAVLINK_MSG_ID_ACTUATOR_CONTROL_TARGET
name = 'ACTUATOR_CONTROL_TARGET'
fieldnames = ['time_usec', 'group_mlx', 'controls']
ordered_fieldnames = [ 'time_usec', 'controls', 'group_mlx' ]
format = '<Q8fB'
native_format = bytearray('<QfB', 'ascii')
orders = [0, 2, 1]
lengths = [1, 8, 1]
array_lengths = [0, 8, 0]
crc_extra = 181
def __init__(self, time_usec, group_mlx, controls):
MAVLink_message.__init__(self, MAVLink_actuator_control_target_message.id, MAVLink_actuator_control_target_message.name)
self._fieldnames = MAVLink_actuator_control_target_message.fieldnames
self.time_usec = time_usec
self.group_mlx = group_mlx
self.controls = controls
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 181, struct.pack('<Q8fB', self.time_usec, self.controls[0], self.controls[1], self.controls[2], self.controls[3], self.controls[4], self.controls[5], self.controls[6], self.controls[7], self.group_mlx), force_mavlink1=force_mavlink1)
class MAVLink_altitude_message(MAVLink_message):
'''
The current system altitude.
'''
id = MAVLINK_MSG_ID_ALTITUDE
name = 'ALTITUDE'
fieldnames = ['time_usec', 'altitude_monotonic', 'altitude_amsl', 'altitude_local', 'altitude_relative', 'altitude_terrain', 'bottom_clearance']
ordered_fieldnames = [ 'time_usec', 'altitude_monotonic', 'altitude_amsl', 'altitude_local', 'altitude_relative', 'altitude_terrain', 'bottom_clearance' ]
format = '<Qffffff'
native_format = bytearray('<Qffffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0]
crc_extra = 47
def __init__(self, time_usec, altitude_monotonic, altitude_amsl, altitude_local, altitude_relative, altitude_terrain, bottom_clearance):
MAVLink_message.__init__(self, MAVLink_altitude_message.id, MAVLink_altitude_message.name)
self._fieldnames = MAVLink_altitude_message.fieldnames
self.time_usec = time_usec
self.altitude_monotonic = altitude_monotonic
self.altitude_amsl = altitude_amsl
self.altitude_local = altitude_local
self.altitude_relative = altitude_relative
self.altitude_terrain = altitude_terrain
self.bottom_clearance = bottom_clearance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 47, struct.pack('<Qffffff', self.time_usec, self.altitude_monotonic, self.altitude_amsl, self.altitude_local, self.altitude_relative, self.altitude_terrain, self.bottom_clearance), force_mavlink1=force_mavlink1)
class MAVLink_resource_request_message(MAVLink_message):
'''
The autopilot is requesting a resource (file, binary, other
type of data)
'''
id = MAVLINK_MSG_ID_RESOURCE_REQUEST
name = 'RESOURCE_REQUEST'
fieldnames = ['request_id', 'uri_type', 'uri', 'transfer_type', 'storage']
ordered_fieldnames = [ 'request_id', 'uri_type', 'uri', 'transfer_type', 'storage' ]
format = '<BB120BB120B'
native_format = bytearray('<BBBBB', 'ascii')
orders = [0, 1, 2, 3, 4]
lengths = [1, 1, 120, 1, 120]
array_lengths = [0, 0, 120, 0, 120]
crc_extra = 72
def __init__(self, request_id, uri_type, uri, transfer_type, storage):
MAVLink_message.__init__(self, MAVLink_resource_request_message.id, MAVLink_resource_request_message.name)
self._fieldnames = MAVLink_resource_request_message.fieldnames
self.request_id = request_id
self.uri_type = uri_type
self.uri = uri
self.transfer_type = transfer_type
self.storage = storage
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 72, struct.pack('<BB120BB120B', self.request_id, self.uri_type, self.uri[0], self.uri[1], self.uri[2], self.uri[3], self.uri[4], self.uri[5], self.uri[6], self.uri[7], self.uri[8], self.uri[9], self.uri[10], self.uri[11], self.uri[12], self.uri[13], self.uri[14], self.uri[15], self.uri[16], self.uri[17], self.uri[18], self.uri[19], self.uri[20], self.uri[21], self.uri[22], self.uri[23], self.uri[24], self.uri[25], self.uri[26], self.uri[27], self.uri[28], self.uri[29], self.uri[30], self.uri[31], self.uri[32], self.uri[33], self.uri[34], self.uri[35], self.uri[36], self.uri[37], self.uri[38], self.uri[39], self.uri[40], self.uri[41], self.uri[42], self.uri[43], self.uri[44], self.uri[45], self.uri[46], self.uri[47], self.uri[48], self.uri[49], self.uri[50], self.uri[51], self.uri[52], self.uri[53], self.uri[54], self.uri[55], self.uri[56], self.uri[57], self.uri[58], self.uri[59], self.uri[60], self.uri[61], self.uri[62], self.uri[63], self.uri[64], self.uri[65], self.uri[66], self.uri[67], self.uri[68], self.uri[69], self.uri[70], self.uri[71], self.uri[72], self.uri[73], self.uri[74], self.uri[75], self.uri[76], self.uri[77], self.uri[78], self.uri[79], self.uri[80], self.uri[81], self.uri[82], self.uri[83], self.uri[84], self.uri[85], self.uri[86], self.uri[87], self.uri[88], self.uri[89], self.uri[90], self.uri[91], self.uri[92], self.uri[93], self.uri[94], self.uri[95], self.uri[96], self.uri[97], self.uri[98], self.uri[99], self.uri[100], self.uri[101], self.uri[102], self.uri[103], self.uri[104], self.uri[105], self.uri[106], self.uri[107], self.uri[108], self.uri[109], self.uri[110], self.uri[111], self.uri[112], self.uri[113], self.uri[114], self.uri[115], self.uri[116], self.uri[117], self.uri[118], self.uri[119], self.transfer_type, self.storage[0], self.storage[1], self.storage[2], self.storage[3], self.storage[4], self.storage[5], self.storage[6], self.storage[7], self.storage[8], self.storage[9], self.storage[10], self.storage[11], self.storage[12], self.storage[13], self.storage[14], self.storage[15], self.storage[16], self.storage[17], self.storage[18], self.storage[19], self.storage[20], self.storage[21], self.storage[22], self.storage[23], self.storage[24], self.storage[25], self.storage[26], self.storage[27], self.storage[28], self.storage[29], self.storage[30], self.storage[31], self.storage[32], self.storage[33], self.storage[34], self.storage[35], self.storage[36], self.storage[37], self.storage[38], self.storage[39], self.storage[40], self.storage[41], self.storage[42], self.storage[43], self.storage[44], self.storage[45], self.storage[46], self.storage[47], self.storage[48], self.storage[49], self.storage[50], self.storage[51], self.storage[52], self.storage[53], self.storage[54], self.storage[55], self.storage[56], self.storage[57], self.storage[58], self.storage[59], self.storage[60], self.storage[61], self.storage[62], self.storage[63], self.storage[64], self.storage[65], self.storage[66], self.storage[67], self.storage[68], self.storage[69], self.storage[70], self.storage[71], self.storage[72], self.storage[73], self.storage[74], self.storage[75], self.storage[76], self.storage[77], self.storage[78], self.storage[79], self.storage[80], self.storage[81], self.storage[82], self.storage[83], self.storage[84], self.storage[85], self.storage[86], self.storage[87], self.storage[88], self.storage[89], self.storage[90], self.storage[91], self.storage[92], self.storage[93], self.storage[94], self.storage[95], self.storage[96], self.storage[97], self.storage[98], self.storage[99], self.storage[100], self.storage[101], self.storage[102], self.storage[103], self.storage[104], self.storage[105], self.storage[106], self.storage[107], self.storage[108], self.storage[109], self.storage[110], self.storage[111], self.storage[112], self.storage[113], self.storage[114], self.storage[115], self.storage[116], self.storage[117], self.storage[118], self.storage[119]), force_mavlink1=force_mavlink1)
class MAVLink_scaled_pressure3_message(MAVLink_message):
'''
Barometer readings for 3rd barometer
'''
id = MAVLINK_MSG_ID_SCALED_PRESSURE3
name = 'SCALED_PRESSURE3'
fieldnames = ['time_boot_ms', 'press_abs', 'press_diff', 'temperature']
ordered_fieldnames = [ 'time_boot_ms', 'press_abs', 'press_diff', 'temperature' ]
format = '<Iffh'
native_format = bytearray('<Iffh', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 131
def __init__(self, time_boot_ms, press_abs, press_diff, temperature):
MAVLink_message.__init__(self, MAVLink_scaled_pressure3_message.id, MAVLink_scaled_pressure3_message.name)
self._fieldnames = MAVLink_scaled_pressure3_message.fieldnames
self.time_boot_ms = time_boot_ms
self.press_abs = press_abs
self.press_diff = press_diff
self.temperature = temperature
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 131, struct.pack('<Iffh', self.time_boot_ms, self.press_abs, self.press_diff, self.temperature), force_mavlink1=force_mavlink1)
class MAVLink_follow_target_message(MAVLink_message):
'''
current motion information from a designated system
'''
id = MAVLINK_MSG_ID_FOLLOW_TARGET
name = 'FOLLOW_TARGET'
fieldnames = ['timestamp', 'est_capabilities', 'lat', 'lon', 'alt', 'vel', 'acc', 'attitude_q', 'rates', 'position_cov', 'custom_state']
ordered_fieldnames = [ 'timestamp', 'custom_state', 'lat', 'lon', 'alt', 'vel', 'acc', 'attitude_q', 'rates', 'position_cov', 'est_capabilities' ]
format = '<QQiif3f3f4f3f3fB'
native_format = bytearray('<QQiiffffffB', 'ascii')
orders = [0, 10, 2, 3, 4, 5, 6, 7, 8, 9, 1]
lengths = [1, 1, 1, 1, 1, 3, 3, 4, 3, 3, 1]
array_lengths = [0, 0, 0, 0, 0, 3, 3, 4, 3, 3, 0]
crc_extra = 127
def __init__(self, timestamp, est_capabilities, lat, lon, alt, vel, acc, attitude_q, rates, position_cov, custom_state):
MAVLink_message.__init__(self, MAVLink_follow_target_message.id, MAVLink_follow_target_message.name)
self._fieldnames = MAVLink_follow_target_message.fieldnames
self.timestamp = timestamp
self.est_capabilities = est_capabilities
self.lat = lat
self.lon = lon
self.alt = alt
self.vel = vel
self.acc = acc
self.attitude_q = attitude_q
self.rates = rates
self.position_cov = position_cov
self.custom_state = custom_state
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 127, struct.pack('<QQiif3f3f4f3f3fB', self.timestamp, self.custom_state, self.lat, self.lon, self.alt, self.vel[0], self.vel[1], self.vel[2], self.acc[0], self.acc[1], self.acc[2], self.attitude_q[0], self.attitude_q[1], self.attitude_q[2], self.attitude_q[3], self.rates[0], self.rates[1], self.rates[2], self.position_cov[0], self.position_cov[1], self.position_cov[2], self.est_capabilities), force_mavlink1=force_mavlink1)
class MAVLink_control_system_state_message(MAVLink_message):
'''
The smoothed, monotonic system state used to feed the control
loops of the system.
'''
id = MAVLINK_MSG_ID_CONTROL_SYSTEM_STATE
name = 'CONTROL_SYSTEM_STATE'
fieldnames = ['time_usec', 'x_acc', 'y_acc', 'z_acc', 'x_vel', 'y_vel', 'z_vel', 'x_pos', 'y_pos', 'z_pos', 'airspeed', 'vel_variance', 'pos_variance', 'q', 'roll_rate', 'pitch_rate', 'yaw_rate']
ordered_fieldnames = [ 'time_usec', 'x_acc', 'y_acc', 'z_acc', 'x_vel', 'y_vel', 'z_vel', 'x_pos', 'y_pos', 'z_pos', 'airspeed', 'vel_variance', 'pos_variance', 'q', 'roll_rate', 'pitch_rate', 'yaw_rate' ]
format = '<Qffffffffff3f3f4ffff'
native_format = bytearray('<Qffffffffffffffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 4, 0, 0, 0]
crc_extra = 103
def __init__(self, time_usec, x_acc, y_acc, z_acc, x_vel, y_vel, z_vel, x_pos, y_pos, z_pos, airspeed, vel_variance, pos_variance, q, roll_rate, pitch_rate, yaw_rate):
MAVLink_message.__init__(self, MAVLink_control_system_state_message.id, MAVLink_control_system_state_message.name)
self._fieldnames = MAVLink_control_system_state_message.fieldnames
self.time_usec = time_usec
self.x_acc = x_acc
self.y_acc = y_acc
self.z_acc = z_acc
self.x_vel = x_vel
self.y_vel = y_vel
self.z_vel = z_vel
self.x_pos = x_pos
self.y_pos = y_pos
self.z_pos = z_pos
self.airspeed = airspeed
self.vel_variance = vel_variance
self.pos_variance = pos_variance
self.q = q
self.roll_rate = roll_rate
self.pitch_rate = pitch_rate
self.yaw_rate = yaw_rate
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 103, struct.pack('<Qffffffffff3f3f4ffff', self.time_usec, self.x_acc, self.y_acc, self.z_acc, self.x_vel, self.y_vel, self.z_vel, self.x_pos, self.y_pos, self.z_pos, self.airspeed, self.vel_variance[0], self.vel_variance[1], self.vel_variance[2], self.pos_variance[0], self.pos_variance[1], self.pos_variance[2], self.q[0], self.q[1], self.q[2], self.q[3], self.roll_rate, self.pitch_rate, self.yaw_rate), force_mavlink1=force_mavlink1)
class MAVLink_battery_status_message(MAVLink_message):
'''
Battery information
'''
id = MAVLINK_MSG_ID_BATTERY_STATUS
name = 'BATTERY_STATUS'
fieldnames = ['id', 'battery_function', 'type', 'temperature', 'voltages', 'current_battery', 'current_consumed', 'energy_consumed', 'battery_remaining', 'time_remaining', 'charge_state']
ordered_fieldnames = [ 'current_consumed', 'energy_consumed', 'temperature', 'voltages', 'current_battery', 'id', 'battery_function', 'type', 'battery_remaining', 'time_remaining', 'charge_state' ]
format = '<iih10HhBBBbiB'
native_format = bytearray('<iihHhBBBbiB', 'ascii')
orders = [5, 6, 7, 2, 3, 4, 0, 1, 8, 9, 10]
lengths = [1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 154
def __init__(self, id, battery_function, type, temperature, voltages, current_battery, current_consumed, energy_consumed, battery_remaining, time_remaining=0, charge_state=0):
MAVLink_message.__init__(self, MAVLink_battery_status_message.id, MAVLink_battery_status_message.name)
self._fieldnames = MAVLink_battery_status_message.fieldnames
self.id = id
self.battery_function = battery_function
self.type = type
self.temperature = temperature
self.voltages = voltages
self.current_battery = current_battery
self.current_consumed = current_consumed
self.energy_consumed = energy_consumed
self.battery_remaining = battery_remaining
self.time_remaining = time_remaining
self.charge_state = charge_state
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 154, struct.pack('<iih10HhBBBbiB', self.current_consumed, self.energy_consumed, self.temperature, self.voltages[0], self.voltages[1], self.voltages[2], self.voltages[3], self.voltages[4], self.voltages[5], self.voltages[6], self.voltages[7], self.voltages[8], self.voltages[9], self.current_battery, self.id, self.battery_function, self.type, self.battery_remaining, self.time_remaining, self.charge_state), force_mavlink1=force_mavlink1)
class MAVLink_autopilot_version_message(MAVLink_message):
'''
Version and capability of autopilot software
'''
id = MAVLINK_MSG_ID_AUTOPILOT_VERSION
name = 'AUTOPILOT_VERSION'
fieldnames = ['capabilities', 'flight_sw_version', 'middleware_sw_version', 'os_sw_version', 'board_version', 'flight_custom_version', 'middleware_custom_version', 'os_custom_version', 'vendor_id', 'product_id', 'uid', 'uid2']
ordered_fieldnames = [ 'capabilities', 'uid', 'flight_sw_version', 'middleware_sw_version', 'os_sw_version', 'board_version', 'vendor_id', 'product_id', 'flight_custom_version', 'middleware_custom_version', 'os_custom_version', 'uid2' ]
format = '<QQIIIIHH8B8B8B18B'
native_format = bytearray('<QQIIIIHHBBBB', 'ascii')
orders = [0, 2, 3, 4, 5, 8, 9, 10, 6, 7, 1, 11]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 18]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 18]
crc_extra = 178
def __init__(self, capabilities, flight_sw_version, middleware_sw_version, os_sw_version, board_version, flight_custom_version, middleware_custom_version, os_custom_version, vendor_id, product_id, uid, uid2=0):
MAVLink_message.__init__(self, MAVLink_autopilot_version_message.id, MAVLink_autopilot_version_message.name)
self._fieldnames = MAVLink_autopilot_version_message.fieldnames
self.capabilities = capabilities
self.flight_sw_version = flight_sw_version
self.middleware_sw_version = middleware_sw_version
self.os_sw_version = os_sw_version
self.board_version = board_version
self.flight_custom_version = flight_custom_version
self.middleware_custom_version = middleware_custom_version
self.os_custom_version = os_custom_version
self.vendor_id = vendor_id
self.product_id = product_id
self.uid = uid
self.uid2 = uid2
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 178, struct.pack('<QQIIIIHH8B8B8B18B', self.capabilities, self.uid, self.flight_sw_version, self.middleware_sw_version, self.os_sw_version, self.board_version, self.vendor_id, self.product_id, self.flight_custom_version[0], self.flight_custom_version[1], self.flight_custom_version[2], self.flight_custom_version[3], self.flight_custom_version[4], self.flight_custom_version[5], self.flight_custom_version[6], self.flight_custom_version[7], self.middleware_custom_version[0], self.middleware_custom_version[1], self.middleware_custom_version[2], self.middleware_custom_version[3], self.middleware_custom_version[4], self.middleware_custom_version[5], self.middleware_custom_version[6], self.middleware_custom_version[7], self.os_custom_version[0], self.os_custom_version[1], self.os_custom_version[2], self.os_custom_version[3], self.os_custom_version[4], self.os_custom_version[5], self.os_custom_version[6], self.os_custom_version[7], self.uid2[0], self.uid2[1], self.uid2[2], self.uid2[3], self.uid2[4], self.uid2[5], self.uid2[6], self.uid2[7], self.uid2[8], self.uid2[9], self.uid2[10], self.uid2[11], self.uid2[12], self.uid2[13], self.uid2[14], self.uid2[15], self.uid2[16], self.uid2[17]), force_mavlink1=force_mavlink1)
class MAVLink_landing_target_message(MAVLink_message):
'''
The location of a landing area captured from a downward facing
camera
'''
id = MAVLINK_MSG_ID_LANDING_TARGET
name = 'LANDING_TARGET'
fieldnames = ['time_usec', 'target_num', 'frame', 'angle_x', 'angle_y', 'distance', 'size_x', 'size_y', 'x', 'y', 'z', 'q', 'type', 'position_valid']
ordered_fieldnames = [ 'time_usec', 'angle_x', 'angle_y', 'distance', 'size_x', 'size_y', 'target_num', 'frame', 'x', 'y', 'z', 'q', 'type', 'position_valid' ]
format = '<QfffffBBfff4fBB'
native_format = bytearray('<QfffffBBffffBB', 'ascii')
orders = [0, 6, 7, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0]
crc_extra = 200
def __init__(self, time_usec, target_num, frame, angle_x, angle_y, distance, size_x, size_y, x=0, y=0, z=0, q=0, type=0, position_valid=0):
MAVLink_message.__init__(self, MAVLink_landing_target_message.id, MAVLink_landing_target_message.name)
self._fieldnames = MAVLink_landing_target_message.fieldnames
self.time_usec = time_usec
self.target_num = target_num
self.frame = frame
self.angle_x = angle_x
self.angle_y = angle_y
self.distance = distance
self.size_x = size_x
self.size_y = size_y
self.x = x
self.y = y
self.z = z
self.q = q
self.type = type
self.position_valid = position_valid
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 200, struct.pack('<QfffffBBfff4fBB', self.time_usec, self.angle_x, self.angle_y, self.distance, self.size_x, self.size_y, self.target_num, self.frame, self.x, self.y, self.z, self.q[0], self.q[1], self.q[2], self.q[3], self.type, self.position_valid), force_mavlink1=force_mavlink1)
class MAVLink_estimator_status_message(MAVLink_message):
'''
Estimator status message including flags, innovation test
ratios and estimated accuracies. The flags message is an
integer bitmask containing information on which EKF outputs
are valid. See the ESTIMATOR_STATUS_FLAGS enum definition for
further information. The innovation test ratios show the
magnitude of the sensor innovation divided by the innovation
check threshold. Under normal operation the innovation test
ratios should be below 0.5 with occasional values up to 1.0.
Values greater than 1.0 should be rare under normal operation
and indicate that a measurement has been rejected by the
filter. The user should be notified if an innovation test
ratio greater than 1.0 is recorded. Notifications for values
in the range between 0.5 and 1.0 should be optional and
controllable by the user.
'''
id = MAVLINK_MSG_ID_ESTIMATOR_STATUS
name = 'ESTIMATOR_STATUS'
fieldnames = ['time_usec', 'flags', 'vel_ratio', 'pos_horiz_ratio', 'pos_vert_ratio', 'mag_ratio', 'hagl_ratio', 'tas_ratio', 'pos_horiz_accuracy', 'pos_vert_accuracy']
ordered_fieldnames = [ 'time_usec', 'vel_ratio', 'pos_horiz_ratio', 'pos_vert_ratio', 'mag_ratio', 'hagl_ratio', 'tas_ratio', 'pos_horiz_accuracy', 'pos_vert_accuracy', 'flags' ]
format = '<QffffffffH'
native_format = bytearray('<QffffffffH', 'ascii')
orders = [0, 9, 1, 2, 3, 4, 5, 6, 7, 8]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 163
def __init__(self, time_usec, flags, vel_ratio, pos_horiz_ratio, pos_vert_ratio, mag_ratio, hagl_ratio, tas_ratio, pos_horiz_accuracy, pos_vert_accuracy):
MAVLink_message.__init__(self, MAVLink_estimator_status_message.id, MAVLink_estimator_status_message.name)
self._fieldnames = MAVLink_estimator_status_message.fieldnames
self.time_usec = time_usec
self.flags = flags
self.vel_ratio = vel_ratio
self.pos_horiz_ratio = pos_horiz_ratio
self.pos_vert_ratio = pos_vert_ratio
self.mag_ratio = mag_ratio
self.hagl_ratio = hagl_ratio
self.tas_ratio = tas_ratio
self.pos_horiz_accuracy = pos_horiz_accuracy
self.pos_vert_accuracy = pos_vert_accuracy
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 163, struct.pack('<QffffffffH', self.time_usec, self.vel_ratio, self.pos_horiz_ratio, self.pos_vert_ratio, self.mag_ratio, self.hagl_ratio, self.tas_ratio, self.pos_horiz_accuracy, self.pos_vert_accuracy, self.flags), force_mavlink1=force_mavlink1)
class MAVLink_wind_cov_message(MAVLink_message):
'''
'''
id = MAVLINK_MSG_ID_WIND_COV
name = 'WIND_COV'
fieldnames = ['time_usec', 'wind_x', 'wind_y', 'wind_z', 'var_horiz', 'var_vert', 'wind_alt', 'horiz_accuracy', 'vert_accuracy']
ordered_fieldnames = [ 'time_usec', 'wind_x', 'wind_y', 'wind_z', 'var_horiz', 'var_vert', 'wind_alt', 'horiz_accuracy', 'vert_accuracy' ]
format = '<Qffffffff'
native_format = bytearray('<Qffffffff', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 105
def __init__(self, time_usec, wind_x, wind_y, wind_z, var_horiz, var_vert, wind_alt, horiz_accuracy, vert_accuracy):
MAVLink_message.__init__(self, MAVLink_wind_cov_message.id, MAVLink_wind_cov_message.name)
self._fieldnames = MAVLink_wind_cov_message.fieldnames
self.time_usec = time_usec
self.wind_x = wind_x
self.wind_y = wind_y
self.wind_z = wind_z
self.var_horiz = var_horiz
self.var_vert = var_vert
self.wind_alt = wind_alt
self.horiz_accuracy = horiz_accuracy
self.vert_accuracy = vert_accuracy
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 105, struct.pack('<Qffffffff', self.time_usec, self.wind_x, self.wind_y, self.wind_z, self.var_horiz, self.var_vert, self.wind_alt, self.horiz_accuracy, self.vert_accuracy), force_mavlink1=force_mavlink1)
class MAVLink_gps_input_message(MAVLink_message):
'''
GPS sensor input message. This is a raw sensor value sent by
the GPS. This is NOT the global position estimate of the
system.
'''
id = MAVLINK_MSG_ID_GPS_INPUT
name = 'GPS_INPUT'
fieldnames = ['time_usec', 'gps_id', 'ignore_flags', 'time_week_ms', 'time_week', 'fix_type', 'lat', 'lon', 'alt', 'hdop', 'vdop', 'vn', 've', 'vd', 'speed_accuracy', 'horiz_accuracy', 'vert_accuracy', 'satellites_visible']
ordered_fieldnames = [ 'time_usec', 'time_week_ms', 'lat', 'lon', 'alt', 'hdop', 'vdop', 'vn', 've', 'vd', 'speed_accuracy', 'horiz_accuracy', 'vert_accuracy', 'ignore_flags', 'time_week', 'gps_id', 'fix_type', 'satellites_visible' ]
format = '<QIiifffffffffHHBBB'
native_format = bytearray('<QIiifffffffffHHBBB', 'ascii')
orders = [0, 15, 13, 1, 14, 16, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 151
def __init__(self, time_usec, gps_id, ignore_flags, time_week_ms, time_week, fix_type, lat, lon, alt, hdop, vdop, vn, ve, vd, speed_accuracy, horiz_accuracy, vert_accuracy, satellites_visible):
MAVLink_message.__init__(self, MAVLink_gps_input_message.id, MAVLink_gps_input_message.name)
self._fieldnames = MAVLink_gps_input_message.fieldnames
self.time_usec = time_usec
self.gps_id = gps_id
self.ignore_flags = ignore_flags
self.time_week_ms = time_week_ms
self.time_week = time_week
self.fix_type = fix_type
self.lat = lat
self.lon = lon
self.alt = alt
self.hdop = hdop
self.vdop = vdop
self.vn = vn
self.ve = ve
self.vd = vd
self.speed_accuracy = speed_accuracy
self.horiz_accuracy = horiz_accuracy
self.vert_accuracy = vert_accuracy
self.satellites_visible = satellites_visible
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 151, struct.pack('<QIiifffffffffHHBBB', self.time_usec, self.time_week_ms, self.lat, self.lon, self.alt, self.hdop, self.vdop, self.vn, self.ve, self.vd, self.speed_accuracy, self.horiz_accuracy, self.vert_accuracy, self.ignore_flags, self.time_week, self.gps_id, self.fix_type, self.satellites_visible), force_mavlink1=force_mavlink1)
class MAVLink_gps_rtcm_data_message(MAVLink_message):
'''
RTCM message for injecting into the onboard GPS (used for
DGPS)
'''
id = MAVLINK_MSG_ID_GPS_RTCM_DATA
name = 'GPS_RTCM_DATA'
fieldnames = ['flags', 'len', 'data']
ordered_fieldnames = [ 'flags', 'len', 'data' ]
format = '<BB180B'
native_format = bytearray('<BBB', 'ascii')
orders = [0, 1, 2]
lengths = [1, 1, 180]
array_lengths = [0, 0, 180]
crc_extra = 35
def __init__(self, flags, len, data):
MAVLink_message.__init__(self, MAVLink_gps_rtcm_data_message.id, MAVLink_gps_rtcm_data_message.name)
self._fieldnames = MAVLink_gps_rtcm_data_message.fieldnames
self.flags = flags
self.len = len
self.data = data
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 35, struct.pack('<BB180B', self.flags, self.len, self.data[0], self.data[1], self.data[2], self.data[3], self.data[4], self.data[5], self.data[6], self.data[7], self.data[8], self.data[9], self.data[10], self.data[11], self.data[12], self.data[13], self.data[14], self.data[15], self.data[16], self.data[17], self.data[18], self.data[19], self.data[20], self.data[21], self.data[22], self.data[23], self.data[24], self.data[25], self.data[26], self.data[27], self.data[28], self.data[29], self.data[30], self.data[31], self.data[32], self.data[33], self.data[34], self.data[35], self.data[36], self.data[37], self.data[38], self.data[39], self.data[40], self.data[41], self.data[42], self.data[43], self.data[44], self.data[45], self.data[46], self.data[47], self.data[48], self.data[49], self.data[50], self.data[51], self.data[52], self.data[53], self.data[54], self.data[55], self.data[56], self.data[57], self.data[58], self.data[59], self.data[60], self.data[61], self.data[62], self.data[63], self.data[64], self.data[65], self.data[66], self.data[67], self.data[68], self.data[69], self.data[70], self.data[71], self.data[72], self.data[73], self.data[74], self.data[75], self.data[76], self.data[77], self.data[78], self.data[79], self.data[80], self.data[81], self.data[82], self.data[83], self.data[84], self.data[85], self.data[86], self.data[87], self.data[88], self.data[89], self.data[90], self.data[91], self.data[92], self.data[93], self.data[94], self.data[95], self.data[96], self.data[97], self.data[98], self.data[99], self.data[100], self.data[101], self.data[102], self.data[103], self.data[104], self.data[105], self.data[106], self.data[107], self.data[108], self.data[109], self.data[110], self.data[111], self.data[112], self.data[113], self.data[114], self.data[115], self.data[116], self.data[117], self.data[118], self.data[119], self.data[120], self.data[121], self.data[122], self.data[123], self.data[124], self.data[125], self.data[126], self.data[127], self.data[128], self.data[129], self.data[130], self.data[131], self.data[132], self.data[133], self.data[134], self.data[135], self.data[136], self.data[137], self.data[138], self.data[139], self.data[140], self.data[141], self.data[142], self.data[143], self.data[144], self.data[145], self.data[146], self.data[147], self.data[148], self.data[149], self.data[150], self.data[151], self.data[152], self.data[153], self.data[154], self.data[155], self.data[156], self.data[157], self.data[158], self.data[159], self.data[160], self.data[161], self.data[162], self.data[163], self.data[164], self.data[165], self.data[166], self.data[167], self.data[168], self.data[169], self.data[170], self.data[171], self.data[172], self.data[173], self.data[174], self.data[175], self.data[176], self.data[177], self.data[178], self.data[179]), force_mavlink1=force_mavlink1)
class MAVLink_high_latency_message(MAVLink_message):
'''
Message appropriate for high latency connections like Iridium
'''
id = MAVLINK_MSG_ID_HIGH_LATENCY
name = 'HIGH_LATENCY'
fieldnames = ['base_mode', 'custom_mode', 'landed_state', 'roll', 'pitch', 'heading', 'throttle', 'heading_sp', 'latitude', 'longitude', 'altitude_amsl', 'altitude_sp', 'airspeed', 'airspeed_sp', 'groundspeed', 'climb_rate', 'gps_nsat', 'gps_fix_type', 'battery_remaining', 'temperature', 'temperature_air', 'failsafe', 'wp_num', 'wp_distance']
ordered_fieldnames = [ 'custom_mode', 'latitude', 'longitude', 'roll', 'pitch', 'heading', 'heading_sp', 'altitude_amsl', 'altitude_sp', 'wp_distance', 'base_mode', 'landed_state', 'throttle', 'airspeed', 'airspeed_sp', 'groundspeed', 'climb_rate', 'gps_nsat', 'gps_fix_type', 'battery_remaining', 'temperature', 'temperature_air', 'failsafe', 'wp_num' ]
format = '<IiihhHhhhHBBbBBBbBBBbbBB'
native_format = bytearray('<IiihhHhhhHBBbBBBbBBBbbBB', 'ascii')
orders = [10, 0, 11, 3, 4, 5, 12, 6, 1, 2, 7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 9]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 150
def __init__(self, base_mode, custom_mode, landed_state, roll, pitch, heading, throttle, heading_sp, latitude, longitude, altitude_amsl, altitude_sp, airspeed, airspeed_sp, groundspeed, climb_rate, gps_nsat, gps_fix_type, battery_remaining, temperature, temperature_air, failsafe, wp_num, wp_distance):
MAVLink_message.__init__(self, MAVLink_high_latency_message.id, MAVLink_high_latency_message.name)
self._fieldnames = MAVLink_high_latency_message.fieldnames
self.base_mode = base_mode
self.custom_mode = custom_mode
self.landed_state = landed_state
self.roll = roll
self.pitch = pitch
self.heading = heading
self.throttle = throttle
self.heading_sp = heading_sp
self.latitude = latitude
self.longitude = longitude
self.altitude_amsl = altitude_amsl
self.altitude_sp = altitude_sp
self.airspeed = airspeed
self.airspeed_sp = airspeed_sp
self.groundspeed = groundspeed
self.climb_rate = climb_rate
self.gps_nsat = gps_nsat
self.gps_fix_type = gps_fix_type
self.battery_remaining = battery_remaining
self.temperature = temperature
self.temperature_air = temperature_air
self.failsafe = failsafe
self.wp_num = wp_num
self.wp_distance = wp_distance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 150, struct.pack('<IiihhHhhhHBBbBBBbBBBbbBB', self.custom_mode, self.latitude, self.longitude, self.roll, self.pitch, self.heading, self.heading_sp, self.altitude_amsl, self.altitude_sp, self.wp_distance, self.base_mode, self.landed_state, self.throttle, self.airspeed, self.airspeed_sp, self.groundspeed, self.climb_rate, self.gps_nsat, self.gps_fix_type, self.battery_remaining, self.temperature, self.temperature_air, self.failsafe, self.wp_num), force_mavlink1=force_mavlink1)
class MAVLink_high_latency2_message(MAVLink_message):
'''
Message appropriate for high latency connections like Iridium
(version 2)
'''
id = MAVLINK_MSG_ID_HIGH_LATENCY2
name = 'HIGH_LATENCY2'
fieldnames = ['timestamp', 'type', 'autopilot', 'custom_mode', 'latitude', 'longitude', 'altitude', 'target_altitude', 'heading', 'target_heading', 'target_distance', 'throttle', 'airspeed', 'airspeed_sp', 'groundspeed', 'windspeed', 'wind_heading', 'eph', 'epv', 'temperature_air', 'climb_rate', 'battery', 'wp_num', 'failure_flags', 'custom0', 'custom1', 'custom2']
ordered_fieldnames = [ 'timestamp', 'latitude', 'longitude', 'custom_mode', 'altitude', 'target_altitude', 'target_distance', 'wp_num', 'failure_flags', 'type', 'autopilot', 'heading', 'target_heading', 'throttle', 'airspeed', 'airspeed_sp', 'groundspeed', 'windspeed', 'wind_heading', 'eph', 'epv', 'temperature_air', 'climb_rate', 'battery', 'custom0', 'custom1', 'custom2' ]
format = '<IiiHhhHHHBBBBBBBBBBBBbbbbbb'
native_format = bytearray('<IiiHhhHHHBBBBBBBBBBBBbbbbbb', 'ascii')
orders = [0, 9, 10, 3, 1, 2, 4, 5, 11, 12, 6, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 7, 8, 24, 25, 26]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 179
def __init__(self, timestamp, type, autopilot, custom_mode, latitude, longitude, altitude, target_altitude, heading, target_heading, target_distance, throttle, airspeed, airspeed_sp, groundspeed, windspeed, wind_heading, eph, epv, temperature_air, climb_rate, battery, wp_num, failure_flags, custom0, custom1, custom2):
MAVLink_message.__init__(self, MAVLink_high_latency2_message.id, MAVLink_high_latency2_message.name)
self._fieldnames = MAVLink_high_latency2_message.fieldnames
self.timestamp = timestamp
self.type = type
self.autopilot = autopilot
self.custom_mode = custom_mode
self.latitude = latitude
self.longitude = longitude
self.altitude = altitude
self.target_altitude = target_altitude
self.heading = heading
self.target_heading = target_heading
self.target_distance = target_distance
self.throttle = throttle
self.airspeed = airspeed
self.airspeed_sp = airspeed_sp
self.groundspeed = groundspeed
self.windspeed = windspeed
self.wind_heading = wind_heading
self.eph = eph
self.epv = epv
self.temperature_air = temperature_air
self.climb_rate = climb_rate
self.battery = battery
self.wp_num = wp_num
self.failure_flags = failure_flags
self.custom0 = custom0
self.custom1 = custom1
self.custom2 = custom2
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 179, struct.pack('<IiiHhhHHHBBBBBBBBBBBBbbbbbb', self.timestamp, self.latitude, self.longitude, self.custom_mode, self.altitude, self.target_altitude, self.target_distance, self.wp_num, self.failure_flags, self.type, self.autopilot, self.heading, self.target_heading, self.throttle, self.airspeed, self.airspeed_sp, self.groundspeed, self.windspeed, self.wind_heading, self.eph, self.epv, self.temperature_air, self.climb_rate, self.battery, self.custom0, self.custom1, self.custom2), force_mavlink1=force_mavlink1)
class MAVLink_vibration_message(MAVLink_message):
'''
Vibration levels and accelerometer clipping
'''
id = MAVLINK_MSG_ID_VIBRATION
name = 'VIBRATION'
fieldnames = ['time_usec', 'vibration_x', 'vibration_y', 'vibration_z', 'clipping_0', 'clipping_1', 'clipping_2']
ordered_fieldnames = [ 'time_usec', 'vibration_x', 'vibration_y', 'vibration_z', 'clipping_0', 'clipping_1', 'clipping_2' ]
format = '<QfffIII'
native_format = bytearray('<QfffIII', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6]
lengths = [1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0]
crc_extra = 90
def __init__(self, time_usec, vibration_x, vibration_y, vibration_z, clipping_0, clipping_1, clipping_2):
MAVLink_message.__init__(self, MAVLink_vibration_message.id, MAVLink_vibration_message.name)
self._fieldnames = MAVLink_vibration_message.fieldnames
self.time_usec = time_usec
self.vibration_x = vibration_x
self.vibration_y = vibration_y
self.vibration_z = vibration_z
self.clipping_0 = clipping_0
self.clipping_1 = clipping_1
self.clipping_2 = clipping_2
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 90, struct.pack('<QfffIII', self.time_usec, self.vibration_x, self.vibration_y, self.vibration_z, self.clipping_0, self.clipping_1, self.clipping_2), force_mavlink1=force_mavlink1)
class MAVLink_home_position_message(MAVLink_message):
'''
This message can be requested by sending the
MAV_CMD_GET_HOME_POSITION command. The position the system
will return to and land on. The position is set automatically
by the system during the takeoff in case it was not explicitly
set by the operator before or after. The position the system
will return to and land on. The global and local positions
encode the position in the respective coordinate frames, while
the q parameter encodes the orientation of the surface. Under
normal conditions it describes the heading and terrain slope,
which can be used by the aircraft to adjust the approach. The
approach 3D vector describes the point to which the system
should fly in normal flight mode and then perform a landing
sequence along the vector.
'''
id = MAVLINK_MSG_ID_HOME_POSITION
name = 'HOME_POSITION'
fieldnames = ['latitude', 'longitude', 'altitude', 'x', 'y', 'z', 'q', 'approach_x', 'approach_y', 'approach_z', 'time_usec']
ordered_fieldnames = [ 'latitude', 'longitude', 'altitude', 'x', 'y', 'z', 'q', 'approach_x', 'approach_y', 'approach_z', 'time_usec' ]
format = '<iiifff4ffffQ'
native_format = bytearray('<iiifffffffQ', 'ascii')
orders = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lengths = [1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
crc_extra = 104
def __init__(self, latitude, longitude, altitude, x, y, z, q, approach_x, approach_y, approach_z, time_usec=0):
MAVLink_message.__init__(self, MAVLink_home_position_message.id, MAVLink_home_position_message.name)
self._fieldnames = MAVLink_home_position_message.fieldnames
self.latitude = latitude
self.longitude = longitude
self.altitude = altitude
self.x = x
self.y = y
self.z = z
self.q = q
self.approach_x = approach_x
self.approach_y = approach_y
self.approach_z = approach_z
self.time_usec = time_usec
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 104, struct.pack('<iiifff4ffffQ', self.latitude, self.longitude, self.altitude, self.x, self.y, self.z, self.q[0], self.q[1], self.q[2], self.q[3], self.approach_x, self.approach_y, self.approach_z, self.time_usec), force_mavlink1=force_mavlink1)
class MAVLink_set_home_position_message(MAVLink_message):
'''
The position the system will return to and land on. The
position is set automatically by the system during the takeoff
in case it was not explicitly set by the operator before or
after. The global and local positions encode the position in
the respective coordinate frames, while the q parameter
encodes the orientation of the surface. Under normal
conditions it describes the heading and terrain slope, which
can be used by the aircraft to adjust the approach. The
approach 3D vector describes the point to which the system
should fly in normal flight mode and then perform a landing
sequence along the vector.
'''
id = MAVLINK_MSG_ID_SET_HOME_POSITION
name = 'SET_HOME_POSITION'
fieldnames = ['target_system', 'latitude', 'longitude', 'altitude', 'x', 'y', 'z', 'q', 'approach_x', 'approach_y', 'approach_z', 'time_usec']
ordered_fieldnames = [ 'latitude', 'longitude', 'altitude', 'x', 'y', 'z', 'q', 'approach_x', 'approach_y', 'approach_z', 'target_system', 'time_usec' ]
format = '<iiifff4ffffBQ'
native_format = bytearray('<iiifffffffBQ', 'ascii')
orders = [10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11]
lengths = [1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0]
crc_extra = 85
def __init__(self, target_system, latitude, longitude, altitude, x, y, z, q, approach_x, approach_y, approach_z, time_usec=0):
MAVLink_message.__init__(self, MAVLink_set_home_position_message.id, MAVLink_set_home_position_message.name)
self._fieldnames = MAVLink_set_home_position_message.fieldnames
self.target_system = target_system
self.latitude = latitude
self.longitude = longitude
self.altitude = altitude
self.x = x
self.y = y
self.z = z
self.q = q
self.approach_x = approach_x
self.approach_y = approach_y
self.approach_z = approach_z
self.time_usec = time_usec
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 85, struct.pack('<iiifff4ffffBQ', self.latitude, self.longitude, self.altitude, self.x, self.y, self.z, self.q[0], self.q[1], self.q[2], self.q[3], self.approach_x, self.approach_y, self.approach_z, self.target_system, self.time_usec), force_mavlink1=force_mavlink1)
class MAVLink_message_interval_message(MAVLink_message):
'''
The interval between messages for a particular MAVLink message
ID. This interface replaces DATA_STREAM
'''
id = MAVLINK_MSG_ID_MESSAGE_INTERVAL
name = 'MESSAGE_INTERVAL'
fieldnames = ['message_id', 'interval_us']
ordered_fieldnames = [ 'interval_us', 'message_id' ]
format = '<iH'
native_format = bytearray('<iH', 'ascii')
orders = [1, 0]
lengths = [1, 1]
array_lengths = [0, 0]
crc_extra = 95
def __init__(self, message_id, interval_us):
MAVLink_message.__init__(self, MAVLink_message_interval_message.id, MAVLink_message_interval_message.name)
self._fieldnames = MAVLink_message_interval_message.fieldnames
self.message_id = message_id
self.interval_us = interval_us
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 95, struct.pack('<iH', self.interval_us, self.message_id), force_mavlink1=force_mavlink1)
class MAVLink_extended_sys_state_message(MAVLink_message):
'''
Provides state for additional features
'''
id = MAVLINK_MSG_ID_EXTENDED_SYS_STATE
name = 'EXTENDED_SYS_STATE'
fieldnames = ['vtol_state', 'landed_state']
ordered_fieldnames = [ 'vtol_state', 'landed_state' ]
format = '<BB'
native_format = bytearray('<BB', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [0, 0]
crc_extra = 130
def __init__(self, vtol_state, landed_state):
MAVLink_message.__init__(self, MAVLink_extended_sys_state_message.id, MAVLink_extended_sys_state_message.name)
self._fieldnames = MAVLink_extended_sys_state_message.fieldnames
self.vtol_state = vtol_state
self.landed_state = landed_state
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 130, struct.pack('<BB', self.vtol_state, self.landed_state), force_mavlink1=force_mavlink1)
class MAVLink_adsb_vehicle_message(MAVLink_message):
'''
The location and information of an ADSB vehicle
'''
id = MAVLINK_MSG_ID_ADSB_VEHICLE
name = 'ADSB_VEHICLE'
fieldnames = ['ICAO_address', 'lat', 'lon', 'altitude_type', 'altitude', 'heading', 'hor_velocity', 'ver_velocity', 'callsign', 'emitter_type', 'tslc', 'flags', 'squawk']
ordered_fieldnames = [ 'ICAO_address', 'lat', 'lon', 'altitude', 'heading', 'hor_velocity', 'ver_velocity', 'flags', 'squawk', 'altitude_type', 'callsign', 'emitter_type', 'tslc' ]
format = '<IiiiHHhHHB9sBB'
native_format = bytearray('<IiiiHHhHHBcBB', 'ascii')
orders = [0, 1, 2, 9, 3, 4, 5, 6, 10, 11, 12, 7, 8]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0]
crc_extra = 184
def __init__(self, ICAO_address, lat, lon, altitude_type, altitude, heading, hor_velocity, ver_velocity, callsign, emitter_type, tslc, flags, squawk):
MAVLink_message.__init__(self, MAVLink_adsb_vehicle_message.id, MAVLink_adsb_vehicle_message.name)
self._fieldnames = MAVLink_adsb_vehicle_message.fieldnames
self.ICAO_address = ICAO_address
self.lat = lat
self.lon = lon
self.altitude_type = altitude_type
self.altitude = altitude
self.heading = heading
self.hor_velocity = hor_velocity
self.ver_velocity = ver_velocity
self.callsign = callsign
self.emitter_type = emitter_type
self.tslc = tslc
self.flags = flags
self.squawk = squawk
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 184, struct.pack('<IiiiHHhHHB9sBB', self.ICAO_address, self.lat, self.lon, self.altitude, self.heading, self.hor_velocity, self.ver_velocity, self.flags, self.squawk, self.altitude_type, self.callsign, self.emitter_type, self.tslc), force_mavlink1=force_mavlink1)
class MAVLink_collision_message(MAVLink_message):
'''
Information about a potential collision
'''
id = MAVLINK_MSG_ID_COLLISION
name = 'COLLISION'
fieldnames = ['src', 'id', 'action', 'threat_level', 'time_to_minimum_delta', 'altitude_minimum_delta', 'horizontal_minimum_delta']
ordered_fieldnames = [ 'id', 'time_to_minimum_delta', 'altitude_minimum_delta', 'horizontal_minimum_delta', 'src', 'action', 'threat_level' ]
format = '<IfffBBB'
native_format = bytearray('<IfffBBB', 'ascii')
orders = [4, 0, 5, 6, 1, 2, 3]
lengths = [1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0]
crc_extra = 81
def __init__(self, src, id, action, threat_level, time_to_minimum_delta, altitude_minimum_delta, horizontal_minimum_delta):
MAVLink_message.__init__(self, MAVLink_collision_message.id, MAVLink_collision_message.name)
self._fieldnames = MAVLink_collision_message.fieldnames
self.src = src
self.id = id
self.action = action
self.threat_level = threat_level
self.time_to_minimum_delta = time_to_minimum_delta
self.altitude_minimum_delta = altitude_minimum_delta
self.horizontal_minimum_delta = horizontal_minimum_delta
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 81, struct.pack('<IfffBBB', self.id, self.time_to_minimum_delta, self.altitude_minimum_delta, self.horizontal_minimum_delta, self.src, self.action, self.threat_level), force_mavlink1=force_mavlink1)
class MAVLink_v2_extension_message(MAVLink_message):
'''
Message implementing parts of the V2 payload specs in V1
frames for transitional support.
'''
id = MAVLINK_MSG_ID_V2_EXTENSION
name = 'V2_EXTENSION'
fieldnames = ['target_network', 'target_system', 'target_component', 'message_type', 'payload']
ordered_fieldnames = [ 'message_type', 'target_network', 'target_system', 'target_component', 'payload' ]
format = '<HBBB249B'
native_format = bytearray('<HBBBB', 'ascii')
orders = [1, 2, 3, 0, 4]
lengths = [1, 1, 1, 1, 249]
array_lengths = [0, 0, 0, 0, 249]
crc_extra = 8
def __init__(self, target_network, target_system, target_component, message_type, payload):
MAVLink_message.__init__(self, MAVLink_v2_extension_message.id, MAVLink_v2_extension_message.name)
self._fieldnames = MAVLink_v2_extension_message.fieldnames
self.target_network = target_network
self.target_system = target_system
self.target_component = target_component
self.message_type = message_type
self.payload = payload
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 8, struct.pack('<HBBB249B', self.message_type, self.target_network, self.target_system, self.target_component, self.payload[0], self.payload[1], self.payload[2], self.payload[3], self.payload[4], self.payload[5], self.payload[6], self.payload[7], self.payload[8], self.payload[9], self.payload[10], self.payload[11], self.payload[12], self.payload[13], self.payload[14], self.payload[15], self.payload[16], self.payload[17], self.payload[18], self.payload[19], self.payload[20], self.payload[21], self.payload[22], self.payload[23], self.payload[24], self.payload[25], self.payload[26], self.payload[27], self.payload[28], self.payload[29], self.payload[30], self.payload[31], self.payload[32], self.payload[33], self.payload[34], self.payload[35], self.payload[36], self.payload[37], self.payload[38], self.payload[39], self.payload[40], self.payload[41], self.payload[42], self.payload[43], self.payload[44], self.payload[45], self.payload[46], self.payload[47], self.payload[48], self.payload[49], self.payload[50], self.payload[51], self.payload[52], self.payload[53], self.payload[54], self.payload[55], self.payload[56], self.payload[57], self.payload[58], self.payload[59], self.payload[60], self.payload[61], self.payload[62], self.payload[63], self.payload[64], self.payload[65], self.payload[66], self.payload[67], self.payload[68], self.payload[69], self.payload[70], self.payload[71], self.payload[72], self.payload[73], self.payload[74], self.payload[75], self.payload[76], self.payload[77], self.payload[78], self.payload[79], self.payload[80], self.payload[81], self.payload[82], self.payload[83], self.payload[84], self.payload[85], self.payload[86], self.payload[87], self.payload[88], self.payload[89], self.payload[90], self.payload[91], self.payload[92], self.payload[93], self.payload[94], self.payload[95], self.payload[96], self.payload[97], self.payload[98], self.payload[99], self.payload[100], self.payload[101], self.payload[102], self.payload[103], self.payload[104], self.payload[105], self.payload[106], self.payload[107], self.payload[108], self.payload[109], self.payload[110], self.payload[111], self.payload[112], self.payload[113], self.payload[114], self.payload[115], self.payload[116], self.payload[117], self.payload[118], self.payload[119], self.payload[120], self.payload[121], self.payload[122], self.payload[123], self.payload[124], self.payload[125], self.payload[126], self.payload[127], self.payload[128], self.payload[129], self.payload[130], self.payload[131], self.payload[132], self.payload[133], self.payload[134], self.payload[135], self.payload[136], self.payload[137], self.payload[138], self.payload[139], self.payload[140], self.payload[141], self.payload[142], self.payload[143], self.payload[144], self.payload[145], self.payload[146], self.payload[147], self.payload[148], self.payload[149], self.payload[150], self.payload[151], self.payload[152], self.payload[153], self.payload[154], self.payload[155], self.payload[156], self.payload[157], self.payload[158], self.payload[159], self.payload[160], self.payload[161], self.payload[162], self.payload[163], self.payload[164], self.payload[165], self.payload[166], self.payload[167], self.payload[168], self.payload[169], self.payload[170], self.payload[171], self.payload[172], self.payload[173], self.payload[174], self.payload[175], self.payload[176], self.payload[177], self.payload[178], self.payload[179], self.payload[180], self.payload[181], self.payload[182], self.payload[183], self.payload[184], self.payload[185], self.payload[186], self.payload[187], self.payload[188], self.payload[189], self.payload[190], self.payload[191], self.payload[192], self.payload[193], self.payload[194], self.payload[195], self.payload[196], self.payload[197], self.payload[198], self.payload[199], self.payload[200], self.payload[201], self.payload[202], self.payload[203], self.payload[204], self.payload[205], self.payload[206], self.payload[207], self.payload[208], self.payload[209], self.payload[210], self.payload[211], self.payload[212], self.payload[213], self.payload[214], self.payload[215], self.payload[216], self.payload[217], self.payload[218], self.payload[219], self.payload[220], self.payload[221], self.payload[222], self.payload[223], self.payload[224], self.payload[225], self.payload[226], self.payload[227], self.payload[228], self.payload[229], self.payload[230], self.payload[231], self.payload[232], self.payload[233], self.payload[234], self.payload[235], self.payload[236], self.payload[237], self.payload[238], self.payload[239], self.payload[240], self.payload[241], self.payload[242], self.payload[243], self.payload[244], self.payload[245], self.payload[246], self.payload[247], self.payload[248]), force_mavlink1=force_mavlink1)
class MAVLink_memory_vect_message(MAVLink_message):
'''
Send raw controller memory. The use of this message is
discouraged for normal packets, but a quite efficient way for
testing new messages and getting experimental debug output.
'''
id = MAVLINK_MSG_ID_MEMORY_VECT
name = 'MEMORY_VECT'
fieldnames = ['address', 'ver', 'type', 'value']
ordered_fieldnames = [ 'address', 'ver', 'type', 'value' ]
format = '<HBB32b'
native_format = bytearray('<HBBb', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 32]
array_lengths = [0, 0, 0, 32]
crc_extra = 204
def __init__(self, address, ver, type, value):
MAVLink_message.__init__(self, MAVLink_memory_vect_message.id, MAVLink_memory_vect_message.name)
self._fieldnames = MAVLink_memory_vect_message.fieldnames
self.address = address
self.ver = ver
self.type = type
self.value = value
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 204, struct.pack('<HBB32b', self.address, self.ver, self.type, self.value[0], self.value[1], self.value[2], self.value[3], self.value[4], self.value[5], self.value[6], self.value[7], self.value[8], self.value[9], self.value[10], self.value[11], self.value[12], self.value[13], self.value[14], self.value[15], self.value[16], self.value[17], self.value[18], self.value[19], self.value[20], self.value[21], self.value[22], self.value[23], self.value[24], self.value[25], self.value[26], self.value[27], self.value[28], self.value[29], self.value[30], self.value[31]), force_mavlink1=force_mavlink1)
class MAVLink_debug_vect_message(MAVLink_message):
'''
To debug something using a named 3D vector.
'''
id = MAVLINK_MSG_ID_DEBUG_VECT
name = 'DEBUG_VECT'
fieldnames = ['name', 'time_usec', 'x', 'y', 'z']
ordered_fieldnames = [ 'time_usec', 'x', 'y', 'z', 'name' ]
format = '<Qfff10s'
native_format = bytearray('<Qfffc', 'ascii')
orders = [4, 0, 1, 2, 3]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 10]
crc_extra = 49
def __init__(self, name, time_usec, x, y, z):
MAVLink_message.__init__(self, MAVLink_debug_vect_message.id, MAVLink_debug_vect_message.name)
self._fieldnames = MAVLink_debug_vect_message.fieldnames
self.name = name
self.time_usec = time_usec
self.x = x
self.y = y
self.z = z
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 49, struct.pack('<Qfff10s', self.time_usec, self.x, self.y, self.z, self.name), force_mavlink1=force_mavlink1)
class MAVLink_named_value_float_message(MAVLink_message):
'''
Send a key-value pair as float. The use of this message is
discouraged for normal packets, but a quite efficient way for
testing new messages and getting experimental debug output.
'''
id = MAVLINK_MSG_ID_NAMED_VALUE_FLOAT
name = 'NAMED_VALUE_FLOAT'
fieldnames = ['time_boot_ms', 'name', 'value']
ordered_fieldnames = [ 'time_boot_ms', 'value', 'name' ]
format = '<If10s'
native_format = bytearray('<Ifc', 'ascii')
orders = [0, 2, 1]
lengths = [1, 1, 1]
array_lengths = [0, 0, 10]
crc_extra = 170
def __init__(self, time_boot_ms, name, value):
MAVLink_message.__init__(self, MAVLink_named_value_float_message.id, MAVLink_named_value_float_message.name)
self._fieldnames = MAVLink_named_value_float_message.fieldnames
self.time_boot_ms = time_boot_ms
self.name = name
self.value = value
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 170, struct.pack('<If10s', self.time_boot_ms, self.value, self.name), force_mavlink1=force_mavlink1)
class MAVLink_named_value_int_message(MAVLink_message):
'''
Send a key-value pair as integer. The use of this message is
discouraged for normal packets, but a quite efficient way for
testing new messages and getting experimental debug output.
'''
id = MAVLINK_MSG_ID_NAMED_VALUE_INT
name = 'NAMED_VALUE_INT'
fieldnames = ['time_boot_ms', 'name', 'value']
ordered_fieldnames = [ 'time_boot_ms', 'value', 'name' ]
format = '<Ii10s'
native_format = bytearray('<Iic', 'ascii')
orders = [0, 2, 1]
lengths = [1, 1, 1]
array_lengths = [0, 0, 10]
crc_extra = 44
def __init__(self, time_boot_ms, name, value):
MAVLink_message.__init__(self, MAVLink_named_value_int_message.id, MAVLink_named_value_int_message.name)
self._fieldnames = MAVLink_named_value_int_message.fieldnames
self.time_boot_ms = time_boot_ms
self.name = name
self.value = value
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 44, struct.pack('<Ii10s', self.time_boot_ms, self.value, self.name), force_mavlink1=force_mavlink1)
class MAVLink_statustext_message(MAVLink_message):
'''
Status text message. These messages are printed in yellow in
the COMM console of QGroundControl. WARNING: They consume
quite some bandwidth, so use only for important status and
error messages. If implemented wisely, these messages are
buffered on the MCU and sent only at a limited rate (e.g. 10
Hz).
'''
id = MAVLINK_MSG_ID_STATUSTEXT
name = 'STATUSTEXT'
fieldnames = ['severity', 'text']
ordered_fieldnames = [ 'severity', 'text' ]
format = '<B50s'
native_format = bytearray('<Bc', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [0, 50]
crc_extra = 83
def __init__(self, severity, text):
MAVLink_message.__init__(self, MAVLink_statustext_message.id, MAVLink_statustext_message.name)
self._fieldnames = MAVLink_statustext_message.fieldnames
self.severity = severity
self.text = text
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 83, struct.pack('<B50s', self.severity, self.text), force_mavlink1=force_mavlink1)
class MAVLink_debug_message(MAVLink_message):
'''
Send a debug value. The index is used to discriminate between
values. These values show up in the plot of QGroundControl as
DEBUG N.
'''
id = MAVLINK_MSG_ID_DEBUG
name = 'DEBUG'
fieldnames = ['time_boot_ms', 'ind', 'value']
ordered_fieldnames = [ 'time_boot_ms', 'value', 'ind' ]
format = '<IfB'
native_format = bytearray('<IfB', 'ascii')
orders = [0, 2, 1]
lengths = [1, 1, 1]
array_lengths = [0, 0, 0]
crc_extra = 46
def __init__(self, time_boot_ms, ind, value):
MAVLink_message.__init__(self, MAVLink_debug_message.id, MAVLink_debug_message.name)
self._fieldnames = MAVLink_debug_message.fieldnames
self.time_boot_ms = time_boot_ms
self.ind = ind
self.value = value
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 46, struct.pack('<IfB', self.time_boot_ms, self.value, self.ind), force_mavlink1=force_mavlink1)
class MAVLink_setup_signing_message(MAVLink_message):
'''
Setup a MAVLink2 signing key. If called with secret_key of all
zero and zero initial_timestamp will disable signing
'''
id = MAVLINK_MSG_ID_SETUP_SIGNING
name = 'SETUP_SIGNING'
fieldnames = ['target_system', 'target_component', 'secret_key', 'initial_timestamp']
ordered_fieldnames = [ 'initial_timestamp', 'target_system', 'target_component', 'secret_key' ]
format = '<QBB32B'
native_format = bytearray('<QBBB', 'ascii')
orders = [1, 2, 3, 0]
lengths = [1, 1, 1, 32]
array_lengths = [0, 0, 0, 32]
crc_extra = 71
def __init__(self, target_system, target_component, secret_key, initial_timestamp):
MAVLink_message.__init__(self, MAVLink_setup_signing_message.id, MAVLink_setup_signing_message.name)
self._fieldnames = MAVLink_setup_signing_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.secret_key = secret_key
self.initial_timestamp = initial_timestamp
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 71, struct.pack('<QBB32B', self.initial_timestamp, self.target_system, self.target_component, self.secret_key[0], self.secret_key[1], self.secret_key[2], self.secret_key[3], self.secret_key[4], self.secret_key[5], self.secret_key[6], self.secret_key[7], self.secret_key[8], self.secret_key[9], self.secret_key[10], self.secret_key[11], self.secret_key[12], self.secret_key[13], self.secret_key[14], self.secret_key[15], self.secret_key[16], self.secret_key[17], self.secret_key[18], self.secret_key[19], self.secret_key[20], self.secret_key[21], self.secret_key[22], self.secret_key[23], self.secret_key[24], self.secret_key[25], self.secret_key[26], self.secret_key[27], self.secret_key[28], self.secret_key[29], self.secret_key[30], self.secret_key[31]), force_mavlink1=force_mavlink1)
class MAVLink_button_change_message(MAVLink_message):
'''
Report button state change.
'''
id = MAVLINK_MSG_ID_BUTTON_CHANGE
name = 'BUTTON_CHANGE'
fieldnames = ['time_boot_ms', 'last_change_ms', 'state']
ordered_fieldnames = [ 'time_boot_ms', 'last_change_ms', 'state' ]
format = '<IIB'
native_format = bytearray('<IIB', 'ascii')
orders = [0, 1, 2]
lengths = [1, 1, 1]
array_lengths = [0, 0, 0]
crc_extra = 131
def __init__(self, time_boot_ms, last_change_ms, state):
MAVLink_message.__init__(self, MAVLink_button_change_message.id, MAVLink_button_change_message.name)
self._fieldnames = MAVLink_button_change_message.fieldnames
self.time_boot_ms = time_boot_ms
self.last_change_ms = last_change_ms
self.state = state
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 131, struct.pack('<IIB', self.time_boot_ms, self.last_change_ms, self.state), force_mavlink1=force_mavlink1)
class MAVLink_play_tune_message(MAVLink_message):
'''
Control vehicle tone generation (buzzer)
'''
id = MAVLINK_MSG_ID_PLAY_TUNE
name = 'PLAY_TUNE'
fieldnames = ['target_system', 'target_component', 'tune', 'tune2']
ordered_fieldnames = [ 'target_system', 'target_component', 'tune', 'tune2' ]
format = '<BB30s200s'
native_format = bytearray('<BBcc', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 30, 200]
crc_extra = 187
def __init__(self, target_system, target_component, tune, tune2=0):
MAVLink_message.__init__(self, MAVLink_play_tune_message.id, MAVLink_play_tune_message.name)
self._fieldnames = MAVLink_play_tune_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.tune = tune
self.tune2 = tune2
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 187, struct.pack('<BB30s200s', self.target_system, self.target_component, self.tune, self.tune2), force_mavlink1=force_mavlink1)
class MAVLink_camera_information_message(MAVLink_message):
'''
Information about a camera
'''
id = MAVLINK_MSG_ID_CAMERA_INFORMATION
name = 'CAMERA_INFORMATION'
fieldnames = ['time_boot_ms', 'vendor_name', 'model_name', 'firmware_version', 'focal_length', 'sensor_size_h', 'sensor_size_v', 'resolution_h', 'resolution_v', 'lens_id', 'flags', 'cam_definition_version', 'cam_definition_uri']
ordered_fieldnames = [ 'time_boot_ms', 'firmware_version', 'focal_length', 'sensor_size_h', 'sensor_size_v', 'flags', 'resolution_h', 'resolution_v', 'cam_definition_version', 'vendor_name', 'model_name', 'lens_id', 'cam_definition_uri' ]
format = '<IIfffIHHH32B32BB140s'
native_format = bytearray('<IIfffIHHHBBBc', 'ascii')
orders = [0, 9, 10, 1, 2, 3, 4, 6, 7, 11, 5, 8, 12]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 32, 32, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 32, 0, 140]
crc_extra = 92
def __init__(self, time_boot_ms, vendor_name, model_name, firmware_version, focal_length, sensor_size_h, sensor_size_v, resolution_h, resolution_v, lens_id, flags, cam_definition_version, cam_definition_uri):
MAVLink_message.__init__(self, MAVLink_camera_information_message.id, MAVLink_camera_information_message.name)
self._fieldnames = MAVLink_camera_information_message.fieldnames
self.time_boot_ms = time_boot_ms
self.vendor_name = vendor_name
self.model_name = model_name
self.firmware_version = firmware_version
self.focal_length = focal_length
self.sensor_size_h = sensor_size_h
self.sensor_size_v = sensor_size_v
self.resolution_h = resolution_h
self.resolution_v = resolution_v
self.lens_id = lens_id
self.flags = flags
self.cam_definition_version = cam_definition_version
self.cam_definition_uri = cam_definition_uri
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 92, struct.pack('<IIfffIHHH32B32BB140s', self.time_boot_ms, self.firmware_version, self.focal_length, self.sensor_size_h, self.sensor_size_v, self.flags, self.resolution_h, self.resolution_v, self.cam_definition_version, self.vendor_name[0], self.vendor_name[1], self.vendor_name[2], self.vendor_name[3], self.vendor_name[4], self.vendor_name[5], self.vendor_name[6], self.vendor_name[7], self.vendor_name[8], self.vendor_name[9], self.vendor_name[10], self.vendor_name[11], self.vendor_name[12], self.vendor_name[13], self.vendor_name[14], self.vendor_name[15], self.vendor_name[16], self.vendor_name[17], self.vendor_name[18], self.vendor_name[19], self.vendor_name[20], self.vendor_name[21], self.vendor_name[22], self.vendor_name[23], self.vendor_name[24], self.vendor_name[25], self.vendor_name[26], self.vendor_name[27], self.vendor_name[28], self.vendor_name[29], self.vendor_name[30], self.vendor_name[31], self.model_name[0], self.model_name[1], self.model_name[2], self.model_name[3], self.model_name[4], self.model_name[5], self.model_name[6], self.model_name[7], self.model_name[8], self.model_name[9], self.model_name[10], self.model_name[11], self.model_name[12], self.model_name[13], self.model_name[14], self.model_name[15], self.model_name[16], self.model_name[17], self.model_name[18], self.model_name[19], self.model_name[20], self.model_name[21], self.model_name[22], self.model_name[23], self.model_name[24], self.model_name[25], self.model_name[26], self.model_name[27], self.model_name[28], self.model_name[29], self.model_name[30], self.model_name[31], self.lens_id, self.cam_definition_uri), force_mavlink1=force_mavlink1)
class MAVLink_camera_settings_message(MAVLink_message):
'''
Settings of a camera, can be requested using
MAV_CMD_REQUEST_CAMERA_SETTINGS.
'''
id = MAVLINK_MSG_ID_CAMERA_SETTINGS
name = 'CAMERA_SETTINGS'
fieldnames = ['time_boot_ms', 'mode_id']
ordered_fieldnames = [ 'time_boot_ms', 'mode_id' ]
format = '<IB'
native_format = bytearray('<IB', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [0, 0]
crc_extra = 146
def __init__(self, time_boot_ms, mode_id):
MAVLink_message.__init__(self, MAVLink_camera_settings_message.id, MAVLink_camera_settings_message.name)
self._fieldnames = MAVLink_camera_settings_message.fieldnames
self.time_boot_ms = time_boot_ms
self.mode_id = mode_id
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 146, struct.pack('<IB', self.time_boot_ms, self.mode_id), force_mavlink1=force_mavlink1)
class MAVLink_storage_information_message(MAVLink_message):
'''
Information about a storage medium.
'''
id = MAVLINK_MSG_ID_STORAGE_INFORMATION
name = 'STORAGE_INFORMATION'
fieldnames = ['time_boot_ms', 'storage_id', 'storage_count', 'status', 'total_capacity', 'used_capacity', 'available_capacity', 'read_speed', 'write_speed']
ordered_fieldnames = [ 'time_boot_ms', 'total_capacity', 'used_capacity', 'available_capacity', 'read_speed', 'write_speed', 'storage_id', 'storage_count', 'status' ]
format = '<IfffffBBB'
native_format = bytearray('<IfffffBBB', 'ascii')
orders = [0, 6, 7, 8, 1, 2, 3, 4, 5]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 0]
crc_extra = 179
def __init__(self, time_boot_ms, storage_id, storage_count, status, total_capacity, used_capacity, available_capacity, read_speed, write_speed):
MAVLink_message.__init__(self, MAVLink_storage_information_message.id, MAVLink_storage_information_message.name)
self._fieldnames = MAVLink_storage_information_message.fieldnames
self.time_boot_ms = time_boot_ms
self.storage_id = storage_id
self.storage_count = storage_count
self.status = status
self.total_capacity = total_capacity
self.used_capacity = used_capacity
self.available_capacity = available_capacity
self.read_speed = read_speed
self.write_speed = write_speed
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 179, struct.pack('<IfffffBBB', self.time_boot_ms, self.total_capacity, self.used_capacity, self.available_capacity, self.read_speed, self.write_speed, self.storage_id, self.storage_count, self.status), force_mavlink1=force_mavlink1)
class MAVLink_camera_capture_status_message(MAVLink_message):
'''
Information about the status of a capture.
'''
id = MAVLINK_MSG_ID_CAMERA_CAPTURE_STATUS
name = 'CAMERA_CAPTURE_STATUS'
fieldnames = ['time_boot_ms', 'image_status', 'video_status', 'image_interval', 'recording_time_ms', 'available_capacity']
ordered_fieldnames = [ 'time_boot_ms', 'image_interval', 'recording_time_ms', 'available_capacity', 'image_status', 'video_status' ]
format = '<IfIfBB'
native_format = bytearray('<IfIfBB', 'ascii')
orders = [0, 4, 5, 1, 2, 3]
lengths = [1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0]
crc_extra = 12
def __init__(self, time_boot_ms, image_status, video_status, image_interval, recording_time_ms, available_capacity):
MAVLink_message.__init__(self, MAVLink_camera_capture_status_message.id, MAVLink_camera_capture_status_message.name)
self._fieldnames = MAVLink_camera_capture_status_message.fieldnames
self.time_boot_ms = time_boot_ms
self.image_status = image_status
self.video_status = video_status
self.image_interval = image_interval
self.recording_time_ms = recording_time_ms
self.available_capacity = available_capacity
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 12, struct.pack('<IfIfBB', self.time_boot_ms, self.image_interval, self.recording_time_ms, self.available_capacity, self.image_status, self.video_status), force_mavlink1=force_mavlink1)
class MAVLink_camera_image_captured_message(MAVLink_message):
'''
Information about a captured image
'''
id = MAVLINK_MSG_ID_CAMERA_IMAGE_CAPTURED
name = 'CAMERA_IMAGE_CAPTURED'
fieldnames = ['time_boot_ms', 'time_utc', 'camera_id', 'lat', 'lon', 'alt', 'relative_alt', 'q', 'image_index', 'capture_result', 'file_url']
ordered_fieldnames = [ 'time_utc', 'time_boot_ms', 'lat', 'lon', 'alt', 'relative_alt', 'q', 'image_index', 'camera_id', 'capture_result', 'file_url' ]
format = '<QIiiii4fiBb205s'
native_format = bytearray('<QIiiiifiBbc', 'ascii')
orders = [1, 0, 8, 2, 3, 4, 5, 6, 7, 9, 10]
lengths = [1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 205]
crc_extra = 133
def __init__(self, time_boot_ms, time_utc, camera_id, lat, lon, alt, relative_alt, q, image_index, capture_result, file_url):
MAVLink_message.__init__(self, MAVLink_camera_image_captured_message.id, MAVLink_camera_image_captured_message.name)
self._fieldnames = MAVLink_camera_image_captured_message.fieldnames
self.time_boot_ms = time_boot_ms
self.time_utc = time_utc
self.camera_id = camera_id
self.lat = lat
self.lon = lon
self.alt = alt
self.relative_alt = relative_alt
self.q = q
self.image_index = image_index
self.capture_result = capture_result
self.file_url = file_url
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 133, struct.pack('<QIiiii4fiBb205s', self.time_utc, self.time_boot_ms, self.lat, self.lon, self.alt, self.relative_alt, self.q[0], self.q[1], self.q[2], self.q[3], self.image_index, self.camera_id, self.capture_result, self.file_url), force_mavlink1=force_mavlink1)
class MAVLink_flight_information_message(MAVLink_message):
'''
Information about flight since last arming.
'''
id = MAVLINK_MSG_ID_FLIGHT_INFORMATION
name = 'FLIGHT_INFORMATION'
fieldnames = ['time_boot_ms', 'arming_time_utc', 'takeoff_time_utc', 'flight_uuid']
ordered_fieldnames = [ 'arming_time_utc', 'takeoff_time_utc', 'flight_uuid', 'time_boot_ms' ]
format = '<QQQI'
native_format = bytearray('<QQQI', 'ascii')
orders = [3, 0, 1, 2]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 0]
crc_extra = 49
def __init__(self, time_boot_ms, arming_time_utc, takeoff_time_utc, flight_uuid):
MAVLink_message.__init__(self, MAVLink_flight_information_message.id, MAVLink_flight_information_message.name)
self._fieldnames = MAVLink_flight_information_message.fieldnames
self.time_boot_ms = time_boot_ms
self.arming_time_utc = arming_time_utc
self.takeoff_time_utc = takeoff_time_utc
self.flight_uuid = flight_uuid
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 49, struct.pack('<QQQI', self.arming_time_utc, self.takeoff_time_utc, self.flight_uuid, self.time_boot_ms), force_mavlink1=force_mavlink1)
class MAVLink_mount_orientation_message(MAVLink_message):
'''
Orientation of a mount
'''
id = MAVLINK_MSG_ID_MOUNT_ORIENTATION
name = 'MOUNT_ORIENTATION'
fieldnames = ['time_boot_ms', 'roll', 'pitch', 'yaw', 'yaw_absolute']
ordered_fieldnames = [ 'time_boot_ms', 'roll', 'pitch', 'yaw', 'yaw_absolute' ]
format = '<Iffff'
native_format = bytearray('<Iffff', 'ascii')
orders = [0, 1, 2, 3, 4]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0]
crc_extra = 26
def __init__(self, time_boot_ms, roll, pitch, yaw, yaw_absolute=0):
MAVLink_message.__init__(self, MAVLink_mount_orientation_message.id, MAVLink_mount_orientation_message.name)
self._fieldnames = MAVLink_mount_orientation_message.fieldnames
self.time_boot_ms = time_boot_ms
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.yaw_absolute = yaw_absolute
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 26, struct.pack('<Iffff', self.time_boot_ms, self.roll, self.pitch, self.yaw, self.yaw_absolute), force_mavlink1=force_mavlink1)
class MAVLink_logging_data_message(MAVLink_message):
'''
A message containing logged data (see also
MAV_CMD_LOGGING_START)
'''
id = MAVLINK_MSG_ID_LOGGING_DATA
name = 'LOGGING_DATA'
fieldnames = ['target_system', 'target_component', 'sequence', 'length', 'first_message_offset', 'data']
ordered_fieldnames = [ 'sequence', 'target_system', 'target_component', 'length', 'first_message_offset', 'data' ]
format = '<HBBBB249B'
native_format = bytearray('<HBBBBB', 'ascii')
orders = [1, 2, 0, 3, 4, 5]
lengths = [1, 1, 1, 1, 1, 249]
array_lengths = [0, 0, 0, 0, 0, 249]
crc_extra = 193
def __init__(self, target_system, target_component, sequence, length, first_message_offset, data):
MAVLink_message.__init__(self, MAVLink_logging_data_message.id, MAVLink_logging_data_message.name)
self._fieldnames = MAVLink_logging_data_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.sequence = sequence
self.length = length
self.first_message_offset = first_message_offset
self.data = data
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 193, struct.pack('<HBBBB249B', self.sequence, self.target_system, self.target_component, self.length, self.first_message_offset, self.data[0], self.data[1], self.data[2], self.data[3], self.data[4], self.data[5], self.data[6], self.data[7], self.data[8], self.data[9], self.data[10], self.data[11], self.data[12], self.data[13], self.data[14], self.data[15], self.data[16], self.data[17], self.data[18], self.data[19], self.data[20], self.data[21], self.data[22], self.data[23], self.data[24], self.data[25], self.data[26], self.data[27], self.data[28], self.data[29], self.data[30], self.data[31], self.data[32], self.data[33], self.data[34], self.data[35], self.data[36], self.data[37], self.data[38], self.data[39], self.data[40], self.data[41], self.data[42], self.data[43], self.data[44], self.data[45], self.data[46], self.data[47], self.data[48], self.data[49], self.data[50], self.data[51], self.data[52], self.data[53], self.data[54], self.data[55], self.data[56], self.data[57], self.data[58], self.data[59], self.data[60], self.data[61], self.data[62], self.data[63], self.data[64], self.data[65], self.data[66], self.data[67], self.data[68], self.data[69], self.data[70], self.data[71], self.data[72], self.data[73], self.data[74], self.data[75], self.data[76], self.data[77], self.data[78], self.data[79], self.data[80], self.data[81], self.data[82], self.data[83], self.data[84], self.data[85], self.data[86], self.data[87], self.data[88], self.data[89], self.data[90], self.data[91], self.data[92], self.data[93], self.data[94], self.data[95], self.data[96], self.data[97], self.data[98], self.data[99], self.data[100], self.data[101], self.data[102], self.data[103], self.data[104], self.data[105], self.data[106], self.data[107], self.data[108], self.data[109], self.data[110], self.data[111], self.data[112], self.data[113], self.data[114], self.data[115], self.data[116], self.data[117], self.data[118], self.data[119], self.data[120], self.data[121], self.data[122], self.data[123], self.data[124], self.data[125], self.data[126], self.data[127], self.data[128], self.data[129], self.data[130], self.data[131], self.data[132], self.data[133], self.data[134], self.data[135], self.data[136], self.data[137], self.data[138], self.data[139], self.data[140], self.data[141], self.data[142], self.data[143], self.data[144], self.data[145], self.data[146], self.data[147], self.data[148], self.data[149], self.data[150], self.data[151], self.data[152], self.data[153], self.data[154], self.data[155], self.data[156], self.data[157], self.data[158], self.data[159], self.data[160], self.data[161], self.data[162], self.data[163], self.data[164], self.data[165], self.data[166], self.data[167], self.data[168], self.data[169], self.data[170], self.data[171], self.data[172], self.data[173], self.data[174], self.data[175], self.data[176], self.data[177], self.data[178], self.data[179], self.data[180], self.data[181], self.data[182], self.data[183], self.data[184], self.data[185], self.data[186], self.data[187], self.data[188], self.data[189], self.data[190], self.data[191], self.data[192], self.data[193], self.data[194], self.data[195], self.data[196], self.data[197], self.data[198], self.data[199], self.data[200], self.data[201], self.data[202], self.data[203], self.data[204], self.data[205], self.data[206], self.data[207], self.data[208], self.data[209], self.data[210], self.data[211], self.data[212], self.data[213], self.data[214], self.data[215], self.data[216], self.data[217], self.data[218], self.data[219], self.data[220], self.data[221], self.data[222], self.data[223], self.data[224], self.data[225], self.data[226], self.data[227], self.data[228], self.data[229], self.data[230], self.data[231], self.data[232], self.data[233], self.data[234], self.data[235], self.data[236], self.data[237], self.data[238], self.data[239], self.data[240], self.data[241], self.data[242], self.data[243], self.data[244], self.data[245], self.data[246], self.data[247], self.data[248]), force_mavlink1=force_mavlink1)
class MAVLink_logging_data_acked_message(MAVLink_message):
'''
A message containing logged data which requires a LOGGING_ACK
to be sent back
'''
id = MAVLINK_MSG_ID_LOGGING_DATA_ACKED
name = 'LOGGING_DATA_ACKED'
fieldnames = ['target_system', 'target_component', 'sequence', 'length', 'first_message_offset', 'data']
ordered_fieldnames = [ 'sequence', 'target_system', 'target_component', 'length', 'first_message_offset', 'data' ]
format = '<HBBBB249B'
native_format = bytearray('<HBBBBB', 'ascii')
orders = [1, 2, 0, 3, 4, 5]
lengths = [1, 1, 1, 1, 1, 249]
array_lengths = [0, 0, 0, 0, 0, 249]
crc_extra = 35
def __init__(self, target_system, target_component, sequence, length, first_message_offset, data):
MAVLink_message.__init__(self, MAVLink_logging_data_acked_message.id, MAVLink_logging_data_acked_message.name)
self._fieldnames = MAVLink_logging_data_acked_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.sequence = sequence
self.length = length
self.first_message_offset = first_message_offset
self.data = data
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 35, struct.pack('<HBBBB249B', self.sequence, self.target_system, self.target_component, self.length, self.first_message_offset, self.data[0], self.data[1], self.data[2], self.data[3], self.data[4], self.data[5], self.data[6], self.data[7], self.data[8], self.data[9], self.data[10], self.data[11], self.data[12], self.data[13], self.data[14], self.data[15], self.data[16], self.data[17], self.data[18], self.data[19], self.data[20], self.data[21], self.data[22], self.data[23], self.data[24], self.data[25], self.data[26], self.data[27], self.data[28], self.data[29], self.data[30], self.data[31], self.data[32], self.data[33], self.data[34], self.data[35], self.data[36], self.data[37], self.data[38], self.data[39], self.data[40], self.data[41], self.data[42], self.data[43], self.data[44], self.data[45], self.data[46], self.data[47], self.data[48], self.data[49], self.data[50], self.data[51], self.data[52], self.data[53], self.data[54], self.data[55], self.data[56], self.data[57], self.data[58], self.data[59], self.data[60], self.data[61], self.data[62], self.data[63], self.data[64], self.data[65], self.data[66], self.data[67], self.data[68], self.data[69], self.data[70], self.data[71], self.data[72], self.data[73], self.data[74], self.data[75], self.data[76], self.data[77], self.data[78], self.data[79], self.data[80], self.data[81], self.data[82], self.data[83], self.data[84], self.data[85], self.data[86], self.data[87], self.data[88], self.data[89], self.data[90], self.data[91], self.data[92], self.data[93], self.data[94], self.data[95], self.data[96], self.data[97], self.data[98], self.data[99], self.data[100], self.data[101], self.data[102], self.data[103], self.data[104], self.data[105], self.data[106], self.data[107], self.data[108], self.data[109], self.data[110], self.data[111], self.data[112], self.data[113], self.data[114], self.data[115], self.data[116], self.data[117], self.data[118], self.data[119], self.data[120], self.data[121], self.data[122], self.data[123], self.data[124], self.data[125], self.data[126], self.data[127], self.data[128], self.data[129], self.data[130], self.data[131], self.data[132], self.data[133], self.data[134], self.data[135], self.data[136], self.data[137], self.data[138], self.data[139], self.data[140], self.data[141], self.data[142], self.data[143], self.data[144], self.data[145], self.data[146], self.data[147], self.data[148], self.data[149], self.data[150], self.data[151], self.data[152], self.data[153], self.data[154], self.data[155], self.data[156], self.data[157], self.data[158], self.data[159], self.data[160], self.data[161], self.data[162], self.data[163], self.data[164], self.data[165], self.data[166], self.data[167], self.data[168], self.data[169], self.data[170], self.data[171], self.data[172], self.data[173], self.data[174], self.data[175], self.data[176], self.data[177], self.data[178], self.data[179], self.data[180], self.data[181], self.data[182], self.data[183], self.data[184], self.data[185], self.data[186], self.data[187], self.data[188], self.data[189], self.data[190], self.data[191], self.data[192], self.data[193], self.data[194], self.data[195], self.data[196], self.data[197], self.data[198], self.data[199], self.data[200], self.data[201], self.data[202], self.data[203], self.data[204], self.data[205], self.data[206], self.data[207], self.data[208], self.data[209], self.data[210], self.data[211], self.data[212], self.data[213], self.data[214], self.data[215], self.data[216], self.data[217], self.data[218], self.data[219], self.data[220], self.data[221], self.data[222], self.data[223], self.data[224], self.data[225], self.data[226], self.data[227], self.data[228], self.data[229], self.data[230], self.data[231], self.data[232], self.data[233], self.data[234], self.data[235], self.data[236], self.data[237], self.data[238], self.data[239], self.data[240], self.data[241], self.data[242], self.data[243], self.data[244], self.data[245], self.data[246], self.data[247], self.data[248]), force_mavlink1=force_mavlink1)
class MAVLink_logging_ack_message(MAVLink_message):
'''
An ack for a LOGGING_DATA_ACKED message
'''
id = MAVLINK_MSG_ID_LOGGING_ACK
name = 'LOGGING_ACK'
fieldnames = ['target_system', 'target_component', 'sequence']
ordered_fieldnames = [ 'sequence', 'target_system', 'target_component' ]
format = '<HBB'
native_format = bytearray('<HBB', 'ascii')
orders = [1, 2, 0]
lengths = [1, 1, 1]
array_lengths = [0, 0, 0]
crc_extra = 14
def __init__(self, target_system, target_component, sequence):
MAVLink_message.__init__(self, MAVLink_logging_ack_message.id, MAVLink_logging_ack_message.name)
self._fieldnames = MAVLink_logging_ack_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.sequence = sequence
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 14, struct.pack('<HBB', self.sequence, self.target_system, self.target_component), force_mavlink1=force_mavlink1)
class MAVLink_video_stream_information_message(MAVLink_message):
'''
Information about video stream
'''
id = MAVLINK_MSG_ID_VIDEO_STREAM_INFORMATION
name = 'VIDEO_STREAM_INFORMATION'
fieldnames = ['camera_id', 'status', 'framerate', 'resolution_h', 'resolution_v', 'bitrate', 'rotation', 'uri']
ordered_fieldnames = [ 'framerate', 'bitrate', 'resolution_h', 'resolution_v', 'rotation', 'camera_id', 'status', 'uri' ]
format = '<fIHHHBB230s'
native_format = bytearray('<fIHHHBBc', 'ascii')
orders = [5, 6, 0, 2, 3, 1, 4, 7]
lengths = [1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 230]
crc_extra = 58
def __init__(self, camera_id, status, framerate, resolution_h, resolution_v, bitrate, rotation, uri):
MAVLink_message.__init__(self, MAVLink_video_stream_information_message.id, MAVLink_video_stream_information_message.name)
self._fieldnames = MAVLink_video_stream_information_message.fieldnames
self.camera_id = camera_id
self.status = status
self.framerate = framerate
self.resolution_h = resolution_h
self.resolution_v = resolution_v
self.bitrate = bitrate
self.rotation = rotation
self.uri = uri
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 58, struct.pack('<fIHHHBB230s', self.framerate, self.bitrate, self.resolution_h, self.resolution_v, self.rotation, self.camera_id, self.status, self.uri), force_mavlink1=force_mavlink1)
class MAVLink_set_video_stream_settings_message(MAVLink_message):
'''
Message that sets video stream settings
'''
id = MAVLINK_MSG_ID_SET_VIDEO_STREAM_SETTINGS
name = 'SET_VIDEO_STREAM_SETTINGS'
fieldnames = ['target_system', 'target_component', 'camera_id', 'framerate', 'resolution_h', 'resolution_v', 'bitrate', 'rotation', 'uri']
ordered_fieldnames = [ 'framerate', 'bitrate', 'resolution_h', 'resolution_v', 'rotation', 'target_system', 'target_component', 'camera_id', 'uri' ]
format = '<fIHHHBBB230s'
native_format = bytearray('<fIHHHBBBc', 'ascii')
orders = [5, 6, 7, 0, 2, 3, 1, 4, 8]
lengths = [1, 1, 1, 1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0, 0, 0, 230]
crc_extra = 232
def __init__(self, target_system, target_component, camera_id, framerate, resolution_h, resolution_v, bitrate, rotation, uri):
MAVLink_message.__init__(self, MAVLink_set_video_stream_settings_message.id, MAVLink_set_video_stream_settings_message.name)
self._fieldnames = MAVLink_set_video_stream_settings_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.camera_id = camera_id
self.framerate = framerate
self.resolution_h = resolution_h
self.resolution_v = resolution_v
self.bitrate = bitrate
self.rotation = rotation
self.uri = uri
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 232, struct.pack('<fIHHHBBB230s', self.framerate, self.bitrate, self.resolution_h, self.resolution_v, self.rotation, self.target_system, self.target_component, self.camera_id, self.uri), force_mavlink1=force_mavlink1)
class MAVLink_wifi_config_ap_message(MAVLink_message):
'''
Configure AP SSID and Password.
'''
id = MAVLINK_MSG_ID_WIFI_CONFIG_AP
name = 'WIFI_CONFIG_AP'
fieldnames = ['ssid', 'password']
ordered_fieldnames = [ 'ssid', 'password' ]
format = '<32s64s'
native_format = bytearray('<cc', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [32, 64]
crc_extra = 19
def __init__(self, ssid, password):
MAVLink_message.__init__(self, MAVLink_wifi_config_ap_message.id, MAVLink_wifi_config_ap_message.name)
self._fieldnames = MAVLink_wifi_config_ap_message.fieldnames
self.ssid = ssid
self.password = password
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 19, struct.pack('<32s64s', self.ssid, self.password), force_mavlink1=force_mavlink1)
class MAVLink_protocol_version_message(MAVLink_message):
'''
Version and capability of protocol version. This message is
the response to REQUEST_PROTOCOL_VERSION and is used as part
of the handshaking to establish which MAVLink version should
be used on the network. Every node should respond to
REQUEST_PROTOCOL_VERSION to enable the handshaking. Library
implementers should consider adding this into the default
decoding state machine to allow the protocol core to respond
directly.
'''
id = MAVLINK_MSG_ID_PROTOCOL_VERSION
name = 'PROTOCOL_VERSION'
fieldnames = ['version', 'min_version', 'max_version', 'spec_version_hash', 'library_version_hash']
ordered_fieldnames = [ 'version', 'min_version', 'max_version', 'spec_version_hash', 'library_version_hash' ]
format = '<HHH8B8B'
native_format = bytearray('<HHHBB', 'ascii')
orders = [0, 1, 2, 3, 4]
lengths = [1, 1, 1, 8, 8]
array_lengths = [0, 0, 0, 8, 8]
crc_extra = 217
def __init__(self, version, min_version, max_version, spec_version_hash, library_version_hash):
MAVLink_message.__init__(self, MAVLink_protocol_version_message.id, MAVLink_protocol_version_message.name)
self._fieldnames = MAVLink_protocol_version_message.fieldnames
self.version = version
self.min_version = min_version
self.max_version = max_version
self.spec_version_hash = spec_version_hash
self.library_version_hash = library_version_hash
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 217, struct.pack('<HHH8B8B', self.version, self.min_version, self.max_version, self.spec_version_hash[0], self.spec_version_hash[1], self.spec_version_hash[2], self.spec_version_hash[3], self.spec_version_hash[4], self.spec_version_hash[5], self.spec_version_hash[6], self.spec_version_hash[7], self.library_version_hash[0], self.library_version_hash[1], self.library_version_hash[2], self.library_version_hash[3], self.library_version_hash[4], self.library_version_hash[5], self.library_version_hash[6], self.library_version_hash[7]), force_mavlink1=force_mavlink1)
class MAVLink_uavcan_node_status_message(MAVLink_message):
'''
General status information of an UAVCAN node. Please refer to
the definition of the UAVCAN message
"uavcan.protocol.NodeStatus" for the background information.
The UAVCAN specification is available at http://uavcan.org.
'''
id = MAVLINK_MSG_ID_UAVCAN_NODE_STATUS
name = 'UAVCAN_NODE_STATUS'
fieldnames = ['time_usec', 'uptime_sec', 'health', 'mode', 'sub_mode', 'vendor_specific_status_code']
ordered_fieldnames = [ 'time_usec', 'uptime_sec', 'vendor_specific_status_code', 'health', 'mode', 'sub_mode' ]
format = '<QIHBBB'
native_format = bytearray('<QIHBBB', 'ascii')
orders = [0, 1, 3, 4, 5, 2]
lengths = [1, 1, 1, 1, 1, 1]
array_lengths = [0, 0, 0, 0, 0, 0]
crc_extra = 28
def __init__(self, time_usec, uptime_sec, health, mode, sub_mode, vendor_specific_status_code):
MAVLink_message.__init__(self, MAVLink_uavcan_node_status_message.id, MAVLink_uavcan_node_status_message.name)
self._fieldnames = MAVLink_uavcan_node_status_message.fieldnames
self.time_usec = time_usec
self.uptime_sec = uptime_sec
self.health = health
self.mode = mode
self.sub_mode = sub_mode
self.vendor_specific_status_code = vendor_specific_status_code
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 28, struct.pack('<QIHBBB', self.time_usec, self.uptime_sec, self.vendor_specific_status_code, self.health, self.mode, self.sub_mode), force_mavlink1=force_mavlink1)
class MAVLink_uavcan_node_info_message(MAVLink_message):
'''
General information describing a particular UAVCAN node.
Please refer to the definition of the UAVCAN service
"uavcan.protocol.GetNodeInfo" for the background information.
This message should be emitted by the system whenever a new
node appears online, or an existing node reboots.
Additionally, it can be emitted upon request from the other
end of the MAVLink channel (see MAV_CMD_UAVCAN_GET_NODE_INFO).
It is also not prohibited to emit this message unconditionally
at a low frequency. The UAVCAN specification is available at
http://uavcan.org.
'''
id = MAVLINK_MSG_ID_UAVCAN_NODE_INFO
name = 'UAVCAN_NODE_INFO'
fieldnames = ['time_usec', 'uptime_sec', 'name', 'hw_version_major', 'hw_version_minor', 'hw_unique_id', 'sw_version_major', 'sw_version_minor', 'sw_vcs_commit']
ordered_fieldnames = [ 'time_usec', 'uptime_sec', 'sw_vcs_commit', 'name', 'hw_version_major', 'hw_version_minor', 'hw_unique_id', 'sw_version_major', 'sw_version_minor' ]
format = '<QII80sBB16BBB'
native_format = bytearray('<QIIcBBBBB', 'ascii')
orders = [0, 1, 3, 4, 5, 6, 7, 8, 2]
lengths = [1, 1, 1, 1, 1, 1, 16, 1, 1]
array_lengths = [0, 0, 0, 80, 0, 0, 16, 0, 0]
crc_extra = 95
def __init__(self, time_usec, uptime_sec, name, hw_version_major, hw_version_minor, hw_unique_id, sw_version_major, sw_version_minor, sw_vcs_commit):
MAVLink_message.__init__(self, MAVLink_uavcan_node_info_message.id, MAVLink_uavcan_node_info_message.name)
self._fieldnames = MAVLink_uavcan_node_info_message.fieldnames
self.time_usec = time_usec
self.uptime_sec = uptime_sec
self.name = name
self.hw_version_major = hw_version_major
self.hw_version_minor = hw_version_minor
self.hw_unique_id = hw_unique_id
self.sw_version_major = sw_version_major
self.sw_version_minor = sw_version_minor
self.sw_vcs_commit = sw_vcs_commit
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 95, struct.pack('<QII80sBB16BBB', self.time_usec, self.uptime_sec, self.sw_vcs_commit, self.name, self.hw_version_major, self.hw_version_minor, self.hw_unique_id[0], self.hw_unique_id[1], self.hw_unique_id[2], self.hw_unique_id[3], self.hw_unique_id[4], self.hw_unique_id[5], self.hw_unique_id[6], self.hw_unique_id[7], self.hw_unique_id[8], self.hw_unique_id[9], self.hw_unique_id[10], self.hw_unique_id[11], self.hw_unique_id[12], self.hw_unique_id[13], self.hw_unique_id[14], self.hw_unique_id[15], self.sw_version_major, self.sw_version_minor), force_mavlink1=force_mavlink1)
class MAVLink_param_ext_request_read_message(MAVLink_message):
'''
Request to read the value of a parameter with the either the
param_id string id or param_index.
'''
id = MAVLINK_MSG_ID_PARAM_EXT_REQUEST_READ
name = 'PARAM_EXT_REQUEST_READ'
fieldnames = ['target_system', 'target_component', 'param_id', 'param_index']
ordered_fieldnames = [ 'param_index', 'target_system', 'target_component', 'param_id' ]
format = '<hBB16s'
native_format = bytearray('<hBBc', 'ascii')
orders = [1, 2, 3, 0]
lengths = [1, 1, 1, 1]
array_lengths = [0, 0, 0, 16]
crc_extra = 243
def __init__(self, target_system, target_component, param_id, param_index):
MAVLink_message.__init__(self, MAVLink_param_ext_request_read_message.id, MAVLink_param_ext_request_read_message.name)
self._fieldnames = MAVLink_param_ext_request_read_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.param_id = param_id
self.param_index = param_index
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 243, struct.pack('<hBB16s', self.param_index, self.target_system, self.target_component, self.param_id), force_mavlink1=force_mavlink1)
class MAVLink_param_ext_request_list_message(MAVLink_message):
'''
Request all parameters of this component. After this request,
all parameters are emitted.
'''
id = MAVLINK_MSG_ID_PARAM_EXT_REQUEST_LIST
name = 'PARAM_EXT_REQUEST_LIST'
fieldnames = ['target_system', 'target_component']
ordered_fieldnames = [ 'target_system', 'target_component' ]
format = '<BB'
native_format = bytearray('<BB', 'ascii')
orders = [0, 1]
lengths = [1, 1]
array_lengths = [0, 0]
crc_extra = 88
def __init__(self, target_system, target_component):
MAVLink_message.__init__(self, MAVLink_param_ext_request_list_message.id, MAVLink_param_ext_request_list_message.name)
self._fieldnames = MAVLink_param_ext_request_list_message.fieldnames
self.target_system = target_system
self.target_component = target_component
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 88, struct.pack('<BB', self.target_system, self.target_component), force_mavlink1=force_mavlink1)
class MAVLink_param_ext_value_message(MAVLink_message):
'''
Emit the value of a parameter. The inclusion of param_count
and param_index in the message allows the recipient to keep
track of received parameters and allows them to re-request
missing parameters after a loss or timeout.
'''
id = MAVLINK_MSG_ID_PARAM_EXT_VALUE
name = 'PARAM_EXT_VALUE'
fieldnames = ['param_id', 'param_value', 'param_type', 'param_count', 'param_index']
ordered_fieldnames = [ 'param_count', 'param_index', 'param_id', 'param_value', 'param_type' ]
format = '<HH16s128sB'
native_format = bytearray('<HHccB', 'ascii')
orders = [2, 3, 4, 0, 1]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 16, 128, 0]
crc_extra = 243
def __init__(self, param_id, param_value, param_type, param_count, param_index):
MAVLink_message.__init__(self, MAVLink_param_ext_value_message.id, MAVLink_param_ext_value_message.name)
self._fieldnames = MAVLink_param_ext_value_message.fieldnames
self.param_id = param_id
self.param_value = param_value
self.param_type = param_type
self.param_count = param_count
self.param_index = param_index
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 243, struct.pack('<HH16s128sB', self.param_count, self.param_index, self.param_id, self.param_value, self.param_type), force_mavlink1=force_mavlink1)
class MAVLink_param_ext_set_message(MAVLink_message):
'''
Set a parameter value. In order to deal with message loss (and
retransmission of PARAM_EXT_SET), when setting a parameter
value and the new value is the same as the current value, you
will immediately get a PARAM_ACK_ACCEPTED response. If the
current state is PARAM_ACK_IN_PROGRESS, you will accordingly
receive a PARAM_ACK_IN_PROGRESS in response.
'''
id = MAVLINK_MSG_ID_PARAM_EXT_SET
name = 'PARAM_EXT_SET'
fieldnames = ['target_system', 'target_component', 'param_id', 'param_value', 'param_type']
ordered_fieldnames = [ 'target_system', 'target_component', 'param_id', 'param_value', 'param_type' ]
format = '<BB16s128sB'
native_format = bytearray('<BBccB', 'ascii')
orders = [0, 1, 2, 3, 4]
lengths = [1, 1, 1, 1, 1]
array_lengths = [0, 0, 16, 128, 0]
crc_extra = 78
def __init__(self, target_system, target_component, param_id, param_value, param_type):
MAVLink_message.__init__(self, MAVLink_param_ext_set_message.id, MAVLink_param_ext_set_message.name)
self._fieldnames = MAVLink_param_ext_set_message.fieldnames
self.target_system = target_system
self.target_component = target_component
self.param_id = param_id
self.param_value = param_value
self.param_type = param_type
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 78, struct.pack('<BB16s128sB', self.target_system, self.target_component, self.param_id, self.param_value, self.param_type), force_mavlink1=force_mavlink1)
class MAVLink_param_ext_ack_message(MAVLink_message):
'''
Response from a PARAM_EXT_SET message.
'''
id = MAVLINK_MSG_ID_PARAM_EXT_ACK
name = 'PARAM_EXT_ACK'
fieldnames = ['param_id', 'param_value', 'param_type', 'param_result']
ordered_fieldnames = [ 'param_id', 'param_value', 'param_type', 'param_result' ]
format = '<16s128sBB'
native_format = bytearray('<ccBB', 'ascii')
orders = [0, 1, 2, 3]
lengths = [1, 1, 1, 1]
array_lengths = [16, 128, 0, 0]
crc_extra = 132
def __init__(self, param_id, param_value, param_type, param_result):
MAVLink_message.__init__(self, MAVLink_param_ext_ack_message.id, MAVLink_param_ext_ack_message.name)
self._fieldnames = MAVLink_param_ext_ack_message.fieldnames
self.param_id = param_id
self.param_value = param_value
self.param_type = param_type
self.param_result = param_result
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 132, struct.pack('<16s128sBB', self.param_id, self.param_value, self.param_type, self.param_result), force_mavlink1=force_mavlink1)
class MAVLink_obstacle_distance_message(MAVLink_message):
'''
Obstacle distances in front of the sensor, starting from the
left in increment degrees to the right
'''
id = MAVLINK_MSG_ID_OBSTACLE_DISTANCE
name = 'OBSTACLE_DISTANCE'
fieldnames = ['time_usec', 'sensor_type', 'distances', 'increment', 'min_distance', 'max_distance']
ordered_fieldnames = [ 'time_usec', 'distances', 'min_distance', 'max_distance', 'sensor_type', 'increment' ]
format = '<Q72HHHBB'
native_format = bytearray('<QHHHBB', 'ascii')
orders = [0, 4, 1, 5, 2, 3]
lengths = [1, 72, 1, 1, 1, 1]
array_lengths = [0, 72, 0, 0, 0, 0]
crc_extra = 23
def __init__(self, time_usec, sensor_type, distances, increment, min_distance, max_distance):
MAVLink_message.__init__(self, MAVLink_obstacle_distance_message.id, MAVLink_obstacle_distance_message.name)
self._fieldnames = MAVLink_obstacle_distance_message.fieldnames
self.time_usec = time_usec
self.sensor_type = sensor_type
self.distances = distances
self.increment = increment
self.min_distance = min_distance
self.max_distance = max_distance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 23, struct.pack('<Q72HHHBB', self.time_usec, self.distances[0], self.distances[1], self.distances[2], self.distances[3], self.distances[4], self.distances[5], self.distances[6], self.distances[7], self.distances[8], self.distances[9], self.distances[10], self.distances[11], self.distances[12], self.distances[13], self.distances[14], self.distances[15], self.distances[16], self.distances[17], self.distances[18], self.distances[19], self.distances[20], self.distances[21], self.distances[22], self.distances[23], self.distances[24], self.distances[25], self.distances[26], self.distances[27], self.distances[28], self.distances[29], self.distances[30], self.distances[31], self.distances[32], self.distances[33], self.distances[34], self.distances[35], self.distances[36], self.distances[37], self.distances[38], self.distances[39], self.distances[40], self.distances[41], self.distances[42], self.distances[43], self.distances[44], self.distances[45], self.distances[46], self.distances[47], self.distances[48], self.distances[49], self.distances[50], self.distances[51], self.distances[52], self.distances[53], self.distances[54], self.distances[55], self.distances[56], self.distances[57], self.distances[58], self.distances[59], self.distances[60], self.distances[61], self.distances[62], self.distances[63], self.distances[64], self.distances[65], self.distances[66], self.distances[67], self.distances[68], self.distances[69], self.distances[70], self.distances[71], self.min_distance, self.max_distance, self.sensor_type, self.increment), force_mavlink1=force_mavlink1)
class MAVLink_odometry_message(MAVLink_message):
'''
Odometry message to communicate odometry information with an
external interface. Fits ROS REP 147 standard for aerial
vehicles (http://www.ros.org/reps/rep-0147.html).
'''
id = MAVLINK_MSG_ID_ODOMETRY
name = 'ODOMETRY'
fieldnames = ['time_usec', 'frame_id', 'child_frame_id', 'x', 'y', 'z', 'q', 'vx', 'vy', 'vz', 'rollspeed', 'pitchspeed', 'yawspeed', 'pose_covariance', 'twist_covariance']
ordered_fieldnames = [ 'time_usec', 'x', 'y', 'z', 'q', 'vx', 'vy', 'vz', 'rollspeed', 'pitchspeed', 'yawspeed', 'pose_covariance', 'twist_covariance', 'frame_id', 'child_frame_id' ]
format = '<Qfff4fffffff21f21fBB'
native_format = bytearray('<QffffffffffffBB', 'ascii')
orders = [0, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
lengths = [1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 21, 21, 1, 1]
array_lengths = [0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 21, 21, 0, 0]
crc_extra = 58
def __init__(self, time_usec, frame_id, child_frame_id, x, y, z, q, vx, vy, vz, rollspeed, pitchspeed, yawspeed, pose_covariance, twist_covariance):
MAVLink_message.__init__(self, MAVLink_odometry_message.id, MAVLink_odometry_message.name)
self._fieldnames = MAVLink_odometry_message.fieldnames
self.time_usec = time_usec
self.frame_id = frame_id
self.child_frame_id = child_frame_id
self.x = x
self.y = y
self.z = z
self.q = q
self.vx = vx
self.vy = vy
self.vz = vz
self.rollspeed = rollspeed
self.pitchspeed = pitchspeed
self.yawspeed = yawspeed
self.pose_covariance = pose_covariance
self.twist_covariance = twist_covariance
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 58, struct.pack('<Qfff4fffffff21f21fBB', self.time_usec, self.x, self.y, self.z, self.q[0], self.q[1], self.q[2], self.q[3], self.vx, self.vy, self.vz, self.rollspeed, self.pitchspeed, self.yawspeed, self.pose_covariance[0], self.pose_covariance[1], self.pose_covariance[2], self.pose_covariance[3], self.pose_covariance[4], self.pose_covariance[5], self.pose_covariance[6], self.pose_covariance[7], self.pose_covariance[8], self.pose_covariance[9], self.pose_covariance[10], self.pose_covariance[11], self.pose_covariance[12], self.pose_covariance[13], self.pose_covariance[14], self.pose_covariance[15], self.pose_covariance[16], self.pose_covariance[17], self.pose_covariance[18], self.pose_covariance[19], self.pose_covariance[20], self.twist_covariance[0], self.twist_covariance[1], self.twist_covariance[2], self.twist_covariance[3], self.twist_covariance[4], self.twist_covariance[5], self.twist_covariance[6], self.twist_covariance[7], self.twist_covariance[8], self.twist_covariance[9], self.twist_covariance[10], self.twist_covariance[11], self.twist_covariance[12], self.twist_covariance[13], self.twist_covariance[14], self.twist_covariance[15], self.twist_covariance[16], self.twist_covariance[17], self.twist_covariance[18], self.twist_covariance[19], self.twist_covariance[20], self.frame_id, self.child_frame_id), force_mavlink1=force_mavlink1)
class MAVLink_trajectory_representation_waypoints_message(MAVLink_message):
'''
Describe a trajectory using an array of up-to 5 waypoints in
the local frame.
'''
id = MAVLINK_MSG_ID_TRAJECTORY_REPRESENTATION_WAYPOINTS
name = 'TRAJECTORY_REPRESENTATION_WAYPOINTS'
fieldnames = ['time_usec', 'valid_points', 'pos_x', 'pos_y', 'pos_z', 'vel_x', 'vel_y', 'vel_z', 'acc_x', 'acc_y', 'acc_z', 'pos_yaw', 'vel_yaw']
ordered_fieldnames = [ 'time_usec', 'pos_x', 'pos_y', 'pos_z', 'vel_x', 'vel_y', 'vel_z', 'acc_x', 'acc_y', 'acc_z', 'pos_yaw', 'vel_yaw', 'valid_points' ]
format = '<Q5f5f5f5f5f5f5f5f5f5f5fB'
native_format = bytearray('<QfffffffffffB', 'ascii')
orders = [0, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
lengths = [1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1]
array_lengths = [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0]
crc_extra = 91
def __init__(self, time_usec, valid_points, pos_x, pos_y, pos_z, vel_x, vel_y, vel_z, acc_x, acc_y, acc_z, pos_yaw, vel_yaw):
MAVLink_message.__init__(self, MAVLink_trajectory_representation_waypoints_message.id, MAVLink_trajectory_representation_waypoints_message.name)
self._fieldnames = MAVLink_trajectory_representation_waypoints_message.fieldnames
self.time_usec = time_usec
self.valid_points = valid_points
self.pos_x = pos_x
self.pos_y = pos_y
self.pos_z = pos_z
self.vel_x = vel_x
self.vel_y = vel_y
self.vel_z = vel_z
self.acc_x = acc_x
self.acc_y = acc_y
self.acc_z = acc_z
self.pos_yaw = pos_yaw
self.vel_yaw = vel_yaw
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 91, struct.pack('<Q5f5f5f5f5f5f5f5f5f5f5fB', self.time_usec, self.pos_x[0], self.pos_x[1], self.pos_x[2], self.pos_x[3], self.pos_x[4], self.pos_y[0], self.pos_y[1], self.pos_y[2], self.pos_y[3], self.pos_y[4], self.pos_z[0], self.pos_z[1], self.pos_z[2], self.pos_z[3], self.pos_z[4], self.vel_x[0], self.vel_x[1], self.vel_x[2], self.vel_x[3], self.vel_x[4], self.vel_y[0], self.vel_y[1], self.vel_y[2], self.vel_y[3], self.vel_y[4], self.vel_z[0], self.vel_z[1], self.vel_z[2], self.vel_z[3], self.vel_z[4], self.acc_x[0], self.acc_x[1], self.acc_x[2], self.acc_x[3], self.acc_x[4], self.acc_y[0], self.acc_y[1], self.acc_y[2], self.acc_y[3], self.acc_y[4], self.acc_z[0], self.acc_z[1], self.acc_z[2], self.acc_z[3], self.acc_z[4], self.pos_yaw[0], self.pos_yaw[1], self.pos_yaw[2], self.pos_yaw[3], self.pos_yaw[4], self.vel_yaw[0], self.vel_yaw[1], self.vel_yaw[2], self.vel_yaw[3], self.vel_yaw[4], self.valid_points), force_mavlink1=force_mavlink1)
class MAVLink_trajectory_representation_bezier_message(MAVLink_message):
'''
Describe a trajectory using an array of up-to 5 bezier points
in the local frame.
'''
id = MAVLINK_MSG_ID_TRAJECTORY_REPRESENTATION_BEZIER
name = 'TRAJECTORY_REPRESENTATION_BEZIER'
fieldnames = ['time_usec', 'valid_points', 'pos_x', 'pos_y', 'pos_z', 'delta', 'pos_yaw']
ordered_fieldnames = [ 'time_usec', 'pos_x', 'pos_y', 'pos_z', 'delta', 'pos_yaw', 'valid_points' ]
format = '<Q5f5f5f5f5fB'
native_format = bytearray('<QfffffB', 'ascii')
orders = [0, 6, 1, 2, 3, 4, 5]
lengths = [1, 5, 5, 5, 5, 5, 1]
array_lengths = [0, 5, 5, 5, 5, 5, 0]
crc_extra = 231
def __init__(self, time_usec, valid_points, pos_x, pos_y, pos_z, delta, pos_yaw):
MAVLink_message.__init__(self, MAVLink_trajectory_representation_bezier_message.id, MAVLink_trajectory_representation_bezier_message.name)
self._fieldnames = MAVLink_trajectory_representation_bezier_message.fieldnames
self.time_usec = time_usec
self.valid_points = valid_points
self.pos_x = pos_x
self.pos_y = pos_y
self.pos_z = pos_z
self.delta = delta
self.pos_yaw = pos_yaw
def pack(self, mav, force_mavlink1=False):
return MAVLink_message.pack(self, mav, 231, struct.pack('<Q5f5f5f5f5fB', self.time_usec, self.pos_x[0], self.pos_x[1], self.pos_x[2], self.pos_x[3], self.pos_x[4], self.pos_y[0], self.pos_y[1], self.pos_y[2], self.pos_y[3], self.pos_y[4], self.pos_z[0], self.pos_z[1], self.pos_z[2], self.pos_z[3], self.pos_z[4], self.delta[0], self.delta[1], self.delta[2], self.delta[3], self.delta[4], self.pos_yaw[0], self.pos_yaw[1], self.pos_yaw[2], self.pos_yaw[3], self.pos_yaw[4], self.valid_points), force_mavlink1=force_mavlink1)
mavlink_map = {
MAVLINK_MSG_ID_HEARTBEAT : MAVLink_heartbeat_message,
MAVLINK_MSG_ID_SYS_STATUS : MAVLink_sys_status_message,
MAVLINK_MSG_ID_SYSTEM_TIME : MAVLink_system_time_message,
MAVLINK_MSG_ID_PING : MAVLink_ping_message,
MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL : MAVLink_change_operator_control_message,
MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL_ACK : MAVLink_change_operator_control_ack_message,
MAVLINK_MSG_ID_AUTH_KEY : MAVLink_auth_key_message,
MAVLINK_MSG_ID_SET_MODE : MAVLink_set_mode_message,
MAVLINK_MSG_ID_PARAM_REQUEST_READ : MAVLink_param_request_read_message,
MAVLINK_MSG_ID_PARAM_REQUEST_LIST : MAVLink_param_request_list_message,
MAVLINK_MSG_ID_PARAM_VALUE : MAVLink_param_value_message,
MAVLINK_MSG_ID_PARAM_SET : MAVLink_param_set_message,
MAVLINK_MSG_ID_GPS_RAW_INT : MAVLink_gps_raw_int_message,
MAVLINK_MSG_ID_GPS_STATUS : MAVLink_gps_status_message,
MAVLINK_MSG_ID_SCALED_IMU : MAVLink_scaled_imu_message,
MAVLINK_MSG_ID_RAW_IMU : MAVLink_raw_imu_message,
MAVLINK_MSG_ID_RAW_PRESSURE : MAVLink_raw_pressure_message,
MAVLINK_MSG_ID_SCALED_PRESSURE : MAVLink_scaled_pressure_message,
MAVLINK_MSG_ID_ATTITUDE : MAVLink_attitude_message,
MAVLINK_MSG_ID_ATTITUDE_QUATERNION : MAVLink_attitude_quaternion_message,
MAVLINK_MSG_ID_LOCAL_POSITION_NED : MAVLink_local_position_ned_message,
MAVLINK_MSG_ID_GLOBAL_POSITION_INT : MAVLink_global_position_int_message,
MAVLINK_MSG_ID_RC_CHANNELS_SCALED : MAVLink_rc_channels_scaled_message,
MAVLINK_MSG_ID_RC_CHANNELS_RAW : MAVLink_rc_channels_raw_message,
MAVLINK_MSG_ID_SERVO_OUTPUT_RAW : MAVLink_servo_output_raw_message,
MAVLINK_MSG_ID_MISSION_REQUEST_PARTIAL_LIST : MAVLink_mission_request_partial_list_message,
MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST : MAVLink_mission_write_partial_list_message,
MAVLINK_MSG_ID_MISSION_ITEM : MAVLink_mission_item_message,
MAVLINK_MSG_ID_MISSION_REQUEST : MAVLink_mission_request_message,
MAVLINK_MSG_ID_MISSION_SET_CURRENT : MAVLink_mission_set_current_message,
MAVLINK_MSG_ID_MISSION_CURRENT : MAVLink_mission_current_message,
MAVLINK_MSG_ID_MISSION_REQUEST_LIST : MAVLink_mission_request_list_message,
MAVLINK_MSG_ID_MISSION_COUNT : MAVLink_mission_count_message,
MAVLINK_MSG_ID_MISSION_CLEAR_ALL : MAVLink_mission_clear_all_message,
MAVLINK_MSG_ID_MISSION_ITEM_REACHED : MAVLink_mission_item_reached_message,
MAVLINK_MSG_ID_MISSION_ACK : MAVLink_mission_ack_message,
MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN : MAVLink_set_gps_global_origin_message,
MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN : MAVLink_gps_global_origin_message,
MAVLINK_MSG_ID_PARAM_MAP_RC : MAVLink_param_map_rc_message,
MAVLINK_MSG_ID_MISSION_REQUEST_INT : MAVLink_mission_request_int_message,
MAVLINK_MSG_ID_SAFETY_SET_ALLOWED_AREA : MAVLink_safety_set_allowed_area_message,
MAVLINK_MSG_ID_SAFETY_ALLOWED_AREA : MAVLink_safety_allowed_area_message,
MAVLINK_MSG_ID_ATTITUDE_QUATERNION_COV : MAVLink_attitude_quaternion_cov_message,
MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT : MAVLink_nav_controller_output_message,
MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV : MAVLink_global_position_int_cov_message,
MAVLINK_MSG_ID_LOCAL_POSITION_NED_COV : MAVLink_local_position_ned_cov_message,
MAVLINK_MSG_ID_RC_CHANNELS : MAVLink_rc_channels_message,
MAVLINK_MSG_ID_REQUEST_DATA_STREAM : MAVLink_request_data_stream_message,
MAVLINK_MSG_ID_DATA_STREAM : MAVLink_data_stream_message,
MAVLINK_MSG_ID_MANUAL_CONTROL : MAVLink_manual_control_message,
MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE : MAVLink_rc_channels_override_message,
MAVLINK_MSG_ID_MISSION_ITEM_INT : MAVLink_mission_item_int_message,
MAVLINK_MSG_ID_VFR_HUD : MAVLink_vfr_hud_message,
MAVLINK_MSG_ID_COMMAND_INT : MAVLink_command_int_message,
MAVLINK_MSG_ID_COMMAND_LONG : MAVLink_command_long_message,
MAVLINK_MSG_ID_COMMAND_ACK : MAVLink_command_ack_message,
MAVLINK_MSG_ID_MANUAL_SETPOINT : MAVLink_manual_setpoint_message,
MAVLINK_MSG_ID_SET_ATTITUDE_TARGET : MAVLink_set_attitude_target_message,
MAVLINK_MSG_ID_ATTITUDE_TARGET : MAVLink_attitude_target_message,
MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED : MAVLink_set_position_target_local_ned_message,
MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED : MAVLink_position_target_local_ned_message,
MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT : MAVLink_set_position_target_global_int_message,
MAVLINK_MSG_ID_POSITION_TARGET_GLOBAL_INT : MAVLink_position_target_global_int_message,
MAVLINK_MSG_ID_LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET : MAVLink_local_position_ned_system_global_offset_message,
MAVLINK_MSG_ID_HIL_STATE : MAVLink_hil_state_message,
MAVLINK_MSG_ID_HIL_CONTROLS : MAVLink_hil_controls_message,
MAVLINK_MSG_ID_HIL_RC_INPUTS_RAW : MAVLink_hil_rc_inputs_raw_message,
MAVLINK_MSG_ID_HIL_ACTUATOR_CONTROLS : MAVLink_hil_actuator_controls_message,
MAVLINK_MSG_ID_OPTICAL_FLOW : MAVLink_optical_flow_message,
MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE : MAVLink_global_vision_position_estimate_message,
MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE : MAVLink_vision_position_estimate_message,
MAVLINK_MSG_ID_VISION_SPEED_ESTIMATE : MAVLink_vision_speed_estimate_message,
MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE : MAVLink_vicon_position_estimate_message,
MAVLINK_MSG_ID_HIGHRES_IMU : MAVLink_highres_imu_message,
MAVLINK_MSG_ID_OPTICAL_FLOW_RAD : MAVLink_optical_flow_rad_message,
MAVLINK_MSG_ID_HIL_SENSOR : MAVLink_hil_sensor_message,
MAVLINK_MSG_ID_SIM_STATE : MAVLink_sim_state_message,
MAVLINK_MSG_ID_RADIO_STATUS : MAVLink_radio_status_message,
MAVLINK_MSG_ID_FILE_TRANSFER_PROTOCOL : MAVLink_file_transfer_protocol_message,
MAVLINK_MSG_ID_TIMESYNC : MAVLink_timesync_message,
MAVLINK_MSG_ID_CAMERA_TRIGGER : MAVLink_camera_trigger_message,
MAVLINK_MSG_ID_HIL_GPS : MAVLink_hil_gps_message,
MAVLINK_MSG_ID_HIL_OPTICAL_FLOW : MAVLink_hil_optical_flow_message,
MAVLINK_MSG_ID_HIL_STATE_QUATERNION : MAVLink_hil_state_quaternion_message,
MAVLINK_MSG_ID_SCALED_IMU2 : MAVLink_scaled_imu2_message,
MAVLINK_MSG_ID_LOG_REQUEST_LIST : MAVLink_log_request_list_message,
MAVLINK_MSG_ID_LOG_ENTRY : MAVLink_log_entry_message,
MAVLINK_MSG_ID_LOG_REQUEST_DATA : MAVLink_log_request_data_message,
MAVLINK_MSG_ID_LOG_DATA : MAVLink_log_data_message,
MAVLINK_MSG_ID_LOG_ERASE : MAVLink_log_erase_message,
MAVLINK_MSG_ID_LOG_REQUEST_END : MAVLink_log_request_end_message,
MAVLINK_MSG_ID_GPS_INJECT_DATA : MAVLink_gps_inject_data_message,
MAVLINK_MSG_ID_GPS2_RAW : MAVLink_gps2_raw_message,
MAVLINK_MSG_ID_POWER_STATUS : MAVLink_power_status_message,
MAVLINK_MSG_ID_SERIAL_CONTROL : MAVLink_serial_control_message,
MAVLINK_MSG_ID_GPS_RTK : MAVLink_gps_rtk_message,
MAVLINK_MSG_ID_GPS2_RTK : MAVLink_gps2_rtk_message,
MAVLINK_MSG_ID_SCALED_IMU3 : MAVLink_scaled_imu3_message,
MAVLINK_MSG_ID_DATA_TRANSMISSION_HANDSHAKE : MAVLink_data_transmission_handshake_message,
MAVLINK_MSG_ID_ENCAPSULATED_DATA : MAVLink_encapsulated_data_message,
MAVLINK_MSG_ID_DISTANCE_SENSOR : MAVLink_distance_sensor_message,
MAVLINK_MSG_ID_TERRAIN_REQUEST : MAVLink_terrain_request_message,
MAVLINK_MSG_ID_TERRAIN_DATA : MAVLink_terrain_data_message,
MAVLINK_MSG_ID_TERRAIN_CHECK : MAVLink_terrain_check_message,
MAVLINK_MSG_ID_TERRAIN_REPORT : MAVLink_terrain_report_message,
MAVLINK_MSG_ID_SCALED_PRESSURE2 : MAVLink_scaled_pressure2_message,
MAVLINK_MSG_ID_ATT_POS_MOCAP : MAVLink_att_pos_mocap_message,
MAVLINK_MSG_ID_SET_ACTUATOR_CONTROL_TARGET : MAVLink_set_actuator_control_target_message,
MAVLINK_MSG_ID_ACTUATOR_CONTROL_TARGET : MAVLink_actuator_control_target_message,
MAVLINK_MSG_ID_ALTITUDE : MAVLink_altitude_message,
MAVLINK_MSG_ID_RESOURCE_REQUEST : MAVLink_resource_request_message,
MAVLINK_MSG_ID_SCALED_PRESSURE3 : MAVLink_scaled_pressure3_message,
MAVLINK_MSG_ID_FOLLOW_TARGET : MAVLink_follow_target_message,
MAVLINK_MSG_ID_CONTROL_SYSTEM_STATE : MAVLink_control_system_state_message,
MAVLINK_MSG_ID_BATTERY_STATUS : MAVLink_battery_status_message,
MAVLINK_MSG_ID_AUTOPILOT_VERSION : MAVLink_autopilot_version_message,
MAVLINK_MSG_ID_LANDING_TARGET : MAVLink_landing_target_message,
MAVLINK_MSG_ID_ESTIMATOR_STATUS : MAVLink_estimator_status_message,
MAVLINK_MSG_ID_WIND_COV : MAVLink_wind_cov_message,
MAVLINK_MSG_ID_GPS_INPUT : MAVLink_gps_input_message,
MAVLINK_MSG_ID_GPS_RTCM_DATA : MAVLink_gps_rtcm_data_message,
MAVLINK_MSG_ID_HIGH_LATENCY : MAVLink_high_latency_message,
MAVLINK_MSG_ID_HIGH_LATENCY2 : MAVLink_high_latency2_message,
MAVLINK_MSG_ID_VIBRATION : MAVLink_vibration_message,
MAVLINK_MSG_ID_HOME_POSITION : MAVLink_home_position_message,
MAVLINK_MSG_ID_SET_HOME_POSITION : MAVLink_set_home_position_message,
MAVLINK_MSG_ID_MESSAGE_INTERVAL : MAVLink_message_interval_message,
MAVLINK_MSG_ID_EXTENDED_SYS_STATE : MAVLink_extended_sys_state_message,
MAVLINK_MSG_ID_ADSB_VEHICLE : MAVLink_adsb_vehicle_message,
MAVLINK_MSG_ID_COLLISION : MAVLink_collision_message,
MAVLINK_MSG_ID_V2_EXTENSION : MAVLink_v2_extension_message,
MAVLINK_MSG_ID_MEMORY_VECT : MAVLink_memory_vect_message,
MAVLINK_MSG_ID_DEBUG_VECT : MAVLink_debug_vect_message,
MAVLINK_MSG_ID_NAMED_VALUE_FLOAT : MAVLink_named_value_float_message,
MAVLINK_MSG_ID_NAMED_VALUE_INT : MAVLink_named_value_int_message,
MAVLINK_MSG_ID_STATUSTEXT : MAVLink_statustext_message,
MAVLINK_MSG_ID_DEBUG : MAVLink_debug_message,
MAVLINK_MSG_ID_SETUP_SIGNING : MAVLink_setup_signing_message,
MAVLINK_MSG_ID_BUTTON_CHANGE : MAVLink_button_change_message,
MAVLINK_MSG_ID_PLAY_TUNE : MAVLink_play_tune_message,
MAVLINK_MSG_ID_CAMERA_INFORMATION : MAVLink_camera_information_message,
MAVLINK_MSG_ID_CAMERA_SETTINGS : MAVLink_camera_settings_message,
MAVLINK_MSG_ID_STORAGE_INFORMATION : MAVLink_storage_information_message,
MAVLINK_MSG_ID_CAMERA_CAPTURE_STATUS : MAVLink_camera_capture_status_message,
MAVLINK_MSG_ID_CAMERA_IMAGE_CAPTURED : MAVLink_camera_image_captured_message,
MAVLINK_MSG_ID_FLIGHT_INFORMATION : MAVLink_flight_information_message,
MAVLINK_MSG_ID_MOUNT_ORIENTATION : MAVLink_mount_orientation_message,
MAVLINK_MSG_ID_LOGGING_DATA : MAVLink_logging_data_message,
MAVLINK_MSG_ID_LOGGING_DATA_ACKED : MAVLink_logging_data_acked_message,
MAVLINK_MSG_ID_LOGGING_ACK : MAVLink_logging_ack_message,
MAVLINK_MSG_ID_VIDEO_STREAM_INFORMATION : MAVLink_video_stream_information_message,
MAVLINK_MSG_ID_SET_VIDEO_STREAM_SETTINGS : MAVLink_set_video_stream_settings_message,
MAVLINK_MSG_ID_WIFI_CONFIG_AP : MAVLink_wifi_config_ap_message,
MAVLINK_MSG_ID_PROTOCOL_VERSION : MAVLink_protocol_version_message,
MAVLINK_MSG_ID_UAVCAN_NODE_STATUS : MAVLink_uavcan_node_status_message,
MAVLINK_MSG_ID_UAVCAN_NODE_INFO : MAVLink_uavcan_node_info_message,
MAVLINK_MSG_ID_PARAM_EXT_REQUEST_READ : MAVLink_param_ext_request_read_message,
MAVLINK_MSG_ID_PARAM_EXT_REQUEST_LIST : MAVLink_param_ext_request_list_message,
MAVLINK_MSG_ID_PARAM_EXT_VALUE : MAVLink_param_ext_value_message,
MAVLINK_MSG_ID_PARAM_EXT_SET : MAVLink_param_ext_set_message,
MAVLINK_MSG_ID_PARAM_EXT_ACK : MAVLink_param_ext_ack_message,
MAVLINK_MSG_ID_OBSTACLE_DISTANCE : MAVLink_obstacle_distance_message,
MAVLINK_MSG_ID_ODOMETRY : MAVLink_odometry_message,
MAVLINK_MSG_ID_TRAJECTORY_REPRESENTATION_WAYPOINTS : MAVLink_trajectory_representation_waypoints_message,
MAVLINK_MSG_ID_TRAJECTORY_REPRESENTATION_BEZIER : MAVLink_trajectory_representation_bezier_message,
}
class MAVError(Exception):
'''MAVLink error class'''
def __init__(self, msg):
Exception.__init__(self, msg)
self.message = msg
class MAVString(str):
'''NUL terminated string'''
def __init__(self, s):
str.__init__(self)
def __str__(self):
i = self.find(chr(0))
if i == -1:
return self[:]
return self[0:i]
class MAVLink_bad_data(MAVLink_message):
'''
a piece of bad data in a mavlink stream
'''
def __init__(self, data, reason):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_BAD_DATA, 'BAD_DATA')
self._fieldnames = ['data', 'reason']
self.data = data
self.reason = reason
self._msgbuf = data
def __str__(self):
'''Override the __str__ function from MAVLink_messages because non-printable characters are common in to be the reason for this message to exist.'''
return '%s {%s, data:%s}' % (self._type, self.reason, [('%x' % ord(i) if isinstance(i, str) else '%x' % i) for i in self.data])
class MAVLinkSigning(object):
'''MAVLink signing state class'''
def __init__(self):
self.secret_key = None
self.timestamp = 0
self.link_id = 0
self.sign_outgoing = False
self.allow_unsigned_callback = None
self.stream_timestamps = {}
self.sig_count = 0
self.badsig_count = 0
self.goodsig_count = 0
self.unsigned_count = 0
self.reject_count = 0
class MAVLink(object):
'''MAVLink protocol handling class'''
def __init__(self, file, srcSystem=0, srcComponent=0, use_native=False):
self.seq = 0
self.file = file
self.srcSystem = srcSystem
self.srcComponent = srcComponent
self.callback = None
self.callback_args = None
self.callback_kwargs = None
self.send_callback = None
self.send_callback_args = None
self.send_callback_kwargs = None
self.buf = bytearray()
self.buf_index = 0
self.expected_length = HEADER_LEN_V1+2
self.have_prefix_error = False
self.robust_parsing = False
self.protocol_marker = 253
self.little_endian = True
self.crc_extra = True
self.sort_fields = True
self.total_packets_sent = 0
self.total_bytes_sent = 0
self.total_packets_received = 0
self.total_bytes_received = 0
self.total_receive_errors = 0
self.startup_time = time.time()
self.signing = MAVLinkSigning()
if native_supported and (use_native or native_testing or native_force):
print("NOTE: mavnative is currently beta-test code")
self.native = mavnative.NativeConnection(MAVLink_message, mavlink_map)
else:
self.native = None
if native_testing:
self.test_buf = bytearray()
def set_callback(self, callback, *args, **kwargs):
self.callback = callback
self.callback_args = args
self.callback_kwargs = kwargs
def set_send_callback(self, callback, *args, **kwargs):
self.send_callback = callback
self.send_callback_args = args
self.send_callback_kwargs = kwargs
def send(self, mavmsg, force_mavlink1=False):
'''send a MAVLink message'''
buf = mavmsg.pack(self, force_mavlink1=force_mavlink1)
self.file.write(buf)
self.seq = (self.seq + 1) % 256
self.total_packets_sent += 1
self.total_bytes_sent += len(buf)
if self.send_callback:
self.send_callback(mavmsg, *self.send_callback_args, **self.send_callback_kwargs)
def buf_len(self):
return len(self.buf) - self.buf_index
def bytes_needed(self):
'''return number of bytes needed for next parsing stage'''
if self.native:
ret = self.native.expected_length - self.buf_len()
else:
ret = self.expected_length - self.buf_len()
if ret <= 0:
return 1
return ret
def __parse_char_native(self, c):
'''this method exists only to see in profiling results'''
m = self.native.parse_chars(c)
return m
def __callbacks(self, msg):
'''this method exists only to make profiling results easier to read'''
if self.callback:
self.callback(msg, *self.callback_args, **self.callback_kwargs)
def parse_char(self, c):
'''input some data bytes, possibly returning a new message'''
self.buf.extend(c)
self.total_bytes_received += len(c)
if self.native:
if native_testing:
self.test_buf.extend(c)
m = self.__parse_char_native(self.test_buf)
m2 = self.__parse_char_legacy()
if m2 != m:
print("Native: %s\nLegacy: %s\n" % (m, m2))
raise Exception('Native vs. Legacy mismatch')
else:
m = self.__parse_char_native(self.buf)
else:
m = self.__parse_char_legacy()
if m != None:
self.total_packets_received += 1
self.__callbacks(m)
else:
# XXX The idea here is if we've read something and there's nothing left in
# the buffer, reset it to 0 which frees the memory
if self.buf_len() == 0 and self.buf_index != 0:
self.buf = bytearray()
self.buf_index = 0
return m
def __parse_char_legacy(self):
'''input some data bytes, possibly returning a new message (uses no native code)'''
header_len = HEADER_LEN_V1
if self.buf_len() >= 1 and self.buf[self.buf_index] == PROTOCOL_MARKER_V2:
header_len = HEADER_LEN_V2
if self.buf_len() >= 1 and self.buf[self.buf_index] != PROTOCOL_MARKER_V1 and self.buf[self.buf_index] != PROTOCOL_MARKER_V2:
magic = self.buf[self.buf_index]
self.buf_index += 1
if self.robust_parsing:
m = MAVLink_bad_data(chr(magic), 'Bad prefix')
self.expected_length = header_len+2
self.total_receive_errors += 1
return m
if self.have_prefix_error:
return None
self.have_prefix_error = True
self.total_receive_errors += 1
raise MAVError("invalid MAVLink prefix '%s'" % magic)
self.have_prefix_error = False
if self.buf_len() >= 3:
sbuf = self.buf[self.buf_index:3+self.buf_index]
if sys.version_info[0] < 3:
sbuf = str(sbuf)
(magic, self.expected_length, incompat_flags) = struct.unpack('BBB', sbuf)
if magic == PROTOCOL_MARKER_V2 and (incompat_flags & MAVLINK_IFLAG_SIGNED):
self.expected_length += MAVLINK_SIGNATURE_BLOCK_LEN
self.expected_length += header_len + 2
if self.expected_length >= (header_len+2) and self.buf_len() >= self.expected_length:
mbuf = array.array('B', self.buf[self.buf_index:self.buf_index+self.expected_length])
self.buf_index += self.expected_length
self.expected_length = header_len+2
if self.robust_parsing:
try:
if magic == PROTOCOL_MARKER_V2 and (incompat_flags & ~MAVLINK_IFLAG_SIGNED) != 0:
raise MAVError('invalid incompat_flags 0x%x 0x%x %u' % (incompat_flags, magic, self.expected_length))
m = self.decode(mbuf)
except MAVError as reason:
m = MAVLink_bad_data(mbuf, reason.message)
self.total_receive_errors += 1
else:
if magic == PROTOCOL_MARKER_V2 and (incompat_flags & ~MAVLINK_IFLAG_SIGNED) != 0:
raise MAVError('invalid incompat_flags 0x%x 0x%x %u' % (incompat_flags, magic, self.expected_length))
m = self.decode(mbuf)
return m
return None
def parse_buffer(self, s):
'''input some data bytes, possibly returning a list of new messages'''
m = self.parse_char(s)
if m is None:
return None
ret = [m]
while True:
m = self.parse_char("")
if m is None:
return ret
ret.append(m)
return ret
def check_signature(self, msgbuf, srcSystem, srcComponent):
'''check signature on incoming message'''
if isinstance(msgbuf, array.array):
msgbuf = msgbuf.tostring()
timestamp_buf = msgbuf[-12:-6]
link_id = msgbuf[-13]
(tlow, thigh) = struct.unpack('<IH', timestamp_buf)
timestamp = tlow + (thigh<<32)
# see if the timestamp is acceptable
stream_key = (link_id,srcSystem,srcComponent)
if stream_key in self.signing.stream_timestamps:
if timestamp <= self.signing.stream_timestamps[stream_key]:
# reject old timestamp
# print('old timestamp')
return False
else:
# a new stream has appeared. Accept the timestamp if it is at most
# one minute behind our current timestamp
if timestamp + 6000*1000 < self.signing.timestamp:
# print('bad new stream ', timestamp/(100.0*1000*60*60*24*365), self.signing.timestamp/(100.0*1000*60*60*24*365))
return False
self.signing.stream_timestamps[stream_key] = timestamp
# print('new stream')
h = hashlib.new('sha256')
h.update(self.signing.secret_key)
h.update(msgbuf[:-6])
sig1 = str(h.digest())[:6]
sig2 = str(msgbuf)[-6:]
if sig1 != sig2:
# print('sig mismatch')
return False
# the timestamp we next send with is the max of the received timestamp and
# our current timestamp
self.signing.timestamp = max(self.signing.timestamp, timestamp)
return True
def decode(self, msgbuf):
'''decode a buffer as a MAVLink message'''
# decode the header
if msgbuf[0] != PROTOCOL_MARKER_V1:
headerlen = 10
try:
magic, mlen, incompat_flags, compat_flags, seq, srcSystem, srcComponent, msgIdlow, msgIdhigh = struct.unpack('<cBBBBBBHB', msgbuf[:headerlen])
except struct.error as emsg:
raise MAVError('Unable to unpack MAVLink header: %s' % emsg)
msgId = msgIdlow | (msgIdhigh<<16)
mapkey = msgId
else:
headerlen = 6
try:
magic, mlen, seq, srcSystem, srcComponent, msgId = struct.unpack('<cBBBBB', msgbuf[:headerlen])
incompat_flags = 0
compat_flags = 0
except struct.error as emsg:
raise MAVError('Unable to unpack MAVLink header: %s' % emsg)
mapkey = msgId
if (incompat_flags & MAVLINK_IFLAG_SIGNED) != 0:
signature_len = MAVLINK_SIGNATURE_BLOCK_LEN
else:
signature_len = 0
if ord(magic) != PROTOCOL_MARKER_V1 and ord(magic) != PROTOCOL_MARKER_V2:
raise MAVError("invalid MAVLink prefix '%s'" % magic)
if mlen != len(msgbuf)-(headerlen+2+signature_len):
raise MAVError('invalid MAVLink message length. Got %u expected %u, msgId=%u headerlen=%u' % (len(msgbuf)-(headerlen+2+signature_len), mlen, msgId, headerlen))
if not mapkey in mavlink_map:
raise MAVError('unknown MAVLink message ID %s' % str(mapkey))
# decode the payload
type = mavlink_map[mapkey]
fmt = type.format
order_map = type.orders
len_map = type.lengths
crc_extra = type.crc_extra
# decode the checksum
try:
crc, = struct.unpack('<H', msgbuf[-(2+signature_len):][:2])
except struct.error as emsg:
raise MAVError('Unable to unpack MAVLink CRC: %s' % emsg)
crcbuf = msgbuf[1:-(2+signature_len)]
if True: # using CRC extra
crcbuf.append(crc_extra)
crc2 = x25crc(crcbuf)
if crc != crc2.crc:
raise MAVError('invalid MAVLink CRC in msgID %u 0x%04x should be 0x%04x' % (msgId, crc, crc2.crc))
sig_ok = False
if signature_len == MAVLINK_SIGNATURE_BLOCK_LEN:
self.signing.sig_count += 1
if self.signing.secret_key is not None:
accept_signature = False
if signature_len == MAVLINK_SIGNATURE_BLOCK_LEN:
sig_ok = self.check_signature(msgbuf, srcSystem, srcComponent)
accept_signature = sig_ok
if sig_ok:
self.signing.goodsig_count += 1
else:
self.signing.badsig_count += 1
if not accept_signature and self.signing.allow_unsigned_callback is not None:
accept_signature = self.signing.allow_unsigned_callback(self, msgId)
if accept_signature:
self.signing.unsigned_count += 1
else:
self.signing.reject_count += 1
elif self.signing.allow_unsigned_callback is not None:
accept_signature = self.signing.allow_unsigned_callback(self, msgId)
if accept_signature:
self.signing.unsigned_count += 1
else:
self.signing.reject_count += 1
if not accept_signature:
raise MAVError('Invalid signature')
csize = struct.calcsize(fmt)
mbuf = msgbuf[headerlen:-(2+signature_len)]
if len(mbuf) < csize:
# zero pad to give right size
mbuf.extend([0]*(csize - len(mbuf)))
if len(mbuf) < csize:
raise MAVError('Bad message of type %s length %u needs %s' % (
type, len(mbuf), csize))
mbuf = mbuf[:csize]
try:
t = struct.unpack(fmt, mbuf)
except struct.error as emsg:
raise MAVError('Unable to unpack MAVLink payload type=%s fmt=%s payloadLength=%u: %s' % (
type, fmt, len(mbuf), emsg))
tlist = list(t)
# handle sorted fields
if True:
t = tlist[:]
if sum(len_map) == len(len_map):
# message has no arrays in it
for i in range(0, len(tlist)):
tlist[i] = t[order_map[i]]
else:
# message has some arrays
tlist = []
for i in range(0, len(order_map)):
order = order_map[i]
L = len_map[order]
tip = sum(len_map[:order])
field = t[tip]
if L == 1 or isinstance(field, str):
tlist.append(field)
else:
tlist.append(t[tip:(tip + L)])
# terminate any strings
for i in range(0, len(tlist)):
if isinstance(tlist[i], str):
tlist[i] = str(MAVString(tlist[i]))
t = tuple(tlist)
# construct the message object
try:
m = type(*t)
except Exception as emsg:
raise MAVError('Unable to instantiate MAVLink message of type %s : %s' % (type, emsg))
m._signed = sig_ok
if m._signed:
m._link_id = msgbuf[-13]
m._msgbuf = msgbuf
m._payload = msgbuf[6:-(2+signature_len)]
m._crc = crc
m._header = MAVLink_header(msgId, incompat_flags, compat_flags, mlen, seq, srcSystem, srcComponent)
return m
def heartbeat_encode(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version=3):
'''
The heartbeat message shows that a system is present and responding.
The type of the MAV and Autopilot hardware allow the
receiving system to treat further messages from this
system appropriate (e.g. by laying out the user
interface based on the autopilot).
type : Type of the MAV (quadrotor, helicopter, etc.) (uint8_t)
autopilot : Autopilot type / class. (uint8_t)
base_mode : System mode bitmap. (uint8_t)
custom_mode : A bitfield for use for autopilot-specific flags (uint32_t)
system_status : System status flag. (uint8_t)
mavlink_version : MAVLink version, not writable by user, gets added by protocol because of magic data type: uint8_t_mavlink_version (uint8_t)
'''
return MAVLink_heartbeat_message(type, autopilot, base_mode, custom_mode, system_status, mavlink_version)
def heartbeat_send(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version=3, force_mavlink1=False):
'''
The heartbeat message shows that a system is present and responding.
The type of the MAV and Autopilot hardware allow the
receiving system to treat further messages from this
system appropriate (e.g. by laying out the user
interface based on the autopilot).
type : Type of the MAV (quadrotor, helicopter, etc.) (uint8_t)
autopilot : Autopilot type / class. (uint8_t)
base_mode : System mode bitmap. (uint8_t)
custom_mode : A bitfield for use for autopilot-specific flags (uint32_t)
system_status : System status flag. (uint8_t)
mavlink_version : MAVLink version, not writable by user, gets added by protocol because of magic data type: uint8_t_mavlink_version (uint8_t)
'''
return self.send(self.heartbeat_encode(type, autopilot, base_mode, custom_mode, system_status, mavlink_version), force_mavlink1=force_mavlink1)
def sys_status_encode(self, onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4):
'''
The general system state. If the system is following the MAVLink
standard, the system state is mainly defined by three
orthogonal states/modes: The system mode, which is
either LOCKED (motors shut down and locked), MANUAL
(system under RC control), GUIDED (system with
autonomous position control, position setpoint
controlled manually) or AUTO (system guided by
path/waypoint planner). The NAV_MODE defined the
current flight state: LIFTOFF (often an open-loop
maneuver), LANDING, WAYPOINTS or VECTOR. This
represents the internal navigation state machine. The
system status shows whether the system is currently
active or not and if an emergency occurred. During the
CRITICAL and EMERGENCY states the MAV is still
considered to be active, but should start emergency
procedures autonomously. After a failure occurred it
should first move from active to critical to allow
manual intervention and then move to emergency after a
certain timeout.
onboard_control_sensors_present : Bitmap showing which onboard controllers and sensors are present. Value of 0: not present. Value of 1: present. (uint32_t)
onboard_control_sensors_enabled : Bitmap showing which onboard controllers and sensors are enabled: Value of 0: not enabled. Value of 1: enabled. (uint32_t)
onboard_control_sensors_health : Bitmap showing which onboard controllers and sensors are operational or have an error: Value of 0: not enabled. Value of 1: enabled. (uint32_t)
load : Maximum usage in percent of the mainloop time. Values: [0-1000] - should always be below 1000 (uint16_t)
voltage_battery : Battery voltage (uint16_t)
current_battery : Battery current, -1: autopilot does not measure the current (int16_t)
battery_remaining : Remaining battery energy, -1: autopilot estimate the remaining battery (int8_t)
drop_rate_comm : Communication drop rate, (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t)
errors_comm : Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t)
errors_count1 : Autopilot-specific errors (uint16_t)
errors_count2 : Autopilot-specific errors (uint16_t)
errors_count3 : Autopilot-specific errors (uint16_t)
errors_count4 : Autopilot-specific errors (uint16_t)
'''
return MAVLink_sys_status_message(onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4)
def sys_status_send(self, onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4, force_mavlink1=False):
'''
The general system state. If the system is following the MAVLink
standard, the system state is mainly defined by three
orthogonal states/modes: The system mode, which is
either LOCKED (motors shut down and locked), MANUAL
(system under RC control), GUIDED (system with
autonomous position control, position setpoint
controlled manually) or AUTO (system guided by
path/waypoint planner). The NAV_MODE defined the
current flight state: LIFTOFF (often an open-loop
maneuver), LANDING, WAYPOINTS or VECTOR. This
represents the internal navigation state machine. The
system status shows whether the system is currently
active or not and if an emergency occurred. During the
CRITICAL and EMERGENCY states the MAV is still
considered to be active, but should start emergency
procedures autonomously. After a failure occurred it
should first move from active to critical to allow
manual intervention and then move to emergency after a
certain timeout.
onboard_control_sensors_present : Bitmap showing which onboard controllers and sensors are present. Value of 0: not present. Value of 1: present. (uint32_t)
onboard_control_sensors_enabled : Bitmap showing which onboard controllers and sensors are enabled: Value of 0: not enabled. Value of 1: enabled. (uint32_t)
onboard_control_sensors_health : Bitmap showing which onboard controllers and sensors are operational or have an error: Value of 0: not enabled. Value of 1: enabled. (uint32_t)
load : Maximum usage in percent of the mainloop time. Values: [0-1000] - should always be below 1000 (uint16_t)
voltage_battery : Battery voltage (uint16_t)
current_battery : Battery current, -1: autopilot does not measure the current (int16_t)
battery_remaining : Remaining battery energy, -1: autopilot estimate the remaining battery (int8_t)
drop_rate_comm : Communication drop rate, (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t)
errors_comm : Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t)
errors_count1 : Autopilot-specific errors (uint16_t)
errors_count2 : Autopilot-specific errors (uint16_t)
errors_count3 : Autopilot-specific errors (uint16_t)
errors_count4 : Autopilot-specific errors (uint16_t)
'''
return self.send(self.sys_status_encode(onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4), force_mavlink1=force_mavlink1)
def system_time_encode(self, time_unix_usec, time_boot_ms):
'''
The system time is the time of the master clock, typically the
computer clock of the main onboard computer.
time_unix_usec : Timestamp (UNIX epoch time). (uint64_t)
time_boot_ms : Timestamp (time since system boot). (uint32_t)
'''
return MAVLink_system_time_message(time_unix_usec, time_boot_ms)
def system_time_send(self, time_unix_usec, time_boot_ms, force_mavlink1=False):
'''
The system time is the time of the master clock, typically the
computer clock of the main onboard computer.
time_unix_usec : Timestamp (UNIX epoch time). (uint64_t)
time_boot_ms : Timestamp (time since system boot). (uint32_t)
'''
return self.send(self.system_time_encode(time_unix_usec, time_boot_ms), force_mavlink1=force_mavlink1)
def ping_encode(self, time_usec, seq, target_system, target_component):
'''
A ping message either requesting or responding to a ping. This allows
to measure the system latencies, including serial
port, radio modem and UDP connections.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
seq : PING sequence (uint32_t)
target_system : 0: request ping from all receiving systems, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t)
target_component : 0: request ping from all receiving components, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t)
'''
return MAVLink_ping_message(time_usec, seq, target_system, target_component)
def ping_send(self, time_usec, seq, target_system, target_component, force_mavlink1=False):
'''
A ping message either requesting or responding to a ping. This allows
to measure the system latencies, including serial
port, radio modem and UDP connections.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
seq : PING sequence (uint32_t)
target_system : 0: request ping from all receiving systems, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t)
target_component : 0: request ping from all receiving components, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t)
'''
return self.send(self.ping_encode(time_usec, seq, target_system, target_component), force_mavlink1=force_mavlink1)
def change_operator_control_encode(self, target_system, control_request, version, passkey):
'''
Request to control this MAV
target_system : System the GCS requests control for (uint8_t)
control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t)
version : 0: key as plaintext, 1-255: future, different hashing/encryption variants. The GCS should in general use the safest mode possible initially and then gradually move down the encryption level if it gets a NACK message indicating an encryption mismatch. (uint8_t)
passkey : Password / Key, depending on version plaintext or encrypted. 25 or less characters, NULL terminated. The characters may involve A-Z, a-z, 0-9, and "!?,.-" (char)
'''
return MAVLink_change_operator_control_message(target_system, control_request, version, passkey)
def change_operator_control_send(self, target_system, control_request, version, passkey, force_mavlink1=False):
'''
Request to control this MAV
target_system : System the GCS requests control for (uint8_t)
control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t)
version : 0: key as plaintext, 1-255: future, different hashing/encryption variants. The GCS should in general use the safest mode possible initially and then gradually move down the encryption level if it gets a NACK message indicating an encryption mismatch. (uint8_t)
passkey : Password / Key, depending on version plaintext or encrypted. 25 or less characters, NULL terminated. The characters may involve A-Z, a-z, 0-9, and "!?,.-" (char)
'''
return self.send(self.change_operator_control_encode(target_system, control_request, version, passkey), force_mavlink1=force_mavlink1)
def change_operator_control_ack_encode(self, gcs_system_id, control_request, ack):
'''
Accept / deny control of this MAV
gcs_system_id : ID of the GCS this message (uint8_t)
control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t)
ack : 0: ACK, 1: NACK: Wrong passkey, 2: NACK: Unsupported passkey encryption method, 3: NACK: Already under control (uint8_t)
'''
return MAVLink_change_operator_control_ack_message(gcs_system_id, control_request, ack)
def change_operator_control_ack_send(self, gcs_system_id, control_request, ack, force_mavlink1=False):
'''
Accept / deny control of this MAV
gcs_system_id : ID of the GCS this message (uint8_t)
control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t)
ack : 0: ACK, 1: NACK: Wrong passkey, 2: NACK: Unsupported passkey encryption method, 3: NACK: Already under control (uint8_t)
'''
return self.send(self.change_operator_control_ack_encode(gcs_system_id, control_request, ack), force_mavlink1=force_mavlink1)
def auth_key_encode(self, key):
'''
Emit an encrypted signature / key identifying this system. PLEASE
NOTE: This protocol has been kept simple, so
transmitting the key requires an encrypted channel for
true safety.
key : key (char)
'''
return MAVLink_auth_key_message(key)
def auth_key_send(self, key, force_mavlink1=False):
'''
Emit an encrypted signature / key identifying this system. PLEASE
NOTE: This protocol has been kept simple, so
transmitting the key requires an encrypted channel for
true safety.
key : key (char)
'''
return self.send(self.auth_key_encode(key), force_mavlink1=force_mavlink1)
def set_mode_encode(self, target_system, base_mode, custom_mode):
'''
Set the system mode, as defined by enum MAV_MODE. There is no target
component id as the mode is by definition for the
overall aircraft, not only for one component.
target_system : The system setting the mode (uint8_t)
base_mode : The new base mode. (uint8_t)
custom_mode : The new autopilot-specific mode. This field can be ignored by an autopilot. (uint32_t)
'''
return MAVLink_set_mode_message(target_system, base_mode, custom_mode)
def set_mode_send(self, target_system, base_mode, custom_mode, force_mavlink1=False):
'''
Set the system mode, as defined by enum MAV_MODE. There is no target
component id as the mode is by definition for the
overall aircraft, not only for one component.
target_system : The system setting the mode (uint8_t)
base_mode : The new base mode. (uint8_t)
custom_mode : The new autopilot-specific mode. This field can be ignored by an autopilot. (uint32_t)
'''
return self.send(self.set_mode_encode(target_system, base_mode, custom_mode), force_mavlink1=force_mavlink1)
def param_request_read_encode(self, target_system, target_component, param_id, param_index):
'''
Request to read the onboard parameter with the param_id string id.
Onboard parameters are stored as key[const char*] ->
value[float]. This allows to send a parameter to any
other component (such as the GCS) without the need of
previous knowledge of possible parameter names. Thus
the same GCS can store different parameters for
different autopilots. See also
https://mavlink.io/en/protocol/parameter.html for a
full documentation of QGroundControl and IMU code.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_index : Parameter index. Send -1 to use the param ID field as identifier (else the param id will be ignored) (int16_t)
'''
return MAVLink_param_request_read_message(target_system, target_component, param_id, param_index)
def param_request_read_send(self, target_system, target_component, param_id, param_index, force_mavlink1=False):
'''
Request to read the onboard parameter with the param_id string id.
Onboard parameters are stored as key[const char*] ->
value[float]. This allows to send a parameter to any
other component (such as the GCS) without the need of
previous knowledge of possible parameter names. Thus
the same GCS can store different parameters for
different autopilots. See also
https://mavlink.io/en/protocol/parameter.html for a
full documentation of QGroundControl and IMU code.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_index : Parameter index. Send -1 to use the param ID field as identifier (else the param id will be ignored) (int16_t)
'''
return self.send(self.param_request_read_encode(target_system, target_component, param_id, param_index), force_mavlink1=force_mavlink1)
def param_request_list_encode(self, target_system, target_component):
'''
Request all parameters of this component. After this request, all
parameters are emitted.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
return MAVLink_param_request_list_message(target_system, target_component)
def param_request_list_send(self, target_system, target_component, force_mavlink1=False):
'''
Request all parameters of this component. After this request, all
parameters are emitted.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
return self.send(self.param_request_list_encode(target_system, target_component), force_mavlink1=force_mavlink1)
def param_value_encode(self, param_id, param_value, param_type, param_count, param_index):
'''
Emit the value of a onboard parameter. The inclusion of param_count
and param_index in the message allows the recipient to
keep track of received parameters and allows him to
re-request missing parameters after a loss or timeout.
param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_value : Onboard parameter value (float)
param_type : Onboard parameter type. (uint8_t)
param_count : Total number of onboard parameters (uint16_t)
param_index : Index of this onboard parameter (uint16_t)
'''
return MAVLink_param_value_message(param_id, param_value, param_type, param_count, param_index)
def param_value_send(self, param_id, param_value, param_type, param_count, param_index, force_mavlink1=False):
'''
Emit the value of a onboard parameter. The inclusion of param_count
and param_index in the message allows the recipient to
keep track of received parameters and allows him to
re-request missing parameters after a loss or timeout.
param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_value : Onboard parameter value (float)
param_type : Onboard parameter type. (uint8_t)
param_count : Total number of onboard parameters (uint16_t)
param_index : Index of this onboard parameter (uint16_t)
'''
return self.send(self.param_value_encode(param_id, param_value, param_type, param_count, param_index), force_mavlink1=force_mavlink1)
def param_set_encode(self, target_system, target_component, param_id, param_value, param_type):
'''
Set a parameter value TEMPORARILY to RAM. It will be reset to default
on system reboot. Send the ACTION
MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM
contents to EEPROM. IMPORTANT: The receiving component
should acknowledge the new parameter value by sending
a param_value message to all communication partners.
This will also ensure that multiple GCS all have an
up-to-date list of all parameters. If the sending GCS
did not receive a PARAM_VALUE message within its
timeout time, it should re-send the PARAM_SET message.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_value : Onboard parameter value (float)
param_type : Onboard parameter type. (uint8_t)
'''
return MAVLink_param_set_message(target_system, target_component, param_id, param_value, param_type)
def param_set_send(self, target_system, target_component, param_id, param_value, param_type, force_mavlink1=False):
'''
Set a parameter value TEMPORARILY to RAM. It will be reset to default
on system reboot. Send the ACTION
MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM
contents to EEPROM. IMPORTANT: The receiving component
should acknowledge the new parameter value by sending
a param_value message to all communication partners.
This will also ensure that multiple GCS all have an
up-to-date list of all parameters. If the sending GCS
did not receive a PARAM_VALUE message within its
timeout time, it should re-send the PARAM_SET message.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_value : Onboard parameter value (float)
param_type : Onboard parameter type. (uint8_t)
'''
return self.send(self.param_set_encode(target_system, target_component, param_id, param_value, param_type), force_mavlink1=force_mavlink1)
def gps_raw_int_encode(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible, alt_ellipsoid=0, h_acc=0, v_acc=0, vel_acc=0, hdg_acc=0):
'''
The global position, as returned by the Global Positioning System
(GPS). This is NOT the global position
estimate of the system, but rather a RAW sensor value.
See message GLOBAL_POSITION for the global position
estimate.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
fix_type : GPS fix type. (uint8_t)
lat : Latitude (WGS84, EGM96 ellipsoid) (int32_t)
lon : Longitude (WGS84, EGM96 ellipsoid) (int32_t)
alt : Altitude (AMSL). Positive for up. Note that virtually all GPS modules provide the AMSL altitude in addition to the WGS84 altitude. (int32_t)
eph : GPS HDOP horizontal dilution of position (unitless). If unknown, set to: UINT16_MAX (uint16_t)
epv : GPS VDOP vertical dilution of position (unitless). If unknown, set to: UINT16_MAX (uint16_t)
vel : GPS ground speed. If unknown, set to: UINT16_MAX (uint16_t)
cog : Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. If unknown, set to: UINT16_MAX (uint16_t)
satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t)
alt_ellipsoid : Altitude (above WGS84, EGM96 ellipsoid). Positive for up. (int32_t)
h_acc : Position uncertainty. Positive for up. (uint32_t)
v_acc : Altitude uncertainty. Positive for up. (uint32_t)
vel_acc : Speed uncertainty. Positive for up. (uint32_t)
hdg_acc : Heading / track uncertainty (uint32_t)
'''
return MAVLink_gps_raw_int_message(time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible, alt_ellipsoid, h_acc, v_acc, vel_acc, hdg_acc)
def gps_raw_int_send(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible, alt_ellipsoid=0, h_acc=0, v_acc=0, vel_acc=0, hdg_acc=0, force_mavlink1=False):
'''
The global position, as returned by the Global Positioning System
(GPS). This is NOT the global position
estimate of the system, but rather a RAW sensor value.
See message GLOBAL_POSITION for the global position
estimate.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
fix_type : GPS fix type. (uint8_t)
lat : Latitude (WGS84, EGM96 ellipsoid) (int32_t)
lon : Longitude (WGS84, EGM96 ellipsoid) (int32_t)
alt : Altitude (AMSL). Positive for up. Note that virtually all GPS modules provide the AMSL altitude in addition to the WGS84 altitude. (int32_t)
eph : GPS HDOP horizontal dilution of position (unitless). If unknown, set to: UINT16_MAX (uint16_t)
epv : GPS VDOP vertical dilution of position (unitless). If unknown, set to: UINT16_MAX (uint16_t)
vel : GPS ground speed. If unknown, set to: UINT16_MAX (uint16_t)
cog : Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. If unknown, set to: UINT16_MAX (uint16_t)
satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t)
alt_ellipsoid : Altitude (above WGS84, EGM96 ellipsoid). Positive for up. (int32_t)
h_acc : Position uncertainty. Positive for up. (uint32_t)
v_acc : Altitude uncertainty. Positive for up. (uint32_t)
vel_acc : Speed uncertainty. Positive for up. (uint32_t)
hdg_acc : Heading / track uncertainty (uint32_t)
'''
return self.send(self.gps_raw_int_encode(time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible, alt_ellipsoid, h_acc, v_acc, vel_acc, hdg_acc), force_mavlink1=force_mavlink1)
def gps_status_encode(self, satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr):
'''
The positioning status, as reported by GPS. This message is intended
to display status information about each satellite
visible to the receiver. See message GLOBAL_POSITION
for the global position estimate. This message can
contain information for up to 20 satellites.
satellites_visible : Number of satellites visible (uint8_t)
satellite_prn : Global satellite ID (uint8_t)
satellite_used : 0: Satellite not used, 1: used for localization (uint8_t)
satellite_elevation : Elevation (0: right on top of receiver, 90: on the horizon) of satellite (uint8_t)
satellite_azimuth : Direction of satellite, 0: 0 deg, 255: 360 deg. (uint8_t)
satellite_snr : Signal to noise ratio of satellite (uint8_t)
'''
return MAVLink_gps_status_message(satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr)
def gps_status_send(self, satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr, force_mavlink1=False):
'''
The positioning status, as reported by GPS. This message is intended
to display status information about each satellite
visible to the receiver. See message GLOBAL_POSITION
for the global position estimate. This message can
contain information for up to 20 satellites.
satellites_visible : Number of satellites visible (uint8_t)
satellite_prn : Global satellite ID (uint8_t)
satellite_used : 0: Satellite not used, 1: used for localization (uint8_t)
satellite_elevation : Elevation (0: right on top of receiver, 90: on the horizon) of satellite (uint8_t)
satellite_azimuth : Direction of satellite, 0: 0 deg, 255: 360 deg. (uint8_t)
satellite_snr : Signal to noise ratio of satellite (uint8_t)
'''
return self.send(self.gps_status_encode(satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr), force_mavlink1=force_mavlink1)
def scaled_imu_encode(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This message
should contain the scaled values to the described
units
time_boot_ms : Timestamp (time since system boot). (uint32_t)
xacc : X acceleration (int16_t)
yacc : Y acceleration (int16_t)
zacc : Z acceleration (int16_t)
xgyro : Angular speed around X axis (int16_t)
ygyro : Angular speed around Y axis (int16_t)
zgyro : Angular speed around Z axis (int16_t)
xmag : X Magnetic field (int16_t)
ymag : Y Magnetic field (int16_t)
zmag : Z Magnetic field (int16_t)
'''
return MAVLink_scaled_imu_message(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag)
def scaled_imu_send(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, force_mavlink1=False):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This message
should contain the scaled values to the described
units
time_boot_ms : Timestamp (time since system boot). (uint32_t)
xacc : X acceleration (int16_t)
yacc : Y acceleration (int16_t)
zacc : Z acceleration (int16_t)
xgyro : Angular speed around X axis (int16_t)
ygyro : Angular speed around Y axis (int16_t)
zgyro : Angular speed around Z axis (int16_t)
xmag : X Magnetic field (int16_t)
ymag : Y Magnetic field (int16_t)
zmag : Z Magnetic field (int16_t)
'''
return self.send(self.scaled_imu_encode(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag), force_mavlink1=force_mavlink1)
def raw_imu_encode(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This message
should always contain the true raw values without any
scaling to allow data capture and system debugging.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
xacc : X acceleration (raw) (int16_t)
yacc : Y acceleration (raw) (int16_t)
zacc : Z acceleration (raw) (int16_t)
xgyro : Angular speed around X axis (raw) (int16_t)
ygyro : Angular speed around Y axis (raw) (int16_t)
zgyro : Angular speed around Z axis (raw) (int16_t)
xmag : X Magnetic field (raw) (int16_t)
ymag : Y Magnetic field (raw) (int16_t)
zmag : Z Magnetic field (raw) (int16_t)
'''
return MAVLink_raw_imu_message(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag)
def raw_imu_send(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, force_mavlink1=False):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This message
should always contain the true raw values without any
scaling to allow data capture and system debugging.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
xacc : X acceleration (raw) (int16_t)
yacc : Y acceleration (raw) (int16_t)
zacc : Z acceleration (raw) (int16_t)
xgyro : Angular speed around X axis (raw) (int16_t)
ygyro : Angular speed around Y axis (raw) (int16_t)
zgyro : Angular speed around Z axis (raw) (int16_t)
xmag : X Magnetic field (raw) (int16_t)
ymag : Y Magnetic field (raw) (int16_t)
zmag : Z Magnetic field (raw) (int16_t)
'''
return self.send(self.raw_imu_encode(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag), force_mavlink1=force_mavlink1)
def raw_pressure_encode(self, time_usec, press_abs, press_diff1, press_diff2, temperature):
'''
The RAW pressure readings for the typical setup of one absolute
pressure and one differential pressure sensor. The
sensor values should be the raw, UNSCALED ADC values.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
press_abs : Absolute pressure (raw) (int16_t)
press_diff1 : Differential pressure 1 (raw, 0 if nonexistent) (int16_t)
press_diff2 : Differential pressure 2 (raw, 0 if nonexistent) (int16_t)
temperature : Raw Temperature measurement (raw) (int16_t)
'''
return MAVLink_raw_pressure_message(time_usec, press_abs, press_diff1, press_diff2, temperature)
def raw_pressure_send(self, time_usec, press_abs, press_diff1, press_diff2, temperature, force_mavlink1=False):
'''
The RAW pressure readings for the typical setup of one absolute
pressure and one differential pressure sensor. The
sensor values should be the raw, UNSCALED ADC values.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
press_abs : Absolute pressure (raw) (int16_t)
press_diff1 : Differential pressure 1 (raw, 0 if nonexistent) (int16_t)
press_diff2 : Differential pressure 2 (raw, 0 if nonexistent) (int16_t)
temperature : Raw Temperature measurement (raw) (int16_t)
'''
return self.send(self.raw_pressure_encode(time_usec, press_abs, press_diff1, press_diff2, temperature), force_mavlink1=force_mavlink1)
def scaled_pressure_encode(self, time_boot_ms, press_abs, press_diff, temperature):
'''
The pressure readings for the typical setup of one absolute and
differential pressure sensor. The units are as
specified in each field.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
press_abs : Absolute pressure (float)
press_diff : Differential pressure 1 (float)
temperature : Temperature (int16_t)
'''
return MAVLink_scaled_pressure_message(time_boot_ms, press_abs, press_diff, temperature)
def scaled_pressure_send(self, time_boot_ms, press_abs, press_diff, temperature, force_mavlink1=False):
'''
The pressure readings for the typical setup of one absolute and
differential pressure sensor. The units are as
specified in each field.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
press_abs : Absolute pressure (float)
press_diff : Differential pressure 1 (float)
temperature : Temperature (int16_t)
'''
return self.send(self.scaled_pressure_encode(time_boot_ms, press_abs, press_diff, temperature), force_mavlink1=force_mavlink1)
def attitude_encode(self, time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed):
'''
The attitude in the aeronautical frame (right-handed, Z-down, X-front,
Y-right).
time_boot_ms : Timestamp (time since system boot). (uint32_t)
roll : Roll angle (-pi..+pi) (float)
pitch : Pitch angle (-pi..+pi) (float)
yaw : Yaw angle (-pi..+pi) (float)
rollspeed : Roll angular speed (float)
pitchspeed : Pitch angular speed (float)
yawspeed : Yaw angular speed (float)
'''
return MAVLink_attitude_message(time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed)
def attitude_send(self, time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, force_mavlink1=False):
'''
The attitude in the aeronautical frame (right-handed, Z-down, X-front,
Y-right).
time_boot_ms : Timestamp (time since system boot). (uint32_t)
roll : Roll angle (-pi..+pi) (float)
pitch : Pitch angle (-pi..+pi) (float)
yaw : Yaw angle (-pi..+pi) (float)
rollspeed : Roll angular speed (float)
pitchspeed : Pitch angular speed (float)
yawspeed : Yaw angular speed (float)
'''
return self.send(self.attitude_encode(time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed), force_mavlink1=force_mavlink1)
def attitude_quaternion_encode(self, time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed):
'''
The attitude in the aeronautical frame (right-handed, Z-down, X-front,
Y-right), expressed as quaternion. Quaternion order is
w, x, y, z and a zero rotation would be expressed as
(1 0 0 0).
time_boot_ms : Timestamp (time since system boot). (uint32_t)
q1 : Quaternion component 1, w (1 in null-rotation) (float)
q2 : Quaternion component 2, x (0 in null-rotation) (float)
q3 : Quaternion component 3, y (0 in null-rotation) (float)
q4 : Quaternion component 4, z (0 in null-rotation) (float)
rollspeed : Roll angular speed (float)
pitchspeed : Pitch angular speed (float)
yawspeed : Yaw angular speed (float)
'''
return MAVLink_attitude_quaternion_message(time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed)
def attitude_quaternion_send(self, time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed, force_mavlink1=False):
'''
The attitude in the aeronautical frame (right-handed, Z-down, X-front,
Y-right), expressed as quaternion. Quaternion order is
w, x, y, z and a zero rotation would be expressed as
(1 0 0 0).
time_boot_ms : Timestamp (time since system boot). (uint32_t)
q1 : Quaternion component 1, w (1 in null-rotation) (float)
q2 : Quaternion component 2, x (0 in null-rotation) (float)
q3 : Quaternion component 3, y (0 in null-rotation) (float)
q4 : Quaternion component 4, z (0 in null-rotation) (float)
rollspeed : Roll angular speed (float)
pitchspeed : Pitch angular speed (float)
yawspeed : Yaw angular speed (float)
'''
return self.send(self.attitude_quaternion_encode(time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed), force_mavlink1=force_mavlink1)
def local_position_ned_encode(self, time_boot_ms, x, y, z, vx, vy, vz):
'''
The filtered local position (e.g. fused computer vision and
accelerometers). Coordinate frame is right-handed,
Z-axis down (aeronautical frame, NED / north-east-down
convention)
time_boot_ms : Timestamp (time since system boot). (uint32_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
vx : X Speed (float)
vy : Y Speed (float)
vz : Z Speed (float)
'''
return MAVLink_local_position_ned_message(time_boot_ms, x, y, z, vx, vy, vz)
def local_position_ned_send(self, time_boot_ms, x, y, z, vx, vy, vz, force_mavlink1=False):
'''
The filtered local position (e.g. fused computer vision and
accelerometers). Coordinate frame is right-handed,
Z-axis down (aeronautical frame, NED / north-east-down
convention)
time_boot_ms : Timestamp (time since system boot). (uint32_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
vx : X Speed (float)
vy : Y Speed (float)
vz : Z Speed (float)
'''
return self.send(self.local_position_ned_encode(time_boot_ms, x, y, z, vx, vy, vz), force_mavlink1=force_mavlink1)
def global_position_int_encode(self, time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg):
'''
The filtered global position (e.g. fused GPS and accelerometers). The
position is in GPS-frame (right-handed, Z-up). It
is designed as scaled integer message since the
resolution of float is not sufficient.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
lat : Latitude, expressed (int32_t)
lon : Longitude, expressed (int32_t)
alt : Altitude (AMSL). Note that virtually all GPS modules provide both WGS84 and AMSL. (int32_t)
relative_alt : Altitude above ground (int32_t)
vx : Ground X Speed (Latitude, positive north) (int16_t)
vy : Ground Y Speed (Longitude, positive east) (int16_t)
vz : Ground Z Speed (Altitude, positive down) (int16_t)
hdg : Vehicle heading (yaw angle), 0.0..359.99 degrees. If unknown, set to: UINT16_MAX (uint16_t)
'''
return MAVLink_global_position_int_message(time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg)
def global_position_int_send(self, time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg, force_mavlink1=False):
'''
The filtered global position (e.g. fused GPS and accelerometers). The
position is in GPS-frame (right-handed, Z-up). It
is designed as scaled integer message since the
resolution of float is not sufficient.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
lat : Latitude, expressed (int32_t)
lon : Longitude, expressed (int32_t)
alt : Altitude (AMSL). Note that virtually all GPS modules provide both WGS84 and AMSL. (int32_t)
relative_alt : Altitude above ground (int32_t)
vx : Ground X Speed (Latitude, positive north) (int16_t)
vy : Ground Y Speed (Longitude, positive east) (int16_t)
vz : Ground Z Speed (Altitude, positive down) (int16_t)
hdg : Vehicle heading (yaw angle), 0.0..359.99 degrees. If unknown, set to: UINT16_MAX (uint16_t)
'''
return self.send(self.global_position_int_encode(time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg), force_mavlink1=force_mavlink1)
def rc_channels_scaled_encode(self, time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi):
'''
The scaled values of the RC channels received: (-100%) -10000, (0%) 0,
(100%) 10000. Channels that are inactive should be set
to UINT16_MAX.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows for more than 8 servos. (uint8_t)
chan1_scaled : RC channel 1 value scaled. (int16_t)
chan2_scaled : RC channel 2 value scaled. (int16_t)
chan3_scaled : RC channel 3 value scaled. (int16_t)
chan4_scaled : RC channel 4 value scaled. (int16_t)
chan5_scaled : RC channel 5 value scaled. (int16_t)
chan6_scaled : RC channel 6 value scaled. (int16_t)
chan7_scaled : RC channel 7 value scaled. (int16_t)
chan8_scaled : RC channel 8 value scaled. (int16_t)
rssi : Receive signal strength indicator. Values: [0-100], 255: invalid/unknown. (uint8_t)
'''
return MAVLink_rc_channels_scaled_message(time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi)
def rc_channels_scaled_send(self, time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi, force_mavlink1=False):
'''
The scaled values of the RC channels received: (-100%) -10000, (0%) 0,
(100%) 10000. Channels that are inactive should be set
to UINT16_MAX.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows for more than 8 servos. (uint8_t)
chan1_scaled : RC channel 1 value scaled. (int16_t)
chan2_scaled : RC channel 2 value scaled. (int16_t)
chan3_scaled : RC channel 3 value scaled. (int16_t)
chan4_scaled : RC channel 4 value scaled. (int16_t)
chan5_scaled : RC channel 5 value scaled. (int16_t)
chan6_scaled : RC channel 6 value scaled. (int16_t)
chan7_scaled : RC channel 7 value scaled. (int16_t)
chan8_scaled : RC channel 8 value scaled. (int16_t)
rssi : Receive signal strength indicator. Values: [0-100], 255: invalid/unknown. (uint8_t)
'''
return self.send(self.rc_channels_scaled_encode(time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi), force_mavlink1=force_mavlink1)
def rc_channels_raw_encode(self, time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi):
'''
The RAW values of the RC channels received. The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%. A value of UINT16_MAX implies the
channel is unused. Individual receivers/transmitters
might violate this specification.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows for more than 8 servos. (uint8_t)
chan1_raw : RC channel 1 value. (uint16_t)
chan2_raw : RC channel 2 value. (uint16_t)
chan3_raw : RC channel 3 value. (uint16_t)
chan4_raw : RC channel 4 value. (uint16_t)
chan5_raw : RC channel 5 value. (uint16_t)
chan6_raw : RC channel 6 value. (uint16_t)
chan7_raw : RC channel 7 value. (uint16_t)
chan8_raw : RC channel 8 value. (uint16_t)
rssi : Receive signal strength indicator. Values: [0-100], 255: invalid/unknown. (uint8_t)
'''
return MAVLink_rc_channels_raw_message(time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi)
def rc_channels_raw_send(self, time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi, force_mavlink1=False):
'''
The RAW values of the RC channels received. The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%. A value of UINT16_MAX implies the
channel is unused. Individual receivers/transmitters
might violate this specification.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows for more than 8 servos. (uint8_t)
chan1_raw : RC channel 1 value. (uint16_t)
chan2_raw : RC channel 2 value. (uint16_t)
chan3_raw : RC channel 3 value. (uint16_t)
chan4_raw : RC channel 4 value. (uint16_t)
chan5_raw : RC channel 5 value. (uint16_t)
chan6_raw : RC channel 6 value. (uint16_t)
chan7_raw : RC channel 7 value. (uint16_t)
chan8_raw : RC channel 8 value. (uint16_t)
rssi : Receive signal strength indicator. Values: [0-100], 255: invalid/unknown. (uint8_t)
'''
return self.send(self.rc_channels_raw_encode(time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi), force_mavlink1=force_mavlink1)
def servo_output_raw_encode(self, time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw, servo9_raw=0, servo10_raw=0, servo11_raw=0, servo12_raw=0, servo13_raw=0, servo14_raw=0, servo15_raw=0, servo16_raw=0):
'''
The RAW values of the servo outputs (for RC input from the remote, use
the RC_CHANNELS messages). The standard PPM modulation
is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t)
servo1_raw : Servo output 1 value (uint16_t)
servo2_raw : Servo output 2 value (uint16_t)
servo3_raw : Servo output 3 value (uint16_t)
servo4_raw : Servo output 4 value (uint16_t)
servo5_raw : Servo output 5 value (uint16_t)
servo6_raw : Servo output 6 value (uint16_t)
servo7_raw : Servo output 7 value (uint16_t)
servo8_raw : Servo output 8 value (uint16_t)
servo9_raw : Servo output 9 value (uint16_t)
servo10_raw : Servo output 10 value (uint16_t)
servo11_raw : Servo output 11 value (uint16_t)
servo12_raw : Servo output 12 value (uint16_t)
servo13_raw : Servo output 13 value (uint16_t)
servo14_raw : Servo output 14 value (uint16_t)
servo15_raw : Servo output 15 value (uint16_t)
servo16_raw : Servo output 16 value (uint16_t)
'''
return MAVLink_servo_output_raw_message(time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw, servo9_raw, servo10_raw, servo11_raw, servo12_raw, servo13_raw, servo14_raw, servo15_raw, servo16_raw)
def servo_output_raw_send(self, time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw, servo9_raw=0, servo10_raw=0, servo11_raw=0, servo12_raw=0, servo13_raw=0, servo14_raw=0, servo15_raw=0, servo16_raw=0, force_mavlink1=False):
'''
The RAW values of the servo outputs (for RC input from the remote, use
the RC_CHANNELS messages). The standard PPM modulation
is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t)
servo1_raw : Servo output 1 value (uint16_t)
servo2_raw : Servo output 2 value (uint16_t)
servo3_raw : Servo output 3 value (uint16_t)
servo4_raw : Servo output 4 value (uint16_t)
servo5_raw : Servo output 5 value (uint16_t)
servo6_raw : Servo output 6 value (uint16_t)
servo7_raw : Servo output 7 value (uint16_t)
servo8_raw : Servo output 8 value (uint16_t)
servo9_raw : Servo output 9 value (uint16_t)
servo10_raw : Servo output 10 value (uint16_t)
servo11_raw : Servo output 11 value (uint16_t)
servo12_raw : Servo output 12 value (uint16_t)
servo13_raw : Servo output 13 value (uint16_t)
servo14_raw : Servo output 14 value (uint16_t)
servo15_raw : Servo output 15 value (uint16_t)
servo16_raw : Servo output 16 value (uint16_t)
'''
return self.send(self.servo_output_raw_encode(time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw, servo9_raw, servo10_raw, servo11_raw, servo12_raw, servo13_raw, servo14_raw, servo15_raw, servo16_raw), force_mavlink1=force_mavlink1)
def mission_request_partial_list_encode(self, target_system, target_component, start_index, end_index, mission_type=0):
'''
Request a partial list of mission items from the system/component.
https://mavlink.io/en/protocol/mission.html. If start
and end index are the same, just send one waypoint.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
start_index : Start index, 0 by default (int16_t)
end_index : End index, -1 by default (-1: send list to end). Else a valid index of the list (int16_t)
mission_type : Mission type. (uint8_t)
'''
return MAVLink_mission_request_partial_list_message(target_system, target_component, start_index, end_index, mission_type)
def mission_request_partial_list_send(self, target_system, target_component, start_index, end_index, mission_type=0, force_mavlink1=False):
'''
Request a partial list of mission items from the system/component.
https://mavlink.io/en/protocol/mission.html. If start
and end index are the same, just send one waypoint.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
start_index : Start index, 0 by default (int16_t)
end_index : End index, -1 by default (-1: send list to end). Else a valid index of the list (int16_t)
mission_type : Mission type. (uint8_t)
'''
return self.send(self.mission_request_partial_list_encode(target_system, target_component, start_index, end_index, mission_type), force_mavlink1=force_mavlink1)
def mission_write_partial_list_encode(self, target_system, target_component, start_index, end_index, mission_type=0):
'''
This message is sent to the MAV to write a partial list. If start
index == end index, only one item will be transmitted
/ updated. If the start index is NOT 0 and above the
current list size, this request should be REJECTED!
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
start_index : Start index, 0 by default and smaller / equal to the largest index of the current onboard list. (int16_t)
end_index : End index, equal or greater than start index. (int16_t)
mission_type : Mission type. (uint8_t)
'''
return MAVLink_mission_write_partial_list_message(target_system, target_component, start_index, end_index, mission_type)
def mission_write_partial_list_send(self, target_system, target_component, start_index, end_index, mission_type=0, force_mavlink1=False):
'''
This message is sent to the MAV to write a partial list. If start
index == end index, only one item will be transmitted
/ updated. If the start index is NOT 0 and above the
current list size, this request should be REJECTED!
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
start_index : Start index, 0 by default and smaller / equal to the largest index of the current onboard list. (int16_t)
end_index : End index, equal or greater than start index. (int16_t)
mission_type : Mission type. (uint8_t)
'''
return self.send(self.mission_write_partial_list_encode(target_system, target_component, start_index, end_index, mission_type), force_mavlink1=force_mavlink1)
def mission_item_encode(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, mission_type=0):
'''
Message encoding a mission item. This message is emitted to announce
the presence of a mission item and to set a mission
item on the system. The mission item can be either in
x, y, z meters (type: LOCAL) or x:lat, y:lon,
z:altitude. Local frame is Z-down, right handed (NED),
global frame is Z-up, right handed (ENU). See also
https://mavlink.io/en/protocol/mission.html.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
frame : The coordinate system of the waypoint. (uint8_t)
command : The scheduled action for the waypoint. (uint16_t)
current : false:0, true:1 (uint8_t)
autocontinue : Autocontinue to next waypoint (uint8_t)
param1 : PARAM1, see MAV_CMD enum (float)
param2 : PARAM2, see MAV_CMD enum (float)
param3 : PARAM3, see MAV_CMD enum (float)
param4 : PARAM4, see MAV_CMD enum (float)
x : PARAM5 / local: X coordinate, global: latitude (float)
y : PARAM6 / local: Y coordinate, global: longitude (float)
z : PARAM7 / local: Z coordinate, global: altitude (relative or absolute, depending on frame). (float)
mission_type : Mission type. (uint8_t)
'''
return MAVLink_mission_item_message(target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, mission_type)
def mission_item_send(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, mission_type=0, force_mavlink1=False):
'''
Message encoding a mission item. This message is emitted to announce
the presence of a mission item and to set a mission
item on the system. The mission item can be either in
x, y, z meters (type: LOCAL) or x:lat, y:lon,
z:altitude. Local frame is Z-down, right handed (NED),
global frame is Z-up, right handed (ENU). See also
https://mavlink.io/en/protocol/mission.html.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
frame : The coordinate system of the waypoint. (uint8_t)
command : The scheduled action for the waypoint. (uint16_t)
current : false:0, true:1 (uint8_t)
autocontinue : Autocontinue to next waypoint (uint8_t)
param1 : PARAM1, see MAV_CMD enum (float)
param2 : PARAM2, see MAV_CMD enum (float)
param3 : PARAM3, see MAV_CMD enum (float)
param4 : PARAM4, see MAV_CMD enum (float)
x : PARAM5 / local: X coordinate, global: latitude (float)
y : PARAM6 / local: Y coordinate, global: longitude (float)
z : PARAM7 / local: Z coordinate, global: altitude (relative or absolute, depending on frame). (float)
mission_type : Mission type. (uint8_t)
'''
return self.send(self.mission_item_encode(target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, mission_type), force_mavlink1=force_mavlink1)
def mission_request_encode(self, target_system, target_component, seq, mission_type=0):
'''
Request the information of the mission item with the sequence number
seq. The response of the system to this message should
be a MISSION_ITEM message.
https://mavlink.io/en/protocol/mission.html
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
mission_type : Mission type. (uint8_t)
'''
return MAVLink_mission_request_message(target_system, target_component, seq, mission_type)
def mission_request_send(self, target_system, target_component, seq, mission_type=0, force_mavlink1=False):
'''
Request the information of the mission item with the sequence number
seq. The response of the system to this message should
be a MISSION_ITEM message.
https://mavlink.io/en/protocol/mission.html
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
mission_type : Mission type. (uint8_t)
'''
return self.send(self.mission_request_encode(target_system, target_component, seq, mission_type), force_mavlink1=force_mavlink1)
def mission_set_current_encode(self, target_system, target_component, seq):
'''
Set the mission item with sequence number seq as current item. This
means that the MAV will continue to this mission item
on the shortest path (not following the mission items
in-between).
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
'''
return MAVLink_mission_set_current_message(target_system, target_component, seq)
def mission_set_current_send(self, target_system, target_component, seq, force_mavlink1=False):
'''
Set the mission item with sequence number seq as current item. This
means that the MAV will continue to this mission item
on the shortest path (not following the mission items
in-between).
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
'''
return self.send(self.mission_set_current_encode(target_system, target_component, seq), force_mavlink1=force_mavlink1)
def mission_current_encode(self, seq):
'''
Message that announces the sequence number of the current active
mission item. The MAV will fly towards this mission
item.
seq : Sequence (uint16_t)
'''
return MAVLink_mission_current_message(seq)
def mission_current_send(self, seq, force_mavlink1=False):
'''
Message that announces the sequence number of the current active
mission item. The MAV will fly towards this mission
item.
seq : Sequence (uint16_t)
'''
return self.send(self.mission_current_encode(seq), force_mavlink1=force_mavlink1)
def mission_request_list_encode(self, target_system, target_component, mission_type=0):
'''
Request the overall list of mission items from the system/component.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
mission_type : Mission type. (uint8_t)
'''
return MAVLink_mission_request_list_message(target_system, target_component, mission_type)
def mission_request_list_send(self, target_system, target_component, mission_type=0, force_mavlink1=False):
'''
Request the overall list of mission items from the system/component.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
mission_type : Mission type. (uint8_t)
'''
return self.send(self.mission_request_list_encode(target_system, target_component, mission_type), force_mavlink1=force_mavlink1)
def mission_count_encode(self, target_system, target_component, count, mission_type=0):
'''
This message is emitted as response to MISSION_REQUEST_LIST by the MAV
and to initiate a write transaction. The GCS can then
request the individual mission item based on the
knowledge of the total number of waypoints.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
count : Number of mission items in the sequence (uint16_t)
mission_type : Mission type. (uint8_t)
'''
return MAVLink_mission_count_message(target_system, target_component, count, mission_type)
def mission_count_send(self, target_system, target_component, count, mission_type=0, force_mavlink1=False):
'''
This message is emitted as response to MISSION_REQUEST_LIST by the MAV
and to initiate a write transaction. The GCS can then
request the individual mission item based on the
knowledge of the total number of waypoints.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
count : Number of mission items in the sequence (uint16_t)
mission_type : Mission type. (uint8_t)
'''
return self.send(self.mission_count_encode(target_system, target_component, count, mission_type), force_mavlink1=force_mavlink1)
def mission_clear_all_encode(self, target_system, target_component, mission_type=0):
'''
Delete all mission items at once.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
mission_type : Mission type. (uint8_t)
'''
return MAVLink_mission_clear_all_message(target_system, target_component, mission_type)
def mission_clear_all_send(self, target_system, target_component, mission_type=0, force_mavlink1=False):
'''
Delete all mission items at once.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
mission_type : Mission type. (uint8_t)
'''
return self.send(self.mission_clear_all_encode(target_system, target_component, mission_type), force_mavlink1=force_mavlink1)
def mission_item_reached_encode(self, seq):
'''
A certain mission item has been reached. The system will either hold
this position (or circle on the orbit) or (if the
autocontinue on the WP was set) continue to the next
waypoint.
seq : Sequence (uint16_t)
'''
return MAVLink_mission_item_reached_message(seq)
def mission_item_reached_send(self, seq, force_mavlink1=False):
'''
A certain mission item has been reached. The system will either hold
this position (or circle on the orbit) or (if the
autocontinue on the WP was set) continue to the next
waypoint.
seq : Sequence (uint16_t)
'''
return self.send(self.mission_item_reached_encode(seq), force_mavlink1=force_mavlink1)
def mission_ack_encode(self, target_system, target_component, type, mission_type=0):
'''
Acknowledgment message during waypoint handling. The type field states
if this message is a positive ack (type=0) or if an
error happened (type=non-zero).
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
type : Mission result. (uint8_t)
mission_type : Mission type. (uint8_t)
'''
return MAVLink_mission_ack_message(target_system, target_component, type, mission_type)
def mission_ack_send(self, target_system, target_component, type, mission_type=0, force_mavlink1=False):
'''
Acknowledgment message during waypoint handling. The type field states
if this message is a positive ack (type=0) or if an
error happened (type=non-zero).
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
type : Mission result. (uint8_t)
mission_type : Mission type. (uint8_t)
'''
return self.send(self.mission_ack_encode(target_system, target_component, type, mission_type), force_mavlink1=force_mavlink1)
def set_gps_global_origin_encode(self, target_system, latitude, longitude, altitude, time_usec=0):
'''
As local waypoints exist, the global waypoint reference allows to
transform between the local coordinate frame and the
global (GPS) coordinate frame. This can be necessary
when e.g. in- and outdoor settings are connected and
the MAV should move from in- to outdoor.
target_system : System ID (uint8_t)
latitude : Latitude (WGS84) (int32_t)
longitude : Longitude (WGS84) (int32_t)
altitude : Altitude (AMSL). Positive for up. (int32_t)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
'''
return MAVLink_set_gps_global_origin_message(target_system, latitude, longitude, altitude, time_usec)
def set_gps_global_origin_send(self, target_system, latitude, longitude, altitude, time_usec=0, force_mavlink1=False):
'''
As local waypoints exist, the global waypoint reference allows to
transform between the local coordinate frame and the
global (GPS) coordinate frame. This can be necessary
when e.g. in- and outdoor settings are connected and
the MAV should move from in- to outdoor.
target_system : System ID (uint8_t)
latitude : Latitude (WGS84) (int32_t)
longitude : Longitude (WGS84) (int32_t)
altitude : Altitude (AMSL). Positive for up. (int32_t)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
'''
return self.send(self.set_gps_global_origin_encode(target_system, latitude, longitude, altitude, time_usec), force_mavlink1=force_mavlink1)
def gps_global_origin_encode(self, latitude, longitude, altitude, time_usec=0):
'''
Once the MAV sets a new GPS-Local correspondence, this message
announces the origin (0,0,0) position
latitude : Latitude (WGS84) (int32_t)
longitude : Longitude (WGS84) (int32_t)
altitude : Altitude (AMSL). Positive for up. (int32_t)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
'''
return MAVLink_gps_global_origin_message(latitude, longitude, altitude, time_usec)
def gps_global_origin_send(self, latitude, longitude, altitude, time_usec=0, force_mavlink1=False):
'''
Once the MAV sets a new GPS-Local correspondence, this message
announces the origin (0,0,0) position
latitude : Latitude (WGS84) (int32_t)
longitude : Longitude (WGS84) (int32_t)
altitude : Altitude (AMSL). Positive for up. (int32_t)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
'''
return self.send(self.gps_global_origin_encode(latitude, longitude, altitude, time_usec), force_mavlink1=force_mavlink1)
def param_map_rc_encode(self, target_system, target_component, param_id, param_index, parameter_rc_channel_index, param_value0, scale, param_value_min, param_value_max):
'''
Bind a RC channel to a parameter. The parameter should change
according to the RC channel value.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_index : Parameter index. Send -1 to use the param ID field as identifier (else the param id will be ignored), send -2 to disable any existing map for this rc_channel_index. (int16_t)
parameter_rc_channel_index : Index of parameter RC channel. Not equal to the RC channel id. Typically corresponds to a potentiometer-knob on the RC. (uint8_t)
param_value0 : Initial parameter value (float)
scale : Scale, maps the RC range [-1, 1] to a parameter value (float)
param_value_min : Minimum param value. The protocol does not define if this overwrites an onboard minimum value. (Depends on implementation) (float)
param_value_max : Maximum param value. The protocol does not define if this overwrites an onboard maximum value. (Depends on implementation) (float)
'''
return MAVLink_param_map_rc_message(target_system, target_component, param_id, param_index, parameter_rc_channel_index, param_value0, scale, param_value_min, param_value_max)
def param_map_rc_send(self, target_system, target_component, param_id, param_index, parameter_rc_channel_index, param_value0, scale, param_value_min, param_value_max, force_mavlink1=False):
'''
Bind a RC channel to a parameter. The parameter should change
according to the RC channel value.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_index : Parameter index. Send -1 to use the param ID field as identifier (else the param id will be ignored), send -2 to disable any existing map for this rc_channel_index. (int16_t)
parameter_rc_channel_index : Index of parameter RC channel. Not equal to the RC channel id. Typically corresponds to a potentiometer-knob on the RC. (uint8_t)
param_value0 : Initial parameter value (float)
scale : Scale, maps the RC range [-1, 1] to a parameter value (float)
param_value_min : Minimum param value. The protocol does not define if this overwrites an onboard minimum value. (Depends on implementation) (float)
param_value_max : Maximum param value. The protocol does not define if this overwrites an onboard maximum value. (Depends on implementation) (float)
'''
return self.send(self.param_map_rc_encode(target_system, target_component, param_id, param_index, parameter_rc_channel_index, param_value0, scale, param_value_min, param_value_max), force_mavlink1=force_mavlink1)
def mission_request_int_encode(self, target_system, target_component, seq, mission_type=0):
'''
Request the information of the mission item with the sequence number
seq. The response of the system to this message should
be a MISSION_ITEM_INT message.
https://mavlink.io/en/protocol/mission.html
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
mission_type : Mission type. (uint8_t)
'''
return MAVLink_mission_request_int_message(target_system, target_component, seq, mission_type)
def mission_request_int_send(self, target_system, target_component, seq, mission_type=0, force_mavlink1=False):
'''
Request the information of the mission item with the sequence number
seq. The response of the system to this message should
be a MISSION_ITEM_INT message.
https://mavlink.io/en/protocol/mission.html
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
mission_type : Mission type. (uint8_t)
'''
return self.send(self.mission_request_int_encode(target_system, target_component, seq, mission_type), force_mavlink1=force_mavlink1)
def safety_set_allowed_area_encode(self, target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z):
'''
Set a safety zone (volume), which is defined by two corners of a cube.
This message can be used to tell the MAV which
setpoints/waypoints to accept and which to reject.
Safety areas are often enforced by national or
competition regulations.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
frame : Coordinate frame. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t)
p1x : x position 1 / Latitude 1 (float)
p1y : y position 1 / Longitude 1 (float)
p1z : z position 1 / Altitude 1 (float)
p2x : x position 2 / Latitude 2 (float)
p2y : y position 2 / Longitude 2 (float)
p2z : z position 2 / Altitude 2 (float)
'''
return MAVLink_safety_set_allowed_area_message(target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z)
def safety_set_allowed_area_send(self, target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z, force_mavlink1=False):
'''
Set a safety zone (volume), which is defined by two corners of a cube.
This message can be used to tell the MAV which
setpoints/waypoints to accept and which to reject.
Safety areas are often enforced by national or
competition regulations.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
frame : Coordinate frame. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t)
p1x : x position 1 / Latitude 1 (float)
p1y : y position 1 / Longitude 1 (float)
p1z : z position 1 / Altitude 1 (float)
p2x : x position 2 / Latitude 2 (float)
p2y : y position 2 / Longitude 2 (float)
p2z : z position 2 / Altitude 2 (float)
'''
return self.send(self.safety_set_allowed_area_encode(target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z), force_mavlink1=force_mavlink1)
def safety_allowed_area_encode(self, frame, p1x, p1y, p1z, p2x, p2y, p2z):
'''
Read out the safety zone the MAV currently assumes.
frame : Coordinate frame. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t)
p1x : x position 1 / Latitude 1 (float)
p1y : y position 1 / Longitude 1 (float)
p1z : z position 1 / Altitude 1 (float)
p2x : x position 2 / Latitude 2 (float)
p2y : y position 2 / Longitude 2 (float)
p2z : z position 2 / Altitude 2 (float)
'''
return MAVLink_safety_allowed_area_message(frame, p1x, p1y, p1z, p2x, p2y, p2z)
def safety_allowed_area_send(self, frame, p1x, p1y, p1z, p2x, p2y, p2z, force_mavlink1=False):
'''
Read out the safety zone the MAV currently assumes.
frame : Coordinate frame. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t)
p1x : x position 1 / Latitude 1 (float)
p1y : y position 1 / Longitude 1 (float)
p1z : z position 1 / Altitude 1 (float)
p2x : x position 2 / Latitude 2 (float)
p2y : y position 2 / Longitude 2 (float)
p2z : z position 2 / Altitude 2 (float)
'''
return self.send(self.safety_allowed_area_encode(frame, p1x, p1y, p1z, p2x, p2y, p2z), force_mavlink1=force_mavlink1)
def attitude_quaternion_cov_encode(self, time_usec, q, rollspeed, pitchspeed, yawspeed, covariance):
'''
The attitude in the aeronautical frame (right-handed, Z-down, X-front,
Y-right), expressed as quaternion. Quaternion order is
w, x, y, z and a zero rotation would be expressed as
(1 0 0 0).
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
q : Quaternion components, w, x, y, z (1 0 0 0 is the null-rotation) (float)
rollspeed : Roll angular speed (float)
pitchspeed : Pitch angular speed (float)
yawspeed : Yaw angular speed (float)
covariance : Attitude covariance (float)
'''
return MAVLink_attitude_quaternion_cov_message(time_usec, q, rollspeed, pitchspeed, yawspeed, covariance)
def attitude_quaternion_cov_send(self, time_usec, q, rollspeed, pitchspeed, yawspeed, covariance, force_mavlink1=False):
'''
The attitude in the aeronautical frame (right-handed, Z-down, X-front,
Y-right), expressed as quaternion. Quaternion order is
w, x, y, z and a zero rotation would be expressed as
(1 0 0 0).
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
q : Quaternion components, w, x, y, z (1 0 0 0 is the null-rotation) (float)
rollspeed : Roll angular speed (float)
pitchspeed : Pitch angular speed (float)
yawspeed : Yaw angular speed (float)
covariance : Attitude covariance (float)
'''
return self.send(self.attitude_quaternion_cov_encode(time_usec, q, rollspeed, pitchspeed, yawspeed, covariance), force_mavlink1=force_mavlink1)
def nav_controller_output_encode(self, nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error):
'''
The state of the fixed wing navigation and position controller.
nav_roll : Current desired roll (float)
nav_pitch : Current desired pitch (float)
nav_bearing : Current desired heading (int16_t)
target_bearing : Bearing to current waypoint/target (int16_t)
wp_dist : Distance to active waypoint (uint16_t)
alt_error : Current altitude error (float)
aspd_error : Current airspeed error (float)
xtrack_error : Current crosstrack error on x-y plane (float)
'''
return MAVLink_nav_controller_output_message(nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error)
def nav_controller_output_send(self, nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error, force_mavlink1=False):
'''
The state of the fixed wing navigation and position controller.
nav_roll : Current desired roll (float)
nav_pitch : Current desired pitch (float)
nav_bearing : Current desired heading (int16_t)
target_bearing : Bearing to current waypoint/target (int16_t)
wp_dist : Distance to active waypoint (uint16_t)
alt_error : Current altitude error (float)
aspd_error : Current airspeed error (float)
xtrack_error : Current crosstrack error on x-y plane (float)
'''
return self.send(self.nav_controller_output_encode(nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error), force_mavlink1=force_mavlink1)
def global_position_int_cov_encode(self, time_usec, estimator_type, lat, lon, alt, relative_alt, vx, vy, vz, covariance):
'''
The filtered global position (e.g. fused GPS and accelerometers). The
position is in GPS-frame (right-handed, Z-up). It is
designed as scaled integer message since the
resolution of float is not sufficient. NOTE: This
message is intended for onboard networks / companion
computers and higher-bandwidth links and optimized for
accuracy and completeness. Please use the
GLOBAL_POSITION_INT message for a minimal subset.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
estimator_type : Class id of the estimator this estimate originated from. (uint8_t)
lat : Latitude (int32_t)
lon : Longitude (int32_t)
alt : Altitude in meters above MSL (int32_t)
relative_alt : Altitude above ground (int32_t)
vx : Ground X Speed (Latitude) (float)
vy : Ground Y Speed (Longitude) (float)
vz : Ground Z Speed (Altitude) (float)
covariance : Covariance matrix (first six entries are the first ROW, next six entries are the second row, etc.) (float)
'''
return MAVLink_global_position_int_cov_message(time_usec, estimator_type, lat, lon, alt, relative_alt, vx, vy, vz, covariance)
def global_position_int_cov_send(self, time_usec, estimator_type, lat, lon, alt, relative_alt, vx, vy, vz, covariance, force_mavlink1=False):
'''
The filtered global position (e.g. fused GPS and accelerometers). The
position is in GPS-frame (right-handed, Z-up). It is
designed as scaled integer message since the
resolution of float is not sufficient. NOTE: This
message is intended for onboard networks / companion
computers and higher-bandwidth links and optimized for
accuracy and completeness. Please use the
GLOBAL_POSITION_INT message for a minimal subset.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
estimator_type : Class id of the estimator this estimate originated from. (uint8_t)
lat : Latitude (int32_t)
lon : Longitude (int32_t)
alt : Altitude in meters above MSL (int32_t)
relative_alt : Altitude above ground (int32_t)
vx : Ground X Speed (Latitude) (float)
vy : Ground Y Speed (Longitude) (float)
vz : Ground Z Speed (Altitude) (float)
covariance : Covariance matrix (first six entries are the first ROW, next six entries are the second row, etc.) (float)
'''
return self.send(self.global_position_int_cov_encode(time_usec, estimator_type, lat, lon, alt, relative_alt, vx, vy, vz, covariance), force_mavlink1=force_mavlink1)
def local_position_ned_cov_encode(self, time_usec, estimator_type, x, y, z, vx, vy, vz, ax, ay, az, covariance):
'''
The filtered local position (e.g. fused computer vision and
accelerometers). Coordinate frame is right-handed,
Z-axis down (aeronautical frame, NED / north-east-down
convention)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
estimator_type : Class id of the estimator this estimate originated from. (uint8_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
vx : X Speed (float)
vy : Y Speed (float)
vz : Z Speed (float)
ax : X Acceleration (float)
ay : Y Acceleration (float)
az : Z Acceleration (float)
covariance : Covariance matrix upper right triangular (first nine entries are the first ROW, next eight entries are the second row, etc.) (float)
'''
return MAVLink_local_position_ned_cov_message(time_usec, estimator_type, x, y, z, vx, vy, vz, ax, ay, az, covariance)
def local_position_ned_cov_send(self, time_usec, estimator_type, x, y, z, vx, vy, vz, ax, ay, az, covariance, force_mavlink1=False):
'''
The filtered local position (e.g. fused computer vision and
accelerometers). Coordinate frame is right-handed,
Z-axis down (aeronautical frame, NED / north-east-down
convention)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
estimator_type : Class id of the estimator this estimate originated from. (uint8_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
vx : X Speed (float)
vy : Y Speed (float)
vz : Z Speed (float)
ax : X Acceleration (float)
ay : Y Acceleration (float)
az : Z Acceleration (float)
covariance : Covariance matrix upper right triangular (first nine entries are the first ROW, next eight entries are the second row, etc.) (float)
'''
return self.send(self.local_position_ned_cov_encode(time_usec, estimator_type, x, y, z, vx, vy, vz, ax, ay, az, covariance), force_mavlink1=force_mavlink1)
def rc_channels_encode(self, time_boot_ms, chancount, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, chan13_raw, chan14_raw, chan15_raw, chan16_raw, chan17_raw, chan18_raw, rssi):
'''
The PPM values of the RC channels received. The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%. A value of UINT16_MAX implies the
channel is unused. Individual receivers/transmitters
might violate this specification.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
chancount : Total number of RC channels being received. This can be larger than 18, indicating that more channels are available but not given in this message. This value should be 0 when no RC channels are available. (uint8_t)
chan1_raw : RC channel 1 value. (uint16_t)
chan2_raw : RC channel 2 value. (uint16_t)
chan3_raw : RC channel 3 value. (uint16_t)
chan4_raw : RC channel 4 value. (uint16_t)
chan5_raw : RC channel 5 value. (uint16_t)
chan6_raw : RC channel 6 value. (uint16_t)
chan7_raw : RC channel 7 value. (uint16_t)
chan8_raw : RC channel 8 value. (uint16_t)
chan9_raw : RC channel 9 value. (uint16_t)
chan10_raw : RC channel 10 value. (uint16_t)
chan11_raw : RC channel 11 value. (uint16_t)
chan12_raw : RC channel 12 value. (uint16_t)
chan13_raw : RC channel 13 value. (uint16_t)
chan14_raw : RC channel 14 value. (uint16_t)
chan15_raw : RC channel 15 value. (uint16_t)
chan16_raw : RC channel 16 value. (uint16_t)
chan17_raw : RC channel 17 value. (uint16_t)
chan18_raw : RC channel 18 value. (uint16_t)
rssi : Receive signal strength indicator. Values: [0-100], 255: invalid/unknown. (uint8_t)
'''
return MAVLink_rc_channels_message(time_boot_ms, chancount, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, chan13_raw, chan14_raw, chan15_raw, chan16_raw, chan17_raw, chan18_raw, rssi)
def rc_channels_send(self, time_boot_ms, chancount, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, chan13_raw, chan14_raw, chan15_raw, chan16_raw, chan17_raw, chan18_raw, rssi, force_mavlink1=False):
'''
The PPM values of the RC channels received. The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%. A value of UINT16_MAX implies the
channel is unused. Individual receivers/transmitters
might violate this specification.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
chancount : Total number of RC channels being received. This can be larger than 18, indicating that more channels are available but not given in this message. This value should be 0 when no RC channels are available. (uint8_t)
chan1_raw : RC channel 1 value. (uint16_t)
chan2_raw : RC channel 2 value. (uint16_t)
chan3_raw : RC channel 3 value. (uint16_t)
chan4_raw : RC channel 4 value. (uint16_t)
chan5_raw : RC channel 5 value. (uint16_t)
chan6_raw : RC channel 6 value. (uint16_t)
chan7_raw : RC channel 7 value. (uint16_t)
chan8_raw : RC channel 8 value. (uint16_t)
chan9_raw : RC channel 9 value. (uint16_t)
chan10_raw : RC channel 10 value. (uint16_t)
chan11_raw : RC channel 11 value. (uint16_t)
chan12_raw : RC channel 12 value. (uint16_t)
chan13_raw : RC channel 13 value. (uint16_t)
chan14_raw : RC channel 14 value. (uint16_t)
chan15_raw : RC channel 15 value. (uint16_t)
chan16_raw : RC channel 16 value. (uint16_t)
chan17_raw : RC channel 17 value. (uint16_t)
chan18_raw : RC channel 18 value. (uint16_t)
rssi : Receive signal strength indicator. Values: [0-100], 255: invalid/unknown. (uint8_t)
'''
return self.send(self.rc_channels_encode(time_boot_ms, chancount, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, chan13_raw, chan14_raw, chan15_raw, chan16_raw, chan17_raw, chan18_raw, rssi), force_mavlink1=force_mavlink1)
def request_data_stream_encode(self, target_system, target_component, req_stream_id, req_message_rate, start_stop):
'''
Request a data stream.
target_system : The target requested to send the message stream. (uint8_t)
target_component : The target requested to send the message stream. (uint8_t)
req_stream_id : The ID of the requested data stream (uint8_t)
req_message_rate : The requested message rate (uint16_t)
start_stop : 1 to start sending, 0 to stop sending. (uint8_t)
'''
return MAVLink_request_data_stream_message(target_system, target_component, req_stream_id, req_message_rate, start_stop)
def request_data_stream_send(self, target_system, target_component, req_stream_id, req_message_rate, start_stop, force_mavlink1=False):
'''
Request a data stream.
target_system : The target requested to send the message stream. (uint8_t)
target_component : The target requested to send the message stream. (uint8_t)
req_stream_id : The ID of the requested data stream (uint8_t)
req_message_rate : The requested message rate (uint16_t)
start_stop : 1 to start sending, 0 to stop sending. (uint8_t)
'''
return self.send(self.request_data_stream_encode(target_system, target_component, req_stream_id, req_message_rate, start_stop), force_mavlink1=force_mavlink1)
def data_stream_encode(self, stream_id, message_rate, on_off):
'''
Data stream status information.
stream_id : The ID of the requested data stream (uint8_t)
message_rate : The message rate (uint16_t)
on_off : 1 stream is enabled, 0 stream is stopped. (uint8_t)
'''
return MAVLink_data_stream_message(stream_id, message_rate, on_off)
def data_stream_send(self, stream_id, message_rate, on_off, force_mavlink1=False):
'''
Data stream status information.
stream_id : The ID of the requested data stream (uint8_t)
message_rate : The message rate (uint16_t)
on_off : 1 stream is enabled, 0 stream is stopped. (uint8_t)
'''
return self.send(self.data_stream_encode(stream_id, message_rate, on_off), force_mavlink1=force_mavlink1)
def manual_control_encode(self, target, x, y, z, r, buttons):
'''
This message provides an API for manually controlling the vehicle
using standard joystick axes nomenclature, along with
a joystick-like input device. Unused axes can be
disabled an buttons are also transmit as boolean
values of their
target : The system to be controlled. (uint8_t)
x : X-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to forward(1000)-backward(-1000) movement on a joystick and the pitch of a vehicle. (int16_t)
y : Y-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to left(-1000)-right(1000) movement on a joystick and the roll of a vehicle. (int16_t)
z : Z-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to a separate slider movement with maximum being 1000 and minimum being -1000 on a joystick and the thrust of a vehicle. Positive values are positive thrust, negative values are negative thrust. (int16_t)
r : R-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to a twisting of the joystick, with counter-clockwise being 1000 and clockwise being -1000, and the yaw of a vehicle. (int16_t)
buttons : A bitfield corresponding to the joystick buttons' current state, 1 for pressed, 0 for released. The lowest bit corresponds to Button 1. (uint16_t)
'''
return MAVLink_manual_control_message(target, x, y, z, r, buttons)
def manual_control_send(self, target, x, y, z, r, buttons, force_mavlink1=False):
'''
This message provides an API for manually controlling the vehicle
using standard joystick axes nomenclature, along with
a joystick-like input device. Unused axes can be
disabled an buttons are also transmit as boolean
values of their
target : The system to be controlled. (uint8_t)
x : X-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to forward(1000)-backward(-1000) movement on a joystick and the pitch of a vehicle. (int16_t)
y : Y-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to left(-1000)-right(1000) movement on a joystick and the roll of a vehicle. (int16_t)
z : Z-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to a separate slider movement with maximum being 1000 and minimum being -1000 on a joystick and the thrust of a vehicle. Positive values are positive thrust, negative values are negative thrust. (int16_t)
r : R-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to a twisting of the joystick, with counter-clockwise being 1000 and clockwise being -1000, and the yaw of a vehicle. (int16_t)
buttons : A bitfield corresponding to the joystick buttons' current state, 1 for pressed, 0 for released. The lowest bit corresponds to Button 1. (uint16_t)
'''
return self.send(self.manual_control_encode(target, x, y, z, r, buttons), force_mavlink1=force_mavlink1)
def rc_channels_override_encode(self, target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw=0, chan10_raw=0, chan11_raw=0, chan12_raw=0, chan13_raw=0, chan14_raw=0, chan15_raw=0, chan16_raw=0, chan17_raw=0, chan18_raw=0):
'''
The RAW values of the RC channels sent to the MAV to override info
received from the RC radio. A value of UINT16_MAX
means no change to that channel. A value of 0 means
control of that channel should be released back to the
RC radio. The standard PPM modulation is as follows:
1000 microseconds: 0%, 2000 microseconds: 100%.
Individual receivers/transmitters might violate this
specification.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
chan1_raw : RC channel 1 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan2_raw : RC channel 2 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan3_raw : RC channel 3 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan4_raw : RC channel 4 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan5_raw : RC channel 5 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan6_raw : RC channel 6 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan7_raw : RC channel 7 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan8_raw : RC channel 8 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan9_raw : RC channel 9 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan10_raw : RC channel 10 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan11_raw : RC channel 11 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan12_raw : RC channel 12 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan13_raw : RC channel 13 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan14_raw : RC channel 14 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan15_raw : RC channel 15 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan16_raw : RC channel 16 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan17_raw : RC channel 17 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan18_raw : RC channel 18 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
'''
return MAVLink_rc_channels_override_message(target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, chan13_raw, chan14_raw, chan15_raw, chan16_raw, chan17_raw, chan18_raw)
def rc_channels_override_send(self, target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw=0, chan10_raw=0, chan11_raw=0, chan12_raw=0, chan13_raw=0, chan14_raw=0, chan15_raw=0, chan16_raw=0, chan17_raw=0, chan18_raw=0, force_mavlink1=False):
'''
The RAW values of the RC channels sent to the MAV to override info
received from the RC radio. A value of UINT16_MAX
means no change to that channel. A value of 0 means
control of that channel should be released back to the
RC radio. The standard PPM modulation is as follows:
1000 microseconds: 0%, 2000 microseconds: 100%.
Individual receivers/transmitters might violate this
specification.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
chan1_raw : RC channel 1 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan2_raw : RC channel 2 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan3_raw : RC channel 3 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan4_raw : RC channel 4 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan5_raw : RC channel 5 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan6_raw : RC channel 6 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan7_raw : RC channel 7 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan8_raw : RC channel 8 value. A value of UINT16_MAX means to ignore this field. (uint16_t)
chan9_raw : RC channel 9 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan10_raw : RC channel 10 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan11_raw : RC channel 11 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan12_raw : RC channel 12 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan13_raw : RC channel 13 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan14_raw : RC channel 14 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan15_raw : RC channel 15 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan16_raw : RC channel 16 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan17_raw : RC channel 17 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
chan18_raw : RC channel 18 value. A value of 0 or UINT16_MAX means to ignore this field. (uint16_t)
'''
return self.send(self.rc_channels_override_encode(target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, chan13_raw, chan14_raw, chan15_raw, chan16_raw, chan17_raw, chan18_raw), force_mavlink1=force_mavlink1)
def mission_item_int_encode(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, mission_type=0):
'''
Message encoding a mission item. This message is emitted to announce
the presence of a mission item and to set a mission
item on the system. The mission item can be either in
x, y, z meters (type: LOCAL) or x:lat, y:lon,
z:altitude. Local frame is Z-down, right handed (NED),
global frame is Z-up, right handed (ENU). See also
https://mavlink.io/en/protocol/mission.html.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Waypoint ID (sequence number). Starts at zero. Increases monotonically for each waypoint, no gaps in the sequence (0,1,2,3,4). (uint16_t)
frame : The coordinate system of the waypoint. (uint8_t)
command : The scheduled action for the waypoint. (uint16_t)
current : false:0, true:1 (uint8_t)
autocontinue : Autocontinue to next waypoint (uint8_t)
param1 : PARAM1, see MAV_CMD enum (float)
param2 : PARAM2, see MAV_CMD enum (float)
param3 : PARAM3, see MAV_CMD enum (float)
param4 : PARAM4, see MAV_CMD enum (float)
x : PARAM5 / local: x position in meters * 1e4, global: latitude in degrees * 10^7 (int32_t)
y : PARAM6 / y position: local: x position in meters * 1e4, global: longitude in degrees *10^7 (int32_t)
z : PARAM7 / z position: global: altitude in meters (relative or absolute, depending on frame. (float)
mission_type : Mission type. (uint8_t)
'''
return MAVLink_mission_item_int_message(target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, mission_type)
def mission_item_int_send(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, mission_type=0, force_mavlink1=False):
'''
Message encoding a mission item. This message is emitted to announce
the presence of a mission item and to set a mission
item on the system. The mission item can be either in
x, y, z meters (type: LOCAL) or x:lat, y:lon,
z:altitude. Local frame is Z-down, right handed (NED),
global frame is Z-up, right handed (ENU). See also
https://mavlink.io/en/protocol/mission.html.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Waypoint ID (sequence number). Starts at zero. Increases monotonically for each waypoint, no gaps in the sequence (0,1,2,3,4). (uint16_t)
frame : The coordinate system of the waypoint. (uint8_t)
command : The scheduled action for the waypoint. (uint16_t)
current : false:0, true:1 (uint8_t)
autocontinue : Autocontinue to next waypoint (uint8_t)
param1 : PARAM1, see MAV_CMD enum (float)
param2 : PARAM2, see MAV_CMD enum (float)
param3 : PARAM3, see MAV_CMD enum (float)
param4 : PARAM4, see MAV_CMD enum (float)
x : PARAM5 / local: x position in meters * 1e4, global: latitude in degrees * 10^7 (int32_t)
y : PARAM6 / y position: local: x position in meters * 1e4, global: longitude in degrees *10^7 (int32_t)
z : PARAM7 / z position: global: altitude in meters (relative or absolute, depending on frame. (float)
mission_type : Mission type. (uint8_t)
'''
return self.send(self.mission_item_int_encode(target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, mission_type), force_mavlink1=force_mavlink1)
def vfr_hud_encode(self, airspeed, groundspeed, heading, throttle, alt, climb):
'''
Metrics typically displayed on a HUD for fixed wing aircraft
airspeed : Current airspeed (float)
groundspeed : Current ground speed (float)
heading : Current heading in degrees, in compass units (0..360, 0=north) (int16_t)
throttle : Current throttle setting in integer percent, 0 to 100 (uint16_t)
alt : Current altitude (MSL) (float)
climb : Current climb rate (float)
'''
return MAVLink_vfr_hud_message(airspeed, groundspeed, heading, throttle, alt, climb)
def vfr_hud_send(self, airspeed, groundspeed, heading, throttle, alt, climb, force_mavlink1=False):
'''
Metrics typically displayed on a HUD for fixed wing aircraft
airspeed : Current airspeed (float)
groundspeed : Current ground speed (float)
heading : Current heading in degrees, in compass units (0..360, 0=north) (int16_t)
throttle : Current throttle setting in integer percent, 0 to 100 (uint16_t)
alt : Current altitude (MSL) (float)
climb : Current climb rate (float)
'''
return self.send(self.vfr_hud_encode(airspeed, groundspeed, heading, throttle, alt, climb), force_mavlink1=force_mavlink1)
def command_int_encode(self, target_system, target_component, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z):
'''
Message encoding a command with parameters as scaled integers. Scaling
depends on the actual command value.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
frame : The coordinate system of the COMMAND. (uint8_t)
command : The scheduled action for the mission item. (uint16_t)
current : false:0, true:1 (uint8_t)
autocontinue : autocontinue to next wp (uint8_t)
param1 : PARAM1, see MAV_CMD enum (float)
param2 : PARAM2, see MAV_CMD enum (float)
param3 : PARAM3, see MAV_CMD enum (float)
param4 : PARAM4, see MAV_CMD enum (float)
x : PARAM5 / local: x position in meters * 1e4, global: latitude in degrees * 10^7 (int32_t)
y : PARAM6 / local: y position in meters * 1e4, global: longitude in degrees * 10^7 (int32_t)
z : PARAM7 / z position: global: altitude in meters (relative or absolute, depending on frame). (float)
'''
return MAVLink_command_int_message(target_system, target_component, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z)
def command_int_send(self, target_system, target_component, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, force_mavlink1=False):
'''
Message encoding a command with parameters as scaled integers. Scaling
depends on the actual command value.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
frame : The coordinate system of the COMMAND. (uint8_t)
command : The scheduled action for the mission item. (uint16_t)
current : false:0, true:1 (uint8_t)
autocontinue : autocontinue to next wp (uint8_t)
param1 : PARAM1, see MAV_CMD enum (float)
param2 : PARAM2, see MAV_CMD enum (float)
param3 : PARAM3, see MAV_CMD enum (float)
param4 : PARAM4, see MAV_CMD enum (float)
x : PARAM5 / local: x position in meters * 1e4, global: latitude in degrees * 10^7 (int32_t)
y : PARAM6 / local: y position in meters * 1e4, global: longitude in degrees * 10^7 (int32_t)
z : PARAM7 / z position: global: altitude in meters (relative or absolute, depending on frame). (float)
'''
return self.send(self.command_int_encode(target_system, target_component, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z), force_mavlink1=force_mavlink1)
def command_long_encode(self, target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7):
'''
Send a command with up to seven parameters to the MAV
target_system : System which should execute the command (uint8_t)
target_component : Component which should execute the command, 0 for all components (uint8_t)
command : Command ID (of command to send). (uint16_t)
confirmation : 0: First transmission of this command. 1-255: Confirmation transmissions (e.g. for kill command) (uint8_t)
param1 : Parameter 1 (for the specific command). (float)
param2 : Parameter 2 (for the specific command). (float)
param3 : Parameter 3 (for the specific command). (float)
param4 : Parameter 4 (for the specific command). (float)
param5 : Parameter 5 (for the specific command). (float)
param6 : Parameter 6 (for the specific command). (float)
param7 : Parameter 7 (for the specific command). (float)
'''
return MAVLink_command_long_message(target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7)
def command_long_send(self, target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7, force_mavlink1=False):
'''
Send a command with up to seven parameters to the MAV
target_system : System which should execute the command (uint8_t)
target_component : Component which should execute the command, 0 for all components (uint8_t)
command : Command ID (of command to send). (uint16_t)
confirmation : 0: First transmission of this command. 1-255: Confirmation transmissions (e.g. for kill command) (uint8_t)
param1 : Parameter 1 (for the specific command). (float)
param2 : Parameter 2 (for the specific command). (float)
param3 : Parameter 3 (for the specific command). (float)
param4 : Parameter 4 (for the specific command). (float)
param5 : Parameter 5 (for the specific command). (float)
param6 : Parameter 6 (for the specific command). (float)
param7 : Parameter 7 (for the specific command). (float)
'''
return self.send(self.command_long_encode(target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7), force_mavlink1=force_mavlink1)
def command_ack_encode(self, command, result, progress=0, result_param2=0, target_system=0, target_component=0):
'''
Report status of a command. Includes feedback whether the command was
executed.
command : Command ID (of acknowledged command). (uint16_t)
result : Result of command. (uint8_t)
progress : WIP: Also used as result_param1, it can be set with a enum containing the errors reasons of why the command was denied or the progress percentage or 255 if unknown the progress when result is MAV_RESULT_IN_PROGRESS. (uint8_t)
result_param2 : WIP: Additional parameter of the result, example: which parameter of MAV_CMD_NAV_WAYPOINT caused it to be denied. (int32_t)
target_system : WIP: System which requested the command to be executed (uint8_t)
target_component : WIP: Component which requested the command to be executed (uint8_t)
'''
return MAVLink_command_ack_message(command, result, progress, result_param2, target_system, target_component)
def command_ack_send(self, command, result, progress=0, result_param2=0, target_system=0, target_component=0, force_mavlink1=False):
'''
Report status of a command. Includes feedback whether the command was
executed.
command : Command ID (of acknowledged command). (uint16_t)
result : Result of command. (uint8_t)
progress : WIP: Also used as result_param1, it can be set with a enum containing the errors reasons of why the command was denied or the progress percentage or 255 if unknown the progress when result is MAV_RESULT_IN_PROGRESS. (uint8_t)
result_param2 : WIP: Additional parameter of the result, example: which parameter of MAV_CMD_NAV_WAYPOINT caused it to be denied. (int32_t)
target_system : WIP: System which requested the command to be executed (uint8_t)
target_component : WIP: Component which requested the command to be executed (uint8_t)
'''
return self.send(self.command_ack_encode(command, result, progress, result_param2, target_system, target_component), force_mavlink1=force_mavlink1)
def manual_setpoint_encode(self, time_boot_ms, roll, pitch, yaw, thrust, mode_switch, manual_override_switch):
'''
Setpoint in roll, pitch, yaw and thrust from the operator
time_boot_ms : Timestamp (time since system boot). (uint32_t)
roll : Desired roll rate (float)
pitch : Desired pitch rate (float)
yaw : Desired yaw rate (float)
thrust : Collective thrust, normalized to 0 .. 1 (float)
mode_switch : Flight mode switch position, 0.. 255 (uint8_t)
manual_override_switch : Override mode switch position, 0.. 255 (uint8_t)
'''
return MAVLink_manual_setpoint_message(time_boot_ms, roll, pitch, yaw, thrust, mode_switch, manual_override_switch)
def manual_setpoint_send(self, time_boot_ms, roll, pitch, yaw, thrust, mode_switch, manual_override_switch, force_mavlink1=False):
'''
Setpoint in roll, pitch, yaw and thrust from the operator
time_boot_ms : Timestamp (time since system boot). (uint32_t)
roll : Desired roll rate (float)
pitch : Desired pitch rate (float)
yaw : Desired yaw rate (float)
thrust : Collective thrust, normalized to 0 .. 1 (float)
mode_switch : Flight mode switch position, 0.. 255 (uint8_t)
manual_override_switch : Override mode switch position, 0.. 255 (uint8_t)
'''
return self.send(self.manual_setpoint_encode(time_boot_ms, roll, pitch, yaw, thrust, mode_switch, manual_override_switch), force_mavlink1=force_mavlink1)
def set_attitude_target_encode(self, time_boot_ms, target_system, target_component, type_mask, q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust):
'''
Sets a desired vehicle attitude. Used by an external controller to
command the vehicle (manual controller or other
system).
time_boot_ms : Timestamp (time since system boot). (uint32_t)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
type_mask : Mappings: If any of these bits are set, the corresponding input should be ignored: bit 1: body roll rate, bit 2: body pitch rate, bit 3: body yaw rate. bit 4-bit 6: reserved, bit 7: throttle, bit 8: attitude (uint8_t)
q : Attitude quaternion (w, x, y, z order, zero-rotation is 1, 0, 0, 0) (float)
body_roll_rate : Body roll rate (float)
body_pitch_rate : Body pitch rate (float)
body_yaw_rate : Body yaw rate (float)
thrust : Collective thrust, normalized to 0 .. 1 (-1 .. 1 for vehicles capable of reverse trust) (float)
'''
return MAVLink_set_attitude_target_message(time_boot_ms, target_system, target_component, type_mask, q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust)
def set_attitude_target_send(self, time_boot_ms, target_system, target_component, type_mask, q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust, force_mavlink1=False):
'''
Sets a desired vehicle attitude. Used by an external controller to
command the vehicle (manual controller or other
system).
time_boot_ms : Timestamp (time since system boot). (uint32_t)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
type_mask : Mappings: If any of these bits are set, the corresponding input should be ignored: bit 1: body roll rate, bit 2: body pitch rate, bit 3: body yaw rate. bit 4-bit 6: reserved, bit 7: throttle, bit 8: attitude (uint8_t)
q : Attitude quaternion (w, x, y, z order, zero-rotation is 1, 0, 0, 0) (float)
body_roll_rate : Body roll rate (float)
body_pitch_rate : Body pitch rate (float)
body_yaw_rate : Body yaw rate (float)
thrust : Collective thrust, normalized to 0 .. 1 (-1 .. 1 for vehicles capable of reverse trust) (float)
'''
return self.send(self.set_attitude_target_encode(time_boot_ms, target_system, target_component, type_mask, q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust), force_mavlink1=force_mavlink1)
def attitude_target_encode(self, time_boot_ms, type_mask, q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust):
'''
Reports the current commanded attitude of the vehicle as specified by
the autopilot. This should match the commands sent in
a SET_ATTITUDE_TARGET message if the vehicle is being
controlled this way.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
type_mask : Mappings: If any of these bits are set, the corresponding input should be ignored: bit 1: body roll rate, bit 2: body pitch rate, bit 3: body yaw rate. bit 4-bit 7: reserved, bit 8: attitude (uint8_t)
q : Attitude quaternion (w, x, y, z order, zero-rotation is 1, 0, 0, 0) (float)
body_roll_rate : Body roll rate (float)
body_pitch_rate : Body pitch rate (float)
body_yaw_rate : Body yaw rate (float)
thrust : Collective thrust, normalized to 0 .. 1 (-1 .. 1 for vehicles capable of reverse trust) (float)
'''
return MAVLink_attitude_target_message(time_boot_ms, type_mask, q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust)
def attitude_target_send(self, time_boot_ms, type_mask, q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust, force_mavlink1=False):
'''
Reports the current commanded attitude of the vehicle as specified by
the autopilot. This should match the commands sent in
a SET_ATTITUDE_TARGET message if the vehicle is being
controlled this way.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
type_mask : Mappings: If any of these bits are set, the corresponding input should be ignored: bit 1: body roll rate, bit 2: body pitch rate, bit 3: body yaw rate. bit 4-bit 7: reserved, bit 8: attitude (uint8_t)
q : Attitude quaternion (w, x, y, z order, zero-rotation is 1, 0, 0, 0) (float)
body_roll_rate : Body roll rate (float)
body_pitch_rate : Body pitch rate (float)
body_yaw_rate : Body yaw rate (float)
thrust : Collective thrust, normalized to 0 .. 1 (-1 .. 1 for vehicles capable of reverse trust) (float)
'''
return self.send(self.attitude_target_encode(time_boot_ms, type_mask, q, body_roll_rate, body_pitch_rate, body_yaw_rate, thrust), force_mavlink1=force_mavlink1)
def set_position_target_local_ned_encode(self, time_boot_ms, target_system, target_component, coordinate_frame, type_mask, x, y, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate):
'''
Sets a desired vehicle position in a local north-east-down coordinate
frame. Used by an external controller to command the
vehicle (manual controller or other system).
time_boot_ms : Timestamp (time since system boot). (uint32_t)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
coordinate_frame : Valid options are: MAV_FRAME_LOCAL_NED = 1, MAV_FRAME_LOCAL_OFFSET_NED = 7, MAV_FRAME_BODY_NED = 8, MAV_FRAME_BODY_OFFSET_NED = 9 (uint8_t)
type_mask : Bitmap to indicate which dimensions should be ignored by the vehicle: a value of 0b0000000000000000 or 0b0000001000000000 indicates that none of the setpoint dimensions should be ignored. If bit 10 is set the floats afx afy afz should be interpreted as force instead of acceleration. Mapping: bit 1: x, bit 2: y, bit 3: z, bit 4: vx, bit 5: vy, bit 6: vz, bit 7: ax, bit 8: ay, bit 9: az, bit 10: is force setpoint, bit 11: yaw, bit 12: yaw rate (uint16_t)
x : X Position in NED frame (float)
y : Y Position in NED frame (float)
z : Z Position in NED frame (note, altitude is negative in NED) (float)
vx : X velocity in NED frame (float)
vy : Y velocity in NED frame (float)
vz : Z velocity in NED frame (float)
afx : X acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afy : Y acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afz : Z acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
yaw : yaw setpoint (float)
yaw_rate : yaw rate setpoint (float)
'''
return MAVLink_set_position_target_local_ned_message(time_boot_ms, target_system, target_component, coordinate_frame, type_mask, x, y, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate)
def set_position_target_local_ned_send(self, time_boot_ms, target_system, target_component, coordinate_frame, type_mask, x, y, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate, force_mavlink1=False):
'''
Sets a desired vehicle position in a local north-east-down coordinate
frame. Used by an external controller to command the
vehicle (manual controller or other system).
time_boot_ms : Timestamp (time since system boot). (uint32_t)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
coordinate_frame : Valid options are: MAV_FRAME_LOCAL_NED = 1, MAV_FRAME_LOCAL_OFFSET_NED = 7, MAV_FRAME_BODY_NED = 8, MAV_FRAME_BODY_OFFSET_NED = 9 (uint8_t)
type_mask : Bitmap to indicate which dimensions should be ignored by the vehicle: a value of 0b0000000000000000 or 0b0000001000000000 indicates that none of the setpoint dimensions should be ignored. If bit 10 is set the floats afx afy afz should be interpreted as force instead of acceleration. Mapping: bit 1: x, bit 2: y, bit 3: z, bit 4: vx, bit 5: vy, bit 6: vz, bit 7: ax, bit 8: ay, bit 9: az, bit 10: is force setpoint, bit 11: yaw, bit 12: yaw rate (uint16_t)
x : X Position in NED frame (float)
y : Y Position in NED frame (float)
z : Z Position in NED frame (note, altitude is negative in NED) (float)
vx : X velocity in NED frame (float)
vy : Y velocity in NED frame (float)
vz : Z velocity in NED frame (float)
afx : X acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afy : Y acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afz : Z acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
yaw : yaw setpoint (float)
yaw_rate : yaw rate setpoint (float)
'''
return self.send(self.set_position_target_local_ned_encode(time_boot_ms, target_system, target_component, coordinate_frame, type_mask, x, y, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate), force_mavlink1=force_mavlink1)
def position_target_local_ned_encode(self, time_boot_ms, coordinate_frame, type_mask, x, y, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate):
'''
Reports the current commanded vehicle position, velocity, and
acceleration as specified by the autopilot. This
should match the commands sent in
SET_POSITION_TARGET_LOCAL_NED if the vehicle is being
controlled this way.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
coordinate_frame : Valid options are: MAV_FRAME_LOCAL_NED = 1, MAV_FRAME_LOCAL_OFFSET_NED = 7, MAV_FRAME_BODY_NED = 8, MAV_FRAME_BODY_OFFSET_NED = 9 (uint8_t)
type_mask : Bitmap to indicate which dimensions should be ignored by the vehicle: a value of 0b0000000000000000 or 0b0000001000000000 indicates that none of the setpoint dimensions should be ignored. If bit 10 is set the floats afx afy afz should be interpreted as force instead of acceleration. Mapping: bit 1: x, bit 2: y, bit 3: z, bit 4: vx, bit 5: vy, bit 6: vz, bit 7: ax, bit 8: ay, bit 9: az, bit 10: is force setpoint, bit 11: yaw, bit 12: yaw rate (uint16_t)
x : X Position in NED frame (float)
y : Y Position in NED frame (float)
z : Z Position in NED frame (note, altitude is negative in NED) (float)
vx : X velocity in NED frame (float)
vy : Y velocity in NED frame (float)
vz : Z velocity in NED frame (float)
afx : X acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afy : Y acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afz : Z acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
yaw : yaw setpoint (float)
yaw_rate : yaw rate setpoint (float)
'''
return MAVLink_position_target_local_ned_message(time_boot_ms, coordinate_frame, type_mask, x, y, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate)
def position_target_local_ned_send(self, time_boot_ms, coordinate_frame, type_mask, x, y, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate, force_mavlink1=False):
'''
Reports the current commanded vehicle position, velocity, and
acceleration as specified by the autopilot. This
should match the commands sent in
SET_POSITION_TARGET_LOCAL_NED if the vehicle is being
controlled this way.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
coordinate_frame : Valid options are: MAV_FRAME_LOCAL_NED = 1, MAV_FRAME_LOCAL_OFFSET_NED = 7, MAV_FRAME_BODY_NED = 8, MAV_FRAME_BODY_OFFSET_NED = 9 (uint8_t)
type_mask : Bitmap to indicate which dimensions should be ignored by the vehicle: a value of 0b0000000000000000 or 0b0000001000000000 indicates that none of the setpoint dimensions should be ignored. If bit 10 is set the floats afx afy afz should be interpreted as force instead of acceleration. Mapping: bit 1: x, bit 2: y, bit 3: z, bit 4: vx, bit 5: vy, bit 6: vz, bit 7: ax, bit 8: ay, bit 9: az, bit 10: is force setpoint, bit 11: yaw, bit 12: yaw rate (uint16_t)
x : X Position in NED frame (float)
y : Y Position in NED frame (float)
z : Z Position in NED frame (note, altitude is negative in NED) (float)
vx : X velocity in NED frame (float)
vy : Y velocity in NED frame (float)
vz : Z velocity in NED frame (float)
afx : X acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afy : Y acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afz : Z acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
yaw : yaw setpoint (float)
yaw_rate : yaw rate setpoint (float)
'''
return self.send(self.position_target_local_ned_encode(time_boot_ms, coordinate_frame, type_mask, x, y, z, vx, vy, vz, afx, afy, afz, yaw, yaw_rate), force_mavlink1=force_mavlink1)
def set_position_target_global_int_encode(self, time_boot_ms, target_system, target_component, coordinate_frame, type_mask, lat_int, lon_int, alt, vx, vy, vz, afx, afy, afz, yaw, yaw_rate):
'''
Sets a desired vehicle position, velocity, and/or acceleration in a
global coordinate system (WGS84). Used by an external
controller to command the vehicle (manual controller
or other system).
time_boot_ms : Timestamp (time since system boot). The rationale for the timestamp in the setpoint is to allow the system to compensate for the transport delay of the setpoint. This allows the system to compensate processing latency. (uint32_t)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
coordinate_frame : Valid options are: MAV_FRAME_GLOBAL_INT = 5, MAV_FRAME_GLOBAL_RELATIVE_ALT_INT = 6, MAV_FRAME_GLOBAL_TERRAIN_ALT_INT = 11 (uint8_t)
type_mask : Bitmap to indicate which dimensions should be ignored by the vehicle: a value of 0b0000000000000000 or 0b0000001000000000 indicates that none of the setpoint dimensions should be ignored. If bit 10 is set the floats afx afy afz should be interpreted as force instead of acceleration. Mapping: bit 1: x, bit 2: y, bit 3: z, bit 4: vx, bit 5: vy, bit 6: vz, bit 7: ax, bit 8: ay, bit 9: az, bit 10: is force setpoint, bit 11: yaw, bit 12: yaw rate (uint16_t)
lat_int : X Position in WGS84 frame (int32_t)
lon_int : Y Position in WGS84 frame (int32_t)
alt : Altitude (AMSL) if absolute or relative, above terrain if GLOBAL_TERRAIN_ALT_INT (float)
vx : X velocity in NED frame (float)
vy : Y velocity in NED frame (float)
vz : Z velocity in NED frame (float)
afx : X acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afy : Y acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afz : Z acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
yaw : yaw setpoint (float)
yaw_rate : yaw rate setpoint (float)
'''
return MAVLink_set_position_target_global_int_message(time_boot_ms, target_system, target_component, coordinate_frame, type_mask, lat_int, lon_int, alt, vx, vy, vz, afx, afy, afz, yaw, yaw_rate)
def set_position_target_global_int_send(self, time_boot_ms, target_system, target_component, coordinate_frame, type_mask, lat_int, lon_int, alt, vx, vy, vz, afx, afy, afz, yaw, yaw_rate, force_mavlink1=False):
'''
Sets a desired vehicle position, velocity, and/or acceleration in a
global coordinate system (WGS84). Used by an external
controller to command the vehicle (manual controller
or other system).
time_boot_ms : Timestamp (time since system boot). The rationale for the timestamp in the setpoint is to allow the system to compensate for the transport delay of the setpoint. This allows the system to compensate processing latency. (uint32_t)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
coordinate_frame : Valid options are: MAV_FRAME_GLOBAL_INT = 5, MAV_FRAME_GLOBAL_RELATIVE_ALT_INT = 6, MAV_FRAME_GLOBAL_TERRAIN_ALT_INT = 11 (uint8_t)
type_mask : Bitmap to indicate which dimensions should be ignored by the vehicle: a value of 0b0000000000000000 or 0b0000001000000000 indicates that none of the setpoint dimensions should be ignored. If bit 10 is set the floats afx afy afz should be interpreted as force instead of acceleration. Mapping: bit 1: x, bit 2: y, bit 3: z, bit 4: vx, bit 5: vy, bit 6: vz, bit 7: ax, bit 8: ay, bit 9: az, bit 10: is force setpoint, bit 11: yaw, bit 12: yaw rate (uint16_t)
lat_int : X Position in WGS84 frame (int32_t)
lon_int : Y Position in WGS84 frame (int32_t)
alt : Altitude (AMSL) if absolute or relative, above terrain if GLOBAL_TERRAIN_ALT_INT (float)
vx : X velocity in NED frame (float)
vy : Y velocity in NED frame (float)
vz : Z velocity in NED frame (float)
afx : X acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afy : Y acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afz : Z acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
yaw : yaw setpoint (float)
yaw_rate : yaw rate setpoint (float)
'''
return self.send(self.set_position_target_global_int_encode(time_boot_ms, target_system, target_component, coordinate_frame, type_mask, lat_int, lon_int, alt, vx, vy, vz, afx, afy, afz, yaw, yaw_rate), force_mavlink1=force_mavlink1)
def position_target_global_int_encode(self, time_boot_ms, coordinate_frame, type_mask, lat_int, lon_int, alt, vx, vy, vz, afx, afy, afz, yaw, yaw_rate):
'''
Reports the current commanded vehicle position, velocity, and
acceleration as specified by the autopilot. This
should match the commands sent in
SET_POSITION_TARGET_GLOBAL_INT if the vehicle is being
controlled this way.
time_boot_ms : Timestamp (time since system boot). The rationale for the timestamp in the setpoint is to allow the system to compensate for the transport delay of the setpoint. This allows the system to compensate processing latency. (uint32_t)
coordinate_frame : Valid options are: MAV_FRAME_GLOBAL_INT = 5, MAV_FRAME_GLOBAL_RELATIVE_ALT_INT = 6, MAV_FRAME_GLOBAL_TERRAIN_ALT_INT = 11 (uint8_t)
type_mask : Bitmap to indicate which dimensions should be ignored by the vehicle: a value of 0b0000000000000000 or 0b0000001000000000 indicates that none of the setpoint dimensions should be ignored. If bit 10 is set the floats afx afy afz should be interpreted as force instead of acceleration. Mapping: bit 1: x, bit 2: y, bit 3: z, bit 4: vx, bit 5: vy, bit 6: vz, bit 7: ax, bit 8: ay, bit 9: az, bit 10: is force setpoint, bit 11: yaw, bit 12: yaw rate (uint16_t)
lat_int : X Position in WGS84 frame (int32_t)
lon_int : Y Position in WGS84 frame (int32_t)
alt : Altitude (AMSL) if absolute or relative, above terrain if GLOBAL_TERRAIN_ALT_INT (float)
vx : X velocity in NED frame (float)
vy : Y velocity in NED frame (float)
vz : Z velocity in NED frame (float)
afx : X acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afy : Y acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afz : Z acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
yaw : yaw setpoint (float)
yaw_rate : yaw rate setpoint (float)
'''
return MAVLink_position_target_global_int_message(time_boot_ms, coordinate_frame, type_mask, lat_int, lon_int, alt, vx, vy, vz, afx, afy, afz, yaw, yaw_rate)
def position_target_global_int_send(self, time_boot_ms, coordinate_frame, type_mask, lat_int, lon_int, alt, vx, vy, vz, afx, afy, afz, yaw, yaw_rate, force_mavlink1=False):
'''
Reports the current commanded vehicle position, velocity, and
acceleration as specified by the autopilot. This
should match the commands sent in
SET_POSITION_TARGET_GLOBAL_INT if the vehicle is being
controlled this way.
time_boot_ms : Timestamp (time since system boot). The rationale for the timestamp in the setpoint is to allow the system to compensate for the transport delay of the setpoint. This allows the system to compensate processing latency. (uint32_t)
coordinate_frame : Valid options are: MAV_FRAME_GLOBAL_INT = 5, MAV_FRAME_GLOBAL_RELATIVE_ALT_INT = 6, MAV_FRAME_GLOBAL_TERRAIN_ALT_INT = 11 (uint8_t)
type_mask : Bitmap to indicate which dimensions should be ignored by the vehicle: a value of 0b0000000000000000 or 0b0000001000000000 indicates that none of the setpoint dimensions should be ignored. If bit 10 is set the floats afx afy afz should be interpreted as force instead of acceleration. Mapping: bit 1: x, bit 2: y, bit 3: z, bit 4: vx, bit 5: vy, bit 6: vz, bit 7: ax, bit 8: ay, bit 9: az, bit 10: is force setpoint, bit 11: yaw, bit 12: yaw rate (uint16_t)
lat_int : X Position in WGS84 frame (int32_t)
lon_int : Y Position in WGS84 frame (int32_t)
alt : Altitude (AMSL) if absolute or relative, above terrain if GLOBAL_TERRAIN_ALT_INT (float)
vx : X velocity in NED frame (float)
vy : Y velocity in NED frame (float)
vz : Z velocity in NED frame (float)
afx : X acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afy : Y acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
afz : Z acceleration or force (if bit 10 of type_mask is set) in NED frame in meter / s^2 or N (float)
yaw : yaw setpoint (float)
yaw_rate : yaw rate setpoint (float)
'''
return self.send(self.position_target_global_int_encode(time_boot_ms, coordinate_frame, type_mask, lat_int, lon_int, alt, vx, vy, vz, afx, afy, afz, yaw, yaw_rate), force_mavlink1=force_mavlink1)
def local_position_ned_system_global_offset_encode(self, time_boot_ms, x, y, z, roll, pitch, yaw):
'''
The offset in X, Y, Z and yaw between the LOCAL_POSITION_NED messages
of MAV X and the global coordinate frame in NED
coordinates. Coordinate frame is right-handed, Z-axis
down (aeronautical frame, NED / north-east-down
convention)
time_boot_ms : Timestamp (time since system boot). (uint32_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
roll : Roll (float)
pitch : Pitch (float)
yaw : Yaw (float)
'''
return MAVLink_local_position_ned_system_global_offset_message(time_boot_ms, x, y, z, roll, pitch, yaw)
def local_position_ned_system_global_offset_send(self, time_boot_ms, x, y, z, roll, pitch, yaw, force_mavlink1=False):
'''
The offset in X, Y, Z and yaw between the LOCAL_POSITION_NED messages
of MAV X and the global coordinate frame in NED
coordinates. Coordinate frame is right-handed, Z-axis
down (aeronautical frame, NED / north-east-down
convention)
time_boot_ms : Timestamp (time since system boot). (uint32_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
roll : Roll (float)
pitch : Pitch (float)
yaw : Yaw (float)
'''
return self.send(self.local_position_ned_system_global_offset_encode(time_boot_ms, x, y, z, roll, pitch, yaw), force_mavlink1=force_mavlink1)
def hil_state_encode(self, time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc):
'''
Sent from simulation to autopilot. This packet is useful for high
throughput applications such as hardware in the loop
simulations.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
roll : Roll angle (float)
pitch : Pitch angle (float)
yaw : Yaw angle (float)
rollspeed : Body frame roll / phi angular speed (float)
pitchspeed : Body frame pitch / theta angular speed (float)
yawspeed : Body frame yaw / psi angular speed (float)
lat : Latitude (int32_t)
lon : Longitude (int32_t)
alt : Altitude (int32_t)
vx : Ground X Speed (Latitude) (int16_t)
vy : Ground Y Speed (Longitude) (int16_t)
vz : Ground Z Speed (Altitude) (int16_t)
xacc : X acceleration (int16_t)
yacc : Y acceleration (int16_t)
zacc : Z acceleration (int16_t)
'''
return MAVLink_hil_state_message(time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc)
def hil_state_send(self, time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc, force_mavlink1=False):
'''
Sent from simulation to autopilot. This packet is useful for high
throughput applications such as hardware in the loop
simulations.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
roll : Roll angle (float)
pitch : Pitch angle (float)
yaw : Yaw angle (float)
rollspeed : Body frame roll / phi angular speed (float)
pitchspeed : Body frame pitch / theta angular speed (float)
yawspeed : Body frame yaw / psi angular speed (float)
lat : Latitude (int32_t)
lon : Longitude (int32_t)
alt : Altitude (int32_t)
vx : Ground X Speed (Latitude) (int16_t)
vy : Ground Y Speed (Longitude) (int16_t)
vz : Ground Z Speed (Altitude) (int16_t)
xacc : X acceleration (int16_t)
yacc : Y acceleration (int16_t)
zacc : Z acceleration (int16_t)
'''
return self.send(self.hil_state_encode(time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc), force_mavlink1=force_mavlink1)
def hil_controls_encode(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode):
'''
Sent from autopilot to simulation. Hardware in the loop control
outputs
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
roll_ailerons : Control output -1 .. 1 (float)
pitch_elevator : Control output -1 .. 1 (float)
yaw_rudder : Control output -1 .. 1 (float)
throttle : Throttle 0 .. 1 (float)
aux1 : Aux 1, -1 .. 1 (float)
aux2 : Aux 2, -1 .. 1 (float)
aux3 : Aux 3, -1 .. 1 (float)
aux4 : Aux 4, -1 .. 1 (float)
mode : System mode. (uint8_t)
nav_mode : Navigation mode (MAV_NAV_MODE) (uint8_t)
'''
return MAVLink_hil_controls_message(time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode)
def hil_controls_send(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode, force_mavlink1=False):
'''
Sent from autopilot to simulation. Hardware in the loop control
outputs
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
roll_ailerons : Control output -1 .. 1 (float)
pitch_elevator : Control output -1 .. 1 (float)
yaw_rudder : Control output -1 .. 1 (float)
throttle : Throttle 0 .. 1 (float)
aux1 : Aux 1, -1 .. 1 (float)
aux2 : Aux 2, -1 .. 1 (float)
aux3 : Aux 3, -1 .. 1 (float)
aux4 : Aux 4, -1 .. 1 (float)
mode : System mode. (uint8_t)
nav_mode : Navigation mode (MAV_NAV_MODE) (uint8_t)
'''
return self.send(self.hil_controls_encode(time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode), force_mavlink1=force_mavlink1)
def hil_rc_inputs_raw_encode(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi):
'''
Sent from simulation to autopilot. The RAW values of the RC channels
received. The standard PPM modulation is as follows:
1000 microseconds: 0%, 2000 microseconds: 100%.
Individual receivers/transmitters might violate this
specification.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
chan1_raw : RC channel 1 value (uint16_t)
chan2_raw : RC channel 2 value (uint16_t)
chan3_raw : RC channel 3 value (uint16_t)
chan4_raw : RC channel 4 value (uint16_t)
chan5_raw : RC channel 5 value (uint16_t)
chan6_raw : RC channel 6 value (uint16_t)
chan7_raw : RC channel 7 value (uint16_t)
chan8_raw : RC channel 8 value (uint16_t)
chan9_raw : RC channel 9 value (uint16_t)
chan10_raw : RC channel 10 value (uint16_t)
chan11_raw : RC channel 11 value (uint16_t)
chan12_raw : RC channel 12 value (uint16_t)
rssi : Receive signal strength indicator. Values: [0-100], 255: invalid/unknown. (uint8_t)
'''
return MAVLink_hil_rc_inputs_raw_message(time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi)
def hil_rc_inputs_raw_send(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi, force_mavlink1=False):
'''
Sent from simulation to autopilot. The RAW values of the RC channels
received. The standard PPM modulation is as follows:
1000 microseconds: 0%, 2000 microseconds: 100%.
Individual receivers/transmitters might violate this
specification.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
chan1_raw : RC channel 1 value (uint16_t)
chan2_raw : RC channel 2 value (uint16_t)
chan3_raw : RC channel 3 value (uint16_t)
chan4_raw : RC channel 4 value (uint16_t)
chan5_raw : RC channel 5 value (uint16_t)
chan6_raw : RC channel 6 value (uint16_t)
chan7_raw : RC channel 7 value (uint16_t)
chan8_raw : RC channel 8 value (uint16_t)
chan9_raw : RC channel 9 value (uint16_t)
chan10_raw : RC channel 10 value (uint16_t)
chan11_raw : RC channel 11 value (uint16_t)
chan12_raw : RC channel 12 value (uint16_t)
rssi : Receive signal strength indicator. Values: [0-100], 255: invalid/unknown. (uint8_t)
'''
return self.send(self.hil_rc_inputs_raw_encode(time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi), force_mavlink1=force_mavlink1)
def hil_actuator_controls_encode(self, time_usec, controls, mode, flags):
'''
Sent from autopilot to simulation. Hardware in the loop control
outputs (replacement for HIL_CONTROLS)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
controls : Control outputs -1 .. 1. Channel assignment depends on the simulated hardware. (float)
mode : System mode. Includes arming state. (uint8_t)
flags : Flags as bitfield, reserved for future use. (uint64_t)
'''
return MAVLink_hil_actuator_controls_message(time_usec, controls, mode, flags)
def hil_actuator_controls_send(self, time_usec, controls, mode, flags, force_mavlink1=False):
'''
Sent from autopilot to simulation. Hardware in the loop control
outputs (replacement for HIL_CONTROLS)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
controls : Control outputs -1 .. 1. Channel assignment depends on the simulated hardware. (float)
mode : System mode. Includes arming state. (uint8_t)
flags : Flags as bitfield, reserved for future use. (uint64_t)
'''
return self.send(self.hil_actuator_controls_encode(time_usec, controls, mode, flags), force_mavlink1=force_mavlink1)
def optical_flow_encode(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance, flow_rate_x=0, flow_rate_y=0):
'''
Optical flow from a flow sensor (e.g. optical mouse sensor)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
sensor_id : Sensor ID (uint8_t)
flow_x : Flow in x-sensor direction (int16_t)
flow_y : Flow in y-sensor direction (int16_t)
flow_comp_m_x : Flow in x-sensor direction, angular-speed compensated (float)
flow_comp_m_y : Flow in y-sensor direction, angular-speed compensated (float)
quality : Optical flow quality / confidence. 0: bad, 255: maximum quality (uint8_t)
ground_distance : Ground distance. Positive value: distance known. Negative value: Unknown distance (float)
flow_rate_x : Flow rate about X axis (float)
flow_rate_y : Flow rate about Y axis (float)
'''
return MAVLink_optical_flow_message(time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance, flow_rate_x, flow_rate_y)
def optical_flow_send(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance, flow_rate_x=0, flow_rate_y=0, force_mavlink1=False):
'''
Optical flow from a flow sensor (e.g. optical mouse sensor)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
sensor_id : Sensor ID (uint8_t)
flow_x : Flow in x-sensor direction (int16_t)
flow_y : Flow in y-sensor direction (int16_t)
flow_comp_m_x : Flow in x-sensor direction, angular-speed compensated (float)
flow_comp_m_y : Flow in y-sensor direction, angular-speed compensated (float)
quality : Optical flow quality / confidence. 0: bad, 255: maximum quality (uint8_t)
ground_distance : Ground distance. Positive value: distance known. Negative value: Unknown distance (float)
flow_rate_x : Flow rate about X axis (float)
flow_rate_y : Flow rate about Y axis (float)
'''
return self.send(self.optical_flow_encode(time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance, flow_rate_x, flow_rate_y), force_mavlink1=force_mavlink1)
def global_vision_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw, covariance=0):
'''
usec : Timestamp (UNIX time or since system boot) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle (float)
pitch : Pitch angle (float)
yaw : Yaw angle (float)
covariance : Pose covariance matrix upper right triangular (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
'''
return MAVLink_global_vision_position_estimate_message(usec, x, y, z, roll, pitch, yaw, covariance)
def global_vision_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw, covariance=0, force_mavlink1=False):
'''
usec : Timestamp (UNIX time or since system boot) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle (float)
pitch : Pitch angle (float)
yaw : Yaw angle (float)
covariance : Pose covariance matrix upper right triangular (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
'''
return self.send(self.global_vision_position_estimate_encode(usec, x, y, z, roll, pitch, yaw, covariance), force_mavlink1=force_mavlink1)
def vision_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw, covariance=0):
'''
usec : Timestamp (UNIX time or time since system boot) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle (float)
pitch : Pitch angle (float)
yaw : Yaw angle (float)
covariance : Pose covariance matrix upper right triangular (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
'''
return MAVLink_vision_position_estimate_message(usec, x, y, z, roll, pitch, yaw, covariance)
def vision_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw, covariance=0, force_mavlink1=False):
'''
usec : Timestamp (UNIX time or time since system boot) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle (float)
pitch : Pitch angle (float)
yaw : Yaw angle (float)
covariance : Pose covariance matrix upper right triangular (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
'''
return self.send(self.vision_position_estimate_encode(usec, x, y, z, roll, pitch, yaw, covariance), force_mavlink1=force_mavlink1)
def vision_speed_estimate_encode(self, usec, x, y, z, covariance=0):
'''
usec : Timestamp (UNIX time or time since system boot) (uint64_t)
x : Global X speed (float)
y : Global Y speed (float)
z : Global Z speed (float)
covariance : Linear velocity covariance matrix (1st three entries - 1st row, etc.) (float)
'''
return MAVLink_vision_speed_estimate_message(usec, x, y, z, covariance)
def vision_speed_estimate_send(self, usec, x, y, z, covariance=0, force_mavlink1=False):
'''
usec : Timestamp (UNIX time or time since system boot) (uint64_t)
x : Global X speed (float)
y : Global Y speed (float)
z : Global Z speed (float)
covariance : Linear velocity covariance matrix (1st three entries - 1st row, etc.) (float)
'''
return self.send(self.vision_speed_estimate_encode(usec, x, y, z, covariance), force_mavlink1=force_mavlink1)
def vicon_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw, covariance=0):
'''
usec : Timestamp (UNIX time or time since system boot) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle (float)
pitch : Pitch angle (float)
yaw : Yaw angle (float)
covariance : Pose covariance matrix upper right triangular (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
'''
return MAVLink_vicon_position_estimate_message(usec, x, y, z, roll, pitch, yaw, covariance)
def vicon_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw, covariance=0, force_mavlink1=False):
'''
usec : Timestamp (UNIX time or time since system boot) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle (float)
pitch : Pitch angle (float)
yaw : Yaw angle (float)
covariance : Pose covariance matrix upper right triangular (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
'''
return self.send(self.vicon_position_estimate_encode(usec, x, y, z, roll, pitch, yaw, covariance), force_mavlink1=force_mavlink1)
def highres_imu_encode(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated):
'''
The IMU readings in SI units in NED body frame
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
xacc : X acceleration (float)
yacc : Y acceleration (float)
zacc : Z acceleration (float)
xgyro : Angular speed around X axis (float)
ygyro : Angular speed around Y axis (float)
zgyro : Angular speed around Z axis (float)
xmag : X Magnetic field (float)
ymag : Y Magnetic field (float)
zmag : Z Magnetic field (float)
abs_pressure : Absolute pressure (float)
diff_pressure : Differential pressure (float)
pressure_alt : Altitude calculated from pressure (float)
temperature : Temperature (float)
fields_updated : Bitmap for fields that have updated since last message, bit 0 = xacc, bit 12: temperature (uint16_t)
'''
return MAVLink_highres_imu_message(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated)
def highres_imu_send(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated, force_mavlink1=False):
'''
The IMU readings in SI units in NED body frame
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
xacc : X acceleration (float)
yacc : Y acceleration (float)
zacc : Z acceleration (float)
xgyro : Angular speed around X axis (float)
ygyro : Angular speed around Y axis (float)
zgyro : Angular speed around Z axis (float)
xmag : X Magnetic field (float)
ymag : Y Magnetic field (float)
zmag : Z Magnetic field (float)
abs_pressure : Absolute pressure (float)
diff_pressure : Differential pressure (float)
pressure_alt : Altitude calculated from pressure (float)
temperature : Temperature (float)
fields_updated : Bitmap for fields that have updated since last message, bit 0 = xacc, bit 12: temperature (uint16_t)
'''
return self.send(self.highres_imu_encode(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated), force_mavlink1=force_mavlink1)
def optical_flow_rad_encode(self, time_usec, sensor_id, integration_time_us, integrated_x, integrated_y, integrated_xgyro, integrated_ygyro, integrated_zgyro, temperature, quality, time_delta_distance_us, distance):
'''
Optical flow from an angular rate flow sensor (e.g. PX4FLOW or mouse
sensor)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
sensor_id : Sensor ID (uint8_t)
integration_time_us : Integration time. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. (uint32_t)
integrated_x : Flow around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) (float)
integrated_y : Flow around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) (float)
integrated_xgyro : RH rotation around X axis (float)
integrated_ygyro : RH rotation around Y axis (float)
integrated_zgyro : RH rotation around Z axis (float)
temperature : Temperature (int16_t)
quality : Optical flow quality / confidence. 0: no valid flow, 255: maximum quality (uint8_t)
time_delta_distance_us : Time since the distance was sampled. (uint32_t)
distance : Distance to the center of the flow field. Positive value (including zero): distance known. Negative value: Unknown distance. (float)
'''
return MAVLink_optical_flow_rad_message(time_usec, sensor_id, integration_time_us, integrated_x, integrated_y, integrated_xgyro, integrated_ygyro, integrated_zgyro, temperature, quality, time_delta_distance_us, distance)
def optical_flow_rad_send(self, time_usec, sensor_id, integration_time_us, integrated_x, integrated_y, integrated_xgyro, integrated_ygyro, integrated_zgyro, temperature, quality, time_delta_distance_us, distance, force_mavlink1=False):
'''
Optical flow from an angular rate flow sensor (e.g. PX4FLOW or mouse
sensor)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
sensor_id : Sensor ID (uint8_t)
integration_time_us : Integration time. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. (uint32_t)
integrated_x : Flow around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) (float)
integrated_y : Flow around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) (float)
integrated_xgyro : RH rotation around X axis (float)
integrated_ygyro : RH rotation around Y axis (float)
integrated_zgyro : RH rotation around Z axis (float)
temperature : Temperature (int16_t)
quality : Optical flow quality / confidence. 0: no valid flow, 255: maximum quality (uint8_t)
time_delta_distance_us : Time since the distance was sampled. (uint32_t)
distance : Distance to the center of the flow field. Positive value (including zero): distance known. Negative value: Unknown distance. (float)
'''
return self.send(self.optical_flow_rad_encode(time_usec, sensor_id, integration_time_us, integrated_x, integrated_y, integrated_xgyro, integrated_ygyro, integrated_zgyro, temperature, quality, time_delta_distance_us, distance), force_mavlink1=force_mavlink1)
def hil_sensor_encode(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated):
'''
The IMU readings in SI units in NED body frame
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
xacc : X acceleration (float)
yacc : Y acceleration (float)
zacc : Z acceleration (float)
xgyro : Angular speed around X axis in body frame (float)
ygyro : Angular speed around Y axis in body frame (float)
zgyro : Angular speed around Z axis in body frame (float)
xmag : X Magnetic field (float)
ymag : Y Magnetic field (float)
zmag : Z Magnetic field (float)
abs_pressure : Absolute pressure (float)
diff_pressure : Differential pressure (airspeed) (float)
pressure_alt : Altitude calculated from pressure (float)
temperature : Temperature (float)
fields_updated : Bitmap for fields that have updated since last message, bit 0 = xacc, bit 12: temperature, bit 31: full reset of attitude/position/velocities/etc was performed in sim. (uint32_t)
'''
return MAVLink_hil_sensor_message(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated)
def hil_sensor_send(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated, force_mavlink1=False):
'''
The IMU readings in SI units in NED body frame
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
xacc : X acceleration (float)
yacc : Y acceleration (float)
zacc : Z acceleration (float)
xgyro : Angular speed around X axis in body frame (float)
ygyro : Angular speed around Y axis in body frame (float)
zgyro : Angular speed around Z axis in body frame (float)
xmag : X Magnetic field (float)
ymag : Y Magnetic field (float)
zmag : Z Magnetic field (float)
abs_pressure : Absolute pressure (float)
diff_pressure : Differential pressure (airspeed) (float)
pressure_alt : Altitude calculated from pressure (float)
temperature : Temperature (float)
fields_updated : Bitmap for fields that have updated since last message, bit 0 = xacc, bit 12: temperature, bit 31: full reset of attitude/position/velocities/etc was performed in sim. (uint32_t)
'''
return self.send(self.hil_sensor_encode(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated), force_mavlink1=force_mavlink1)
def sim_state_encode(self, q1, q2, q3, q4, roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro, lat, lon, alt, std_dev_horz, std_dev_vert, vn, ve, vd):
'''
Status of simulation environment, if used
q1 : True attitude quaternion component 1, w (1 in null-rotation) (float)
q2 : True attitude quaternion component 2, x (0 in null-rotation) (float)
q3 : True attitude quaternion component 3, y (0 in null-rotation) (float)
q4 : True attitude quaternion component 4, z (0 in null-rotation) (float)
roll : Attitude roll expressed as Euler angles, not recommended except for human-readable outputs (float)
pitch : Attitude pitch expressed as Euler angles, not recommended except for human-readable outputs (float)
yaw : Attitude yaw expressed as Euler angles, not recommended except for human-readable outputs (float)
xacc : X acceleration (float)
yacc : Y acceleration (float)
zacc : Z acceleration (float)
xgyro : Angular speed around X axis (float)
ygyro : Angular speed around Y axis (float)
zgyro : Angular speed around Z axis (float)
lat : Latitude (float)
lon : Longitude (float)
alt : Altitude (float)
std_dev_horz : Horizontal position standard deviation (float)
std_dev_vert : Vertical position standard deviation (float)
vn : True velocity in NORTH direction in earth-fixed NED frame (float)
ve : True velocity in EAST direction in earth-fixed NED frame (float)
vd : True velocity in DOWN direction in earth-fixed NED frame (float)
'''
return MAVLink_sim_state_message(q1, q2, q3, q4, roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro, lat, lon, alt, std_dev_horz, std_dev_vert, vn, ve, vd)
def sim_state_send(self, q1, q2, q3, q4, roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro, lat, lon, alt, std_dev_horz, std_dev_vert, vn, ve, vd, force_mavlink1=False):
'''
Status of simulation environment, if used
q1 : True attitude quaternion component 1, w (1 in null-rotation) (float)
q2 : True attitude quaternion component 2, x (0 in null-rotation) (float)
q3 : True attitude quaternion component 3, y (0 in null-rotation) (float)
q4 : True attitude quaternion component 4, z (0 in null-rotation) (float)
roll : Attitude roll expressed as Euler angles, not recommended except for human-readable outputs (float)
pitch : Attitude pitch expressed as Euler angles, not recommended except for human-readable outputs (float)
yaw : Attitude yaw expressed as Euler angles, not recommended except for human-readable outputs (float)
xacc : X acceleration (float)
yacc : Y acceleration (float)
zacc : Z acceleration (float)
xgyro : Angular speed around X axis (float)
ygyro : Angular speed around Y axis (float)
zgyro : Angular speed around Z axis (float)
lat : Latitude (float)
lon : Longitude (float)
alt : Altitude (float)
std_dev_horz : Horizontal position standard deviation (float)
std_dev_vert : Vertical position standard deviation (float)
vn : True velocity in NORTH direction in earth-fixed NED frame (float)
ve : True velocity in EAST direction in earth-fixed NED frame (float)
vd : True velocity in DOWN direction in earth-fixed NED frame (float)
'''
return self.send(self.sim_state_encode(q1, q2, q3, q4, roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro, lat, lon, alt, std_dev_horz, std_dev_vert, vn, ve, vd), force_mavlink1=force_mavlink1)
def radio_status_encode(self, rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed):
'''
Status generated by radio and injected into MAVLink stream.
rssi : Local signal strength (uint8_t)
remrssi : Remote signal strength (uint8_t)
txbuf : Remaining free buffer space. (uint8_t)
noise : Background noise level (uint8_t)
remnoise : Remote background noise level (uint8_t)
rxerrors : Receive errors (uint16_t)
fixed : Count of error corrected packets (uint16_t)
'''
return MAVLink_radio_status_message(rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed)
def radio_status_send(self, rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed, force_mavlink1=False):
'''
Status generated by radio and injected into MAVLink stream.
rssi : Local signal strength (uint8_t)
remrssi : Remote signal strength (uint8_t)
txbuf : Remaining free buffer space. (uint8_t)
noise : Background noise level (uint8_t)
remnoise : Remote background noise level (uint8_t)
rxerrors : Receive errors (uint16_t)
fixed : Count of error corrected packets (uint16_t)
'''
return self.send(self.radio_status_encode(rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed), force_mavlink1=force_mavlink1)
def file_transfer_protocol_encode(self, target_network, target_system, target_component, payload):
'''
File transfer message
target_network : Network ID (0 for broadcast) (uint8_t)
target_system : System ID (0 for broadcast) (uint8_t)
target_component : Component ID (0 for broadcast) (uint8_t)
payload : Variable length payload. The length is defined by the remaining message length when subtracting the header and other fields. The entire content of this block is opaque unless you understand any the encoding message_type. The particular encoding used can be extension specific and might not always be documented as part of the mavlink specification. (uint8_t)
'''
return MAVLink_file_transfer_protocol_message(target_network, target_system, target_component, payload)
def file_transfer_protocol_send(self, target_network, target_system, target_component, payload, force_mavlink1=False):
'''
File transfer message
target_network : Network ID (0 for broadcast) (uint8_t)
target_system : System ID (0 for broadcast) (uint8_t)
target_component : Component ID (0 for broadcast) (uint8_t)
payload : Variable length payload. The length is defined by the remaining message length when subtracting the header and other fields. The entire content of this block is opaque unless you understand any the encoding message_type. The particular encoding used can be extension specific and might not always be documented as part of the mavlink specification. (uint8_t)
'''
return self.send(self.file_transfer_protocol_encode(target_network, target_system, target_component, payload), force_mavlink1=force_mavlink1)
def timesync_encode(self, tc1, ts1):
'''
Time synchronization message.
tc1 : Time sync timestamp 1 (int64_t)
ts1 : Time sync timestamp 2 (int64_t)
'''
return MAVLink_timesync_message(tc1, ts1)
def timesync_send(self, tc1, ts1, force_mavlink1=False):
'''
Time synchronization message.
tc1 : Time sync timestamp 1 (int64_t)
ts1 : Time sync timestamp 2 (int64_t)
'''
return self.send(self.timesync_encode(tc1, ts1), force_mavlink1=force_mavlink1)
def camera_trigger_encode(self, time_usec, seq):
'''
Camera-IMU triggering and synchronisation message.
time_usec : Timestamp for image frame (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
seq : Image frame sequence (uint32_t)
'''
return MAVLink_camera_trigger_message(time_usec, seq)
def camera_trigger_send(self, time_usec, seq, force_mavlink1=False):
'''
Camera-IMU triggering and synchronisation message.
time_usec : Timestamp for image frame (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
seq : Image frame sequence (uint32_t)
'''
return self.send(self.camera_trigger_encode(time_usec, seq), force_mavlink1=force_mavlink1)
def hil_gps_encode(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, vn, ve, vd, cog, satellites_visible):
'''
The global position, as returned by the Global Positioning System
(GPS). This is NOT the global
position estimate of the sytem, but rather a RAW
sensor value. See message GLOBAL_POSITION for the
global position estimate.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
fix_type : 0-1: no fix, 2: 2D fix, 3: 3D fix. Some applications will not use the value of this field unless it is at least two, so always correctly fill in the fix. (uint8_t)
lat : Latitude (WGS84) (int32_t)
lon : Longitude (WGS84) (int32_t)
alt : Altitude (AMSL). Positive for up. (int32_t)
eph : GPS HDOP horizontal dilution of position. If unknown, set to: 65535 (uint16_t)
epv : GPS VDOP vertical dilution of position. If unknown, set to: 65535 (uint16_t)
vel : GPS ground speed. If unknown, set to: 65535 (uint16_t)
vn : GPS velocity in NORTH direction in earth-fixed NED frame (int16_t)
ve : GPS velocity in EAST direction in earth-fixed NED frame (int16_t)
vd : GPS velocity in DOWN direction in earth-fixed NED frame (int16_t)
cog : Course over ground (NOT heading, but direction of movement), 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t)
satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t)
'''
return MAVLink_hil_gps_message(time_usec, fix_type, lat, lon, alt, eph, epv, vel, vn, ve, vd, cog, satellites_visible)
def hil_gps_send(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, vn, ve, vd, cog, satellites_visible, force_mavlink1=False):
'''
The global position, as returned by the Global Positioning System
(GPS). This is NOT the global
position estimate of the sytem, but rather a RAW
sensor value. See message GLOBAL_POSITION for the
global position estimate.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
fix_type : 0-1: no fix, 2: 2D fix, 3: 3D fix. Some applications will not use the value of this field unless it is at least two, so always correctly fill in the fix. (uint8_t)
lat : Latitude (WGS84) (int32_t)
lon : Longitude (WGS84) (int32_t)
alt : Altitude (AMSL). Positive for up. (int32_t)
eph : GPS HDOP horizontal dilution of position. If unknown, set to: 65535 (uint16_t)
epv : GPS VDOP vertical dilution of position. If unknown, set to: 65535 (uint16_t)
vel : GPS ground speed. If unknown, set to: 65535 (uint16_t)
vn : GPS velocity in NORTH direction in earth-fixed NED frame (int16_t)
ve : GPS velocity in EAST direction in earth-fixed NED frame (int16_t)
vd : GPS velocity in DOWN direction in earth-fixed NED frame (int16_t)
cog : Course over ground (NOT heading, but direction of movement), 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t)
satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t)
'''
return self.send(self.hil_gps_encode(time_usec, fix_type, lat, lon, alt, eph, epv, vel, vn, ve, vd, cog, satellites_visible), force_mavlink1=force_mavlink1)
def hil_optical_flow_encode(self, time_usec, sensor_id, integration_time_us, integrated_x, integrated_y, integrated_xgyro, integrated_ygyro, integrated_zgyro, temperature, quality, time_delta_distance_us, distance):
'''
Simulated optical flow from a flow sensor (e.g. PX4FLOW or optical
mouse sensor)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
sensor_id : Sensor ID (uint8_t)
integration_time_us : Integration time. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. (uint32_t)
integrated_x : Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) (float)
integrated_y : Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) (float)
integrated_xgyro : RH rotation around X axis (float)
integrated_ygyro : RH rotation around Y axis (float)
integrated_zgyro : RH rotation around Z axis (float)
temperature : Temperature (int16_t)
quality : Optical flow quality / confidence. 0: no valid flow, 255: maximum quality (uint8_t)
time_delta_distance_us : Time since the distance was sampled. (uint32_t)
distance : Distance to the center of the flow field. Positive value (including zero): distance known. Negative value: Unknown distance. (float)
'''
return MAVLink_hil_optical_flow_message(time_usec, sensor_id, integration_time_us, integrated_x, integrated_y, integrated_xgyro, integrated_ygyro, integrated_zgyro, temperature, quality, time_delta_distance_us, distance)
def hil_optical_flow_send(self, time_usec, sensor_id, integration_time_us, integrated_x, integrated_y, integrated_xgyro, integrated_ygyro, integrated_zgyro, temperature, quality, time_delta_distance_us, distance, force_mavlink1=False):
'''
Simulated optical flow from a flow sensor (e.g. PX4FLOW or optical
mouse sensor)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
sensor_id : Sensor ID (uint8_t)
integration_time_us : Integration time. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. (uint32_t)
integrated_x : Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) (float)
integrated_y : Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) (float)
integrated_xgyro : RH rotation around X axis (float)
integrated_ygyro : RH rotation around Y axis (float)
integrated_zgyro : RH rotation around Z axis (float)
temperature : Temperature (int16_t)
quality : Optical flow quality / confidence. 0: no valid flow, 255: maximum quality (uint8_t)
time_delta_distance_us : Time since the distance was sampled. (uint32_t)
distance : Distance to the center of the flow field. Positive value (including zero): distance known. Negative value: Unknown distance. (float)
'''
return self.send(self.hil_optical_flow_encode(time_usec, sensor_id, integration_time_us, integrated_x, integrated_y, integrated_xgyro, integrated_ygyro, integrated_zgyro, temperature, quality, time_delta_distance_us, distance), force_mavlink1=force_mavlink1)
def hil_state_quaternion_encode(self, time_usec, attitude_quaternion, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, ind_airspeed, true_airspeed, xacc, yacc, zacc):
'''
Sent from simulation to autopilot, avoids in contrast to HIL_STATE
singularities. This packet is useful for high
throughput applications such as hardware in the loop
simulations.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
attitude_quaternion : Vehicle attitude expressed as normalized quaternion in w, x, y, z order (with 1 0 0 0 being the null-rotation) (float)
rollspeed : Body frame roll / phi angular speed (float)
pitchspeed : Body frame pitch / theta angular speed (float)
yawspeed : Body frame yaw / psi angular speed (float)
lat : Latitude (int32_t)
lon : Longitude (int32_t)
alt : Altitude (int32_t)
vx : Ground X Speed (Latitude) (int16_t)
vy : Ground Y Speed (Longitude) (int16_t)
vz : Ground Z Speed (Altitude) (int16_t)
ind_airspeed : Indicated airspeed (uint16_t)
true_airspeed : True airspeed (uint16_t)
xacc : X acceleration (int16_t)
yacc : Y acceleration (int16_t)
zacc : Z acceleration (int16_t)
'''
return MAVLink_hil_state_quaternion_message(time_usec, attitude_quaternion, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, ind_airspeed, true_airspeed, xacc, yacc, zacc)
def hil_state_quaternion_send(self, time_usec, attitude_quaternion, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, ind_airspeed, true_airspeed, xacc, yacc, zacc, force_mavlink1=False):
'''
Sent from simulation to autopilot, avoids in contrast to HIL_STATE
singularities. This packet is useful for high
throughput applications such as hardware in the loop
simulations.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
attitude_quaternion : Vehicle attitude expressed as normalized quaternion in w, x, y, z order (with 1 0 0 0 being the null-rotation) (float)
rollspeed : Body frame roll / phi angular speed (float)
pitchspeed : Body frame pitch / theta angular speed (float)
yawspeed : Body frame yaw / psi angular speed (float)
lat : Latitude (int32_t)
lon : Longitude (int32_t)
alt : Altitude (int32_t)
vx : Ground X Speed (Latitude) (int16_t)
vy : Ground Y Speed (Longitude) (int16_t)
vz : Ground Z Speed (Altitude) (int16_t)
ind_airspeed : Indicated airspeed (uint16_t)
true_airspeed : True airspeed (uint16_t)
xacc : X acceleration (int16_t)
yacc : Y acceleration (int16_t)
zacc : Z acceleration (int16_t)
'''
return self.send(self.hil_state_quaternion_encode(time_usec, attitude_quaternion, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, ind_airspeed, true_airspeed, xacc, yacc, zacc), force_mavlink1=force_mavlink1)
def scaled_imu2_encode(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
'''
The RAW IMU readings for secondary 9DOF sensor setup. This message
should contain the scaled values to the described
units
time_boot_ms : Timestamp (time since system boot). (uint32_t)
xacc : X acceleration (int16_t)
yacc : Y acceleration (int16_t)
zacc : Z acceleration (int16_t)
xgyro : Angular speed around X axis (int16_t)
ygyro : Angular speed around Y axis (int16_t)
zgyro : Angular speed around Z axis (int16_t)
xmag : X Magnetic field (int16_t)
ymag : Y Magnetic field (int16_t)
zmag : Z Magnetic field (int16_t)
'''
return MAVLink_scaled_imu2_message(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag)
def scaled_imu2_send(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, force_mavlink1=False):
'''
The RAW IMU readings for secondary 9DOF sensor setup. This message
should contain the scaled values to the described
units
time_boot_ms : Timestamp (time since system boot). (uint32_t)
xacc : X acceleration (int16_t)
yacc : Y acceleration (int16_t)
zacc : Z acceleration (int16_t)
xgyro : Angular speed around X axis (int16_t)
ygyro : Angular speed around Y axis (int16_t)
zgyro : Angular speed around Z axis (int16_t)
xmag : X Magnetic field (int16_t)
ymag : Y Magnetic field (int16_t)
zmag : Z Magnetic field (int16_t)
'''
return self.send(self.scaled_imu2_encode(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag), force_mavlink1=force_mavlink1)
def log_request_list_encode(self, target_system, target_component, start, end):
'''
Request a list of available logs. On some systems calling this may
stop on-board logging until LOG_REQUEST_END is called.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
start : First log id (0 for first available) (uint16_t)
end : Last log id (0xffff for last available) (uint16_t)
'''
return MAVLink_log_request_list_message(target_system, target_component, start, end)
def log_request_list_send(self, target_system, target_component, start, end, force_mavlink1=False):
'''
Request a list of available logs. On some systems calling this may
stop on-board logging until LOG_REQUEST_END is called.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
start : First log id (0 for first available) (uint16_t)
end : Last log id (0xffff for last available) (uint16_t)
'''
return self.send(self.log_request_list_encode(target_system, target_component, start, end), force_mavlink1=force_mavlink1)
def log_entry_encode(self, id, num_logs, last_log_num, time_utc, size):
'''
Reply to LOG_REQUEST_LIST
id : Log id (uint16_t)
num_logs : Total number of logs (uint16_t)
last_log_num : High log number (uint16_t)
time_utc : UTC timestamp of log since 1970, or 0 if not available (uint32_t)
size : Size of the log (may be approximate) (uint32_t)
'''
return MAVLink_log_entry_message(id, num_logs, last_log_num, time_utc, size)
def log_entry_send(self, id, num_logs, last_log_num, time_utc, size, force_mavlink1=False):
'''
Reply to LOG_REQUEST_LIST
id : Log id (uint16_t)
num_logs : Total number of logs (uint16_t)
last_log_num : High log number (uint16_t)
time_utc : UTC timestamp of log since 1970, or 0 if not available (uint32_t)
size : Size of the log (may be approximate) (uint32_t)
'''
return self.send(self.log_entry_encode(id, num_logs, last_log_num, time_utc, size), force_mavlink1=force_mavlink1)
def log_request_data_encode(self, target_system, target_component, id, ofs, count):
'''
Request a chunk of a log
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
id : Log id (from LOG_ENTRY reply) (uint16_t)
ofs : Offset into the log (uint32_t)
count : Number of bytes (uint32_t)
'''
return MAVLink_log_request_data_message(target_system, target_component, id, ofs, count)
def log_request_data_send(self, target_system, target_component, id, ofs, count, force_mavlink1=False):
'''
Request a chunk of a log
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
id : Log id (from LOG_ENTRY reply) (uint16_t)
ofs : Offset into the log (uint32_t)
count : Number of bytes (uint32_t)
'''
return self.send(self.log_request_data_encode(target_system, target_component, id, ofs, count), force_mavlink1=force_mavlink1)
def log_data_encode(self, id, ofs, count, data):
'''
Reply to LOG_REQUEST_DATA
id : Log id (from LOG_ENTRY reply) (uint16_t)
ofs : Offset into the log (uint32_t)
count : Number of bytes (zero for end of log) (uint8_t)
data : log data (uint8_t)
'''
return MAVLink_log_data_message(id, ofs, count, data)
def log_data_send(self, id, ofs, count, data, force_mavlink1=False):
'''
Reply to LOG_REQUEST_DATA
id : Log id (from LOG_ENTRY reply) (uint16_t)
ofs : Offset into the log (uint32_t)
count : Number of bytes (zero for end of log) (uint8_t)
data : log data (uint8_t)
'''
return self.send(self.log_data_encode(id, ofs, count, data), force_mavlink1=force_mavlink1)
def log_erase_encode(self, target_system, target_component):
'''
Erase all logs
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
return MAVLink_log_erase_message(target_system, target_component)
def log_erase_send(self, target_system, target_component, force_mavlink1=False):
'''
Erase all logs
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
return self.send(self.log_erase_encode(target_system, target_component), force_mavlink1=force_mavlink1)
def log_request_end_encode(self, target_system, target_component):
'''
Stop log transfer and resume normal logging
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
return MAVLink_log_request_end_message(target_system, target_component)
def log_request_end_send(self, target_system, target_component, force_mavlink1=False):
'''
Stop log transfer and resume normal logging
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
return self.send(self.log_request_end_encode(target_system, target_component), force_mavlink1=force_mavlink1)
def gps_inject_data_encode(self, target_system, target_component, len, data):
'''
data for injecting into the onboard GPS (used for DGPS)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
len : data length (uint8_t)
data : raw data (110 is enough for 12 satellites of RTCMv2) (uint8_t)
'''
return MAVLink_gps_inject_data_message(target_system, target_component, len, data)
def gps_inject_data_send(self, target_system, target_component, len, data, force_mavlink1=False):
'''
data for injecting into the onboard GPS (used for DGPS)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
len : data length (uint8_t)
data : raw data (110 is enough for 12 satellites of RTCMv2) (uint8_t)
'''
return self.send(self.gps_inject_data_encode(target_system, target_component, len, data), force_mavlink1=force_mavlink1)
def gps2_raw_encode(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible, dgps_numch, dgps_age):
'''
Second GPS data.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
fix_type : GPS fix type. (uint8_t)
lat : Latitude (WGS84) (int32_t)
lon : Longitude (WGS84) (int32_t)
alt : Altitude (AMSL). Positive for up. (int32_t)
eph : GPS HDOP horizontal dilution of position. If unknown, set to: UINT16_MAX (uint16_t)
epv : GPS VDOP vertical dilution of position. If unknown, set to: UINT16_MAX (uint16_t)
vel : GPS ground speed. If unknown, set to: UINT16_MAX (uint16_t)
cog : Course over ground (NOT heading, but direction of movement): 0.0..359.99 degrees. If unknown, set to: UINT16_MAX (uint16_t)
satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t)
dgps_numch : Number of DGPS satellites (uint8_t)
dgps_age : Age of DGPS info (uint32_t)
'''
return MAVLink_gps2_raw_message(time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible, dgps_numch, dgps_age)
def gps2_raw_send(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible, dgps_numch, dgps_age, force_mavlink1=False):
'''
Second GPS data.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
fix_type : GPS fix type. (uint8_t)
lat : Latitude (WGS84) (int32_t)
lon : Longitude (WGS84) (int32_t)
alt : Altitude (AMSL). Positive for up. (int32_t)
eph : GPS HDOP horizontal dilution of position. If unknown, set to: UINT16_MAX (uint16_t)
epv : GPS VDOP vertical dilution of position. If unknown, set to: UINT16_MAX (uint16_t)
vel : GPS ground speed. If unknown, set to: UINT16_MAX (uint16_t)
cog : Course over ground (NOT heading, but direction of movement): 0.0..359.99 degrees. If unknown, set to: UINT16_MAX (uint16_t)
satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t)
dgps_numch : Number of DGPS satellites (uint8_t)
dgps_age : Age of DGPS info (uint32_t)
'''
return self.send(self.gps2_raw_encode(time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible, dgps_numch, dgps_age), force_mavlink1=force_mavlink1)
def power_status_encode(self, Vcc, Vservo, flags):
'''
Power supply status
Vcc : 5V rail voltage. (uint16_t)
Vservo : Servo rail voltage. (uint16_t)
flags : Bitmap of power supply status flags. (uint16_t)
'''
return MAVLink_power_status_message(Vcc, Vservo, flags)
def power_status_send(self, Vcc, Vservo, flags, force_mavlink1=False):
'''
Power supply status
Vcc : 5V rail voltage. (uint16_t)
Vservo : Servo rail voltage. (uint16_t)
flags : Bitmap of power supply status flags. (uint16_t)
'''
return self.send(self.power_status_encode(Vcc, Vservo, flags), force_mavlink1=force_mavlink1)
def serial_control_encode(self, device, flags, timeout, baudrate, count, data):
'''
Control a serial port. This can be used for raw access to an onboard
serial peripheral such as a GPS or telemetry radio. It
is designed to make it possible to update the devices
firmware via MAVLink messages or change the devices
settings. A message with zero bytes can be used to
change just the baudrate.
device : Serial control device type. (uint8_t)
flags : Bitmap of serial control flags. (uint8_t)
timeout : Timeout for reply data (uint16_t)
baudrate : Baudrate of transfer. Zero means no change. (uint32_t)
count : how many bytes in this transfer (uint8_t)
data : serial data (uint8_t)
'''
return MAVLink_serial_control_message(device, flags, timeout, baudrate, count, data)
def serial_control_send(self, device, flags, timeout, baudrate, count, data, force_mavlink1=False):
'''
Control a serial port. This can be used for raw access to an onboard
serial peripheral such as a GPS or telemetry radio. It
is designed to make it possible to update the devices
firmware via MAVLink messages or change the devices
settings. A message with zero bytes can be used to
change just the baudrate.
device : Serial control device type. (uint8_t)
flags : Bitmap of serial control flags. (uint8_t)
timeout : Timeout for reply data (uint16_t)
baudrate : Baudrate of transfer. Zero means no change. (uint32_t)
count : how many bytes in this transfer (uint8_t)
data : serial data (uint8_t)
'''
return self.send(self.serial_control_encode(device, flags, timeout, baudrate, count, data), force_mavlink1=force_mavlink1)
def gps_rtk_encode(self, time_last_baseline_ms, rtk_receiver_id, wn, tow, rtk_health, rtk_rate, nsats, baseline_coords_type, baseline_a_mm, baseline_b_mm, baseline_c_mm, accuracy, iar_num_hypotheses):
'''
RTK GPS data. Gives information on the relative baseline calculation
the GPS is reporting
time_last_baseline_ms : Time since boot of last baseline message received. (uint32_t)
rtk_receiver_id : Identification of connected RTK receiver. (uint8_t)
wn : GPS Week Number of last baseline (uint16_t)
tow : GPS Time of Week of last baseline (uint32_t)
rtk_health : GPS-specific health report for RTK data. (uint8_t)
rtk_rate : Rate of baseline messages being received by GPS (uint8_t)
nsats : Current number of sats used for RTK calculation. (uint8_t)
baseline_coords_type : Coordinate system of baseline (uint8_t)
baseline_a_mm : Current baseline in ECEF x or NED north component. (int32_t)
baseline_b_mm : Current baseline in ECEF y or NED east component. (int32_t)
baseline_c_mm : Current baseline in ECEF z or NED down component. (int32_t)
accuracy : Current estimate of baseline accuracy. (uint32_t)
iar_num_hypotheses : Current number of integer ambiguity hypotheses. (int32_t)
'''
return MAVLink_gps_rtk_message(time_last_baseline_ms, rtk_receiver_id, wn, tow, rtk_health, rtk_rate, nsats, baseline_coords_type, baseline_a_mm, baseline_b_mm, baseline_c_mm, accuracy, iar_num_hypotheses)
def gps_rtk_send(self, time_last_baseline_ms, rtk_receiver_id, wn, tow, rtk_health, rtk_rate, nsats, baseline_coords_type, baseline_a_mm, baseline_b_mm, baseline_c_mm, accuracy, iar_num_hypotheses, force_mavlink1=False):
'''
RTK GPS data. Gives information on the relative baseline calculation
the GPS is reporting
time_last_baseline_ms : Time since boot of last baseline message received. (uint32_t)
rtk_receiver_id : Identification of connected RTK receiver. (uint8_t)
wn : GPS Week Number of last baseline (uint16_t)
tow : GPS Time of Week of last baseline (uint32_t)
rtk_health : GPS-specific health report for RTK data. (uint8_t)
rtk_rate : Rate of baseline messages being received by GPS (uint8_t)
nsats : Current number of sats used for RTK calculation. (uint8_t)
baseline_coords_type : Coordinate system of baseline (uint8_t)
baseline_a_mm : Current baseline in ECEF x or NED north component. (int32_t)
baseline_b_mm : Current baseline in ECEF y or NED east component. (int32_t)
baseline_c_mm : Current baseline in ECEF z or NED down component. (int32_t)
accuracy : Current estimate of baseline accuracy. (uint32_t)
iar_num_hypotheses : Current number of integer ambiguity hypotheses. (int32_t)
'''
return self.send(self.gps_rtk_encode(time_last_baseline_ms, rtk_receiver_id, wn, tow, rtk_health, rtk_rate, nsats, baseline_coords_type, baseline_a_mm, baseline_b_mm, baseline_c_mm, accuracy, iar_num_hypotheses), force_mavlink1=force_mavlink1)
def gps2_rtk_encode(self, time_last_baseline_ms, rtk_receiver_id, wn, tow, rtk_health, rtk_rate, nsats, baseline_coords_type, baseline_a_mm, baseline_b_mm, baseline_c_mm, accuracy, iar_num_hypotheses):
'''
RTK GPS data. Gives information on the relative baseline calculation
the GPS is reporting
time_last_baseline_ms : Time since boot of last baseline message received. (uint32_t)
rtk_receiver_id : Identification of connected RTK receiver. (uint8_t)
wn : GPS Week Number of last baseline (uint16_t)
tow : GPS Time of Week of last baseline (uint32_t)
rtk_health : GPS-specific health report for RTK data. (uint8_t)
rtk_rate : Rate of baseline messages being received by GPS (uint8_t)
nsats : Current number of sats used for RTK calculation. (uint8_t)
baseline_coords_type : Coordinate system of baseline (uint8_t)
baseline_a_mm : Current baseline in ECEF x or NED north component. (int32_t)
baseline_b_mm : Current baseline in ECEF y or NED east component. (int32_t)
baseline_c_mm : Current baseline in ECEF z or NED down component. (int32_t)
accuracy : Current estimate of baseline accuracy. (uint32_t)
iar_num_hypotheses : Current number of integer ambiguity hypotheses. (int32_t)
'''
return MAVLink_gps2_rtk_message(time_last_baseline_ms, rtk_receiver_id, wn, tow, rtk_health, rtk_rate, nsats, baseline_coords_type, baseline_a_mm, baseline_b_mm, baseline_c_mm, accuracy, iar_num_hypotheses)
def gps2_rtk_send(self, time_last_baseline_ms, rtk_receiver_id, wn, tow, rtk_health, rtk_rate, nsats, baseline_coords_type, baseline_a_mm, baseline_b_mm, baseline_c_mm, accuracy, iar_num_hypotheses, force_mavlink1=False):
'''
RTK GPS data. Gives information on the relative baseline calculation
the GPS is reporting
time_last_baseline_ms : Time since boot of last baseline message received. (uint32_t)
rtk_receiver_id : Identification of connected RTK receiver. (uint8_t)
wn : GPS Week Number of last baseline (uint16_t)
tow : GPS Time of Week of last baseline (uint32_t)
rtk_health : GPS-specific health report for RTK data. (uint8_t)
rtk_rate : Rate of baseline messages being received by GPS (uint8_t)
nsats : Current number of sats used for RTK calculation. (uint8_t)
baseline_coords_type : Coordinate system of baseline (uint8_t)
baseline_a_mm : Current baseline in ECEF x or NED north component. (int32_t)
baseline_b_mm : Current baseline in ECEF y or NED east component. (int32_t)
baseline_c_mm : Current baseline in ECEF z or NED down component. (int32_t)
accuracy : Current estimate of baseline accuracy. (uint32_t)
iar_num_hypotheses : Current number of integer ambiguity hypotheses. (int32_t)
'''
return self.send(self.gps2_rtk_encode(time_last_baseline_ms, rtk_receiver_id, wn, tow, rtk_health, rtk_rate, nsats, baseline_coords_type, baseline_a_mm, baseline_b_mm, baseline_c_mm, accuracy, iar_num_hypotheses), force_mavlink1=force_mavlink1)
def scaled_imu3_encode(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
'''
The RAW IMU readings for 3rd 9DOF sensor setup. This message should
contain the scaled values to the described units
time_boot_ms : Timestamp (time since system boot). (uint32_t)
xacc : X acceleration (int16_t)
yacc : Y acceleration (int16_t)
zacc : Z acceleration (int16_t)
xgyro : Angular speed around X axis (int16_t)
ygyro : Angular speed around Y axis (int16_t)
zgyro : Angular speed around Z axis (int16_t)
xmag : X Magnetic field (int16_t)
ymag : Y Magnetic field (int16_t)
zmag : Z Magnetic field (int16_t)
'''
return MAVLink_scaled_imu3_message(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag)
def scaled_imu3_send(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, force_mavlink1=False):
'''
The RAW IMU readings for 3rd 9DOF sensor setup. This message should
contain the scaled values to the described units
time_boot_ms : Timestamp (time since system boot). (uint32_t)
xacc : X acceleration (int16_t)
yacc : Y acceleration (int16_t)
zacc : Z acceleration (int16_t)
xgyro : Angular speed around X axis (int16_t)
ygyro : Angular speed around Y axis (int16_t)
zgyro : Angular speed around Z axis (int16_t)
xmag : X Magnetic field (int16_t)
ymag : Y Magnetic field (int16_t)
zmag : Z Magnetic field (int16_t)
'''
return self.send(self.scaled_imu3_encode(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag), force_mavlink1=force_mavlink1)
def data_transmission_handshake_encode(self, type, size, width, height, packets, payload, jpg_quality):
'''
type : Type of requested/acknowledged data. (uint8_t)
size : total data size (set on ACK only). (uint32_t)
width : Width of a matrix or image. (uint16_t)
height : Height of a matrix or image. (uint16_t)
packets : Number of packets being sent (set on ACK only). (uint16_t)
payload : Payload size per packet (normally 253 byte, see DATA field size in message ENCAPSULATED_DATA) (set on ACK only). (uint8_t)
jpg_quality : JPEG quality. Values: [1-100]. (uint8_t)
'''
return MAVLink_data_transmission_handshake_message(type, size, width, height, packets, payload, jpg_quality)
def data_transmission_handshake_send(self, type, size, width, height, packets, payload, jpg_quality, force_mavlink1=False):
'''
type : Type of requested/acknowledged data. (uint8_t)
size : total data size (set on ACK only). (uint32_t)
width : Width of a matrix or image. (uint16_t)
height : Height of a matrix or image. (uint16_t)
packets : Number of packets being sent (set on ACK only). (uint16_t)
payload : Payload size per packet (normally 253 byte, see DATA field size in message ENCAPSULATED_DATA) (set on ACK only). (uint8_t)
jpg_quality : JPEG quality. Values: [1-100]. (uint8_t)
'''
return self.send(self.data_transmission_handshake_encode(type, size, width, height, packets, payload, jpg_quality), force_mavlink1=force_mavlink1)
def encapsulated_data_encode(self, seqnr, data):
'''
seqnr : sequence number (starting with 0 on every transmission) (uint16_t)
data : image data bytes (uint8_t)
'''
return MAVLink_encapsulated_data_message(seqnr, data)
def encapsulated_data_send(self, seqnr, data, force_mavlink1=False):
'''
seqnr : sequence number (starting with 0 on every transmission) (uint16_t)
data : image data bytes (uint8_t)
'''
return self.send(self.encapsulated_data_encode(seqnr, data), force_mavlink1=force_mavlink1)
def distance_sensor_encode(self, time_boot_ms, min_distance, max_distance, current_distance, type, id, orientation, covariance):
'''
time_boot_ms : Timestamp (time since system boot). (uint32_t)
min_distance : Minimum distance the sensor can measure (uint16_t)
max_distance : Maximum distance the sensor can measure (uint16_t)
current_distance : Current distance reading (uint16_t)
type : Type of distance sensor. (uint8_t)
id : Onboard ID of the sensor (uint8_t)
orientation : Direction the sensor faces. downward-facing: ROTATION_PITCH_270, upward-facing: ROTATION_PITCH_90, backward-facing: ROTATION_PITCH_180, forward-facing: ROTATION_NONE, left-facing: ROTATION_YAW_90, right-facing: ROTATION_YAW_270 (uint8_t)
covariance : Measurement covariance, 0 for unknown / invalid readings (uint8_t)
'''
return MAVLink_distance_sensor_message(time_boot_ms, min_distance, max_distance, current_distance, type, id, orientation, covariance)
def distance_sensor_send(self, time_boot_ms, min_distance, max_distance, current_distance, type, id, orientation, covariance, force_mavlink1=False):
'''
time_boot_ms : Timestamp (time since system boot). (uint32_t)
min_distance : Minimum distance the sensor can measure (uint16_t)
max_distance : Maximum distance the sensor can measure (uint16_t)
current_distance : Current distance reading (uint16_t)
type : Type of distance sensor. (uint8_t)
id : Onboard ID of the sensor (uint8_t)
orientation : Direction the sensor faces. downward-facing: ROTATION_PITCH_270, upward-facing: ROTATION_PITCH_90, backward-facing: ROTATION_PITCH_180, forward-facing: ROTATION_NONE, left-facing: ROTATION_YAW_90, right-facing: ROTATION_YAW_270 (uint8_t)
covariance : Measurement covariance, 0 for unknown / invalid readings (uint8_t)
'''
return self.send(self.distance_sensor_encode(time_boot_ms, min_distance, max_distance, current_distance, type, id, orientation, covariance), force_mavlink1=force_mavlink1)
def terrain_request_encode(self, lat, lon, grid_spacing, mask):
'''
Request for terrain data and terrain status
lat : Latitude of SW corner of first grid (int32_t)
lon : Longitude of SW corner of first grid (int32_t)
grid_spacing : Grid spacing (uint16_t)
mask : Bitmask of requested 4x4 grids (row major 8x7 array of grids, 56 bits) (uint64_t)
'''
return MAVLink_terrain_request_message(lat, lon, grid_spacing, mask)
def terrain_request_send(self, lat, lon, grid_spacing, mask, force_mavlink1=False):
'''
Request for terrain data and terrain status
lat : Latitude of SW corner of first grid (int32_t)
lon : Longitude of SW corner of first grid (int32_t)
grid_spacing : Grid spacing (uint16_t)
mask : Bitmask of requested 4x4 grids (row major 8x7 array of grids, 56 bits) (uint64_t)
'''
return self.send(self.terrain_request_encode(lat, lon, grid_spacing, mask), force_mavlink1=force_mavlink1)
def terrain_data_encode(self, lat, lon, grid_spacing, gridbit, data):
'''
Terrain data sent from GCS. The lat/lon and grid_spacing must be the
same as a lat/lon from a TERRAIN_REQUEST
lat : Latitude of SW corner of first grid (int32_t)
lon : Longitude of SW corner of first grid (int32_t)
grid_spacing : Grid spacing (uint16_t)
gridbit : bit within the terrain request mask (uint8_t)
data : Terrain data AMSL (int16_t)
'''
return MAVLink_terrain_data_message(lat, lon, grid_spacing, gridbit, data)
def terrain_data_send(self, lat, lon, grid_spacing, gridbit, data, force_mavlink1=False):
'''
Terrain data sent from GCS. The lat/lon and grid_spacing must be the
same as a lat/lon from a TERRAIN_REQUEST
lat : Latitude of SW corner of first grid (int32_t)
lon : Longitude of SW corner of first grid (int32_t)
grid_spacing : Grid spacing (uint16_t)
gridbit : bit within the terrain request mask (uint8_t)
data : Terrain data AMSL (int16_t)
'''
return self.send(self.terrain_data_encode(lat, lon, grid_spacing, gridbit, data), force_mavlink1=force_mavlink1)
def terrain_check_encode(self, lat, lon):
'''
Request that the vehicle report terrain height at the given location.
Used by GCS to check if vehicle has all terrain data
needed for a mission.
lat : Latitude (int32_t)
lon : Longitude (int32_t)
'''
return MAVLink_terrain_check_message(lat, lon)
def terrain_check_send(self, lat, lon, force_mavlink1=False):
'''
Request that the vehicle report terrain height at the given location.
Used by GCS to check if vehicle has all terrain data
needed for a mission.
lat : Latitude (int32_t)
lon : Longitude (int32_t)
'''
return self.send(self.terrain_check_encode(lat, lon), force_mavlink1=force_mavlink1)
def terrain_report_encode(self, lat, lon, spacing, terrain_height, current_height, pending, loaded):
'''
Response from a TERRAIN_CHECK request
lat : Latitude (int32_t)
lon : Longitude (int32_t)
spacing : grid spacing (zero if terrain at this location unavailable) (uint16_t)
terrain_height : Terrain height AMSL (float)
current_height : Current vehicle height above lat/lon terrain height (float)
pending : Number of 4x4 terrain blocks waiting to be received or read from disk (uint16_t)
loaded : Number of 4x4 terrain blocks in memory (uint16_t)
'''
return MAVLink_terrain_report_message(lat, lon, spacing, terrain_height, current_height, pending, loaded)
def terrain_report_send(self, lat, lon, spacing, terrain_height, current_height, pending, loaded, force_mavlink1=False):
'''
Response from a TERRAIN_CHECK request
lat : Latitude (int32_t)
lon : Longitude (int32_t)
spacing : grid spacing (zero if terrain at this location unavailable) (uint16_t)
terrain_height : Terrain height AMSL (float)
current_height : Current vehicle height above lat/lon terrain height (float)
pending : Number of 4x4 terrain blocks waiting to be received or read from disk (uint16_t)
loaded : Number of 4x4 terrain blocks in memory (uint16_t)
'''
return self.send(self.terrain_report_encode(lat, lon, spacing, terrain_height, current_height, pending, loaded), force_mavlink1=force_mavlink1)
def scaled_pressure2_encode(self, time_boot_ms, press_abs, press_diff, temperature):
'''
Barometer readings for 2nd barometer
time_boot_ms : Timestamp (time since system boot). (uint32_t)
press_abs : Absolute pressure (float)
press_diff : Differential pressure (float)
temperature : Temperature measurement (int16_t)
'''
return MAVLink_scaled_pressure2_message(time_boot_ms, press_abs, press_diff, temperature)
def scaled_pressure2_send(self, time_boot_ms, press_abs, press_diff, temperature, force_mavlink1=False):
'''
Barometer readings for 2nd barometer
time_boot_ms : Timestamp (time since system boot). (uint32_t)
press_abs : Absolute pressure (float)
press_diff : Differential pressure (float)
temperature : Temperature measurement (int16_t)
'''
return self.send(self.scaled_pressure2_encode(time_boot_ms, press_abs, press_diff, temperature), force_mavlink1=force_mavlink1)
def att_pos_mocap_encode(self, time_usec, q, x, y, z, covariance=0):
'''
Motion capture attitude and position
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
q : Attitude quaternion (w, x, y, z order, zero-rotation is 1, 0, 0, 0) (float)
x : X position (NED) (float)
y : Y position (NED) (float)
z : Z position (NED) (float)
covariance : Pose covariance matrix upper right triangular (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
'''
return MAVLink_att_pos_mocap_message(time_usec, q, x, y, z, covariance)
def att_pos_mocap_send(self, time_usec, q, x, y, z, covariance=0, force_mavlink1=False):
'''
Motion capture attitude and position
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
q : Attitude quaternion (w, x, y, z order, zero-rotation is 1, 0, 0, 0) (float)
x : X position (NED) (float)
y : Y position (NED) (float)
z : Z position (NED) (float)
covariance : Pose covariance matrix upper right triangular (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
'''
return self.send(self.att_pos_mocap_encode(time_usec, q, x, y, z, covariance), force_mavlink1=force_mavlink1)
def set_actuator_control_target_encode(self, time_usec, group_mlx, target_system, target_component, controls):
'''
Set the vehicle attitude and body angular rates.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
group_mlx : Actuator group. The "_mlx" indicates this is a multi-instance message and a MAVLink parser should use this field to difference between instances. (uint8_t)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
controls : Actuator controls. Normed to -1..+1 where 0 is neutral position. Throttle for single rotation direction motors is 0..1, negative range for reverse direction. Standard mapping for attitude controls (group 0): (index 0-7): roll, pitch, yaw, throttle, flaps, spoilers, airbrakes, landing gear. Load a pass-through mixer to repurpose them as generic outputs. (float)
'''
return MAVLink_set_actuator_control_target_message(time_usec, group_mlx, target_system, target_component, controls)
def set_actuator_control_target_send(self, time_usec, group_mlx, target_system, target_component, controls, force_mavlink1=False):
'''
Set the vehicle attitude and body angular rates.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
group_mlx : Actuator group. The "_mlx" indicates this is a multi-instance message and a MAVLink parser should use this field to difference between instances. (uint8_t)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
controls : Actuator controls. Normed to -1..+1 where 0 is neutral position. Throttle for single rotation direction motors is 0..1, negative range for reverse direction. Standard mapping for attitude controls (group 0): (index 0-7): roll, pitch, yaw, throttle, flaps, spoilers, airbrakes, landing gear. Load a pass-through mixer to repurpose them as generic outputs. (float)
'''
return self.send(self.set_actuator_control_target_encode(time_usec, group_mlx, target_system, target_component, controls), force_mavlink1=force_mavlink1)
def actuator_control_target_encode(self, time_usec, group_mlx, controls):
'''
Set the vehicle attitude and body angular rates.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
group_mlx : Actuator group. The "_mlx" indicates this is a multi-instance message and a MAVLink parser should use this field to difference between instances. (uint8_t)
controls : Actuator controls. Normed to -1..+1 where 0 is neutral position. Throttle for single rotation direction motors is 0..1, negative range for reverse direction. Standard mapping for attitude controls (group 0): (index 0-7): roll, pitch, yaw, throttle, flaps, spoilers, airbrakes, landing gear. Load a pass-through mixer to repurpose them as generic outputs. (float)
'''
return MAVLink_actuator_control_target_message(time_usec, group_mlx, controls)
def actuator_control_target_send(self, time_usec, group_mlx, controls, force_mavlink1=False):
'''
Set the vehicle attitude and body angular rates.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
group_mlx : Actuator group. The "_mlx" indicates this is a multi-instance message and a MAVLink parser should use this field to difference between instances. (uint8_t)
controls : Actuator controls. Normed to -1..+1 where 0 is neutral position. Throttle for single rotation direction motors is 0..1, negative range for reverse direction. Standard mapping for attitude controls (group 0): (index 0-7): roll, pitch, yaw, throttle, flaps, spoilers, airbrakes, landing gear. Load a pass-through mixer to repurpose them as generic outputs. (float)
'''
return self.send(self.actuator_control_target_encode(time_usec, group_mlx, controls), force_mavlink1=force_mavlink1)
def altitude_encode(self, time_usec, altitude_monotonic, altitude_amsl, altitude_local, altitude_relative, altitude_terrain, bottom_clearance):
'''
The current system altitude.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
altitude_monotonic : This altitude measure is initialized on system boot and monotonic (it is never reset, but represents the local altitude change). The only guarantee on this field is that it will never be reset and is consistent within a flight. The recommended value for this field is the uncorrected barometric altitude at boot time. This altitude will also drift and vary between flights. (float)
altitude_amsl : This altitude measure is strictly above mean sea level and might be non-monotonic (it might reset on events like GPS lock or when a new QNH value is set). It should be the altitude to which global altitude waypoints are compared to. Note that it is *not* the GPS altitude, however, most GPS modules already output AMSL by default and not the WGS84 altitude. (float)
altitude_local : This is the local altitude in the local coordinate frame. It is not the altitude above home, but in reference to the coordinate origin (0, 0, 0). It is up-positive. (float)
altitude_relative : This is the altitude above the home position. It resets on each change of the current home position. (float)
altitude_terrain : This is the altitude above terrain. It might be fed by a terrain database or an altimeter. Values smaller than -1000 should be interpreted as unknown. (float)
bottom_clearance : This is not the altitude, but the clear space below the system according to the fused clearance estimate. It generally should max out at the maximum range of e.g. the laser altimeter. It is generally a moving target. A negative value indicates no measurement available. (float)
'''
return MAVLink_altitude_message(time_usec, altitude_monotonic, altitude_amsl, altitude_local, altitude_relative, altitude_terrain, bottom_clearance)
def altitude_send(self, time_usec, altitude_monotonic, altitude_amsl, altitude_local, altitude_relative, altitude_terrain, bottom_clearance, force_mavlink1=False):
'''
The current system altitude.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
altitude_monotonic : This altitude measure is initialized on system boot and monotonic (it is never reset, but represents the local altitude change). The only guarantee on this field is that it will never be reset and is consistent within a flight. The recommended value for this field is the uncorrected barometric altitude at boot time. This altitude will also drift and vary between flights. (float)
altitude_amsl : This altitude measure is strictly above mean sea level and might be non-monotonic (it might reset on events like GPS lock or when a new QNH value is set). It should be the altitude to which global altitude waypoints are compared to. Note that it is *not* the GPS altitude, however, most GPS modules already output AMSL by default and not the WGS84 altitude. (float)
altitude_local : This is the local altitude in the local coordinate frame. It is not the altitude above home, but in reference to the coordinate origin (0, 0, 0). It is up-positive. (float)
altitude_relative : This is the altitude above the home position. It resets on each change of the current home position. (float)
altitude_terrain : This is the altitude above terrain. It might be fed by a terrain database or an altimeter. Values smaller than -1000 should be interpreted as unknown. (float)
bottom_clearance : This is not the altitude, but the clear space below the system according to the fused clearance estimate. It generally should max out at the maximum range of e.g. the laser altimeter. It is generally a moving target. A negative value indicates no measurement available. (float)
'''
return self.send(self.altitude_encode(time_usec, altitude_monotonic, altitude_amsl, altitude_local, altitude_relative, altitude_terrain, bottom_clearance), force_mavlink1=force_mavlink1)
def resource_request_encode(self, request_id, uri_type, uri, transfer_type, storage):
'''
The autopilot is requesting a resource (file, binary, other type of
data)
request_id : Request ID. This ID should be re-used when sending back URI contents (uint8_t)
uri_type : The type of requested URI. 0 = a file via URL. 1 = a UAVCAN binary (uint8_t)
uri : The requested unique resource identifier (URI). It is not necessarily a straight domain name (depends on the URI type enum) (uint8_t)
transfer_type : The way the autopilot wants to receive the URI. 0 = MAVLink FTP. 1 = binary stream. (uint8_t)
storage : The storage path the autopilot wants the URI to be stored in. Will only be valid if the transfer_type has a storage associated (e.g. MAVLink FTP). (uint8_t)
'''
return MAVLink_resource_request_message(request_id, uri_type, uri, transfer_type, storage)
def resource_request_send(self, request_id, uri_type, uri, transfer_type, storage, force_mavlink1=False):
'''
The autopilot is requesting a resource (file, binary, other type of
data)
request_id : Request ID. This ID should be re-used when sending back URI contents (uint8_t)
uri_type : The type of requested URI. 0 = a file via URL. 1 = a UAVCAN binary (uint8_t)
uri : The requested unique resource identifier (URI). It is not necessarily a straight domain name (depends on the URI type enum) (uint8_t)
transfer_type : The way the autopilot wants to receive the URI. 0 = MAVLink FTP. 1 = binary stream. (uint8_t)
storage : The storage path the autopilot wants the URI to be stored in. Will only be valid if the transfer_type has a storage associated (e.g. MAVLink FTP). (uint8_t)
'''
return self.send(self.resource_request_encode(request_id, uri_type, uri, transfer_type, storage), force_mavlink1=force_mavlink1)
def scaled_pressure3_encode(self, time_boot_ms, press_abs, press_diff, temperature):
'''
Barometer readings for 3rd barometer
time_boot_ms : Timestamp (time since system boot). (uint32_t)
press_abs : Absolute pressure (float)
press_diff : Differential pressure (float)
temperature : Temperature measurement (int16_t)
'''
return MAVLink_scaled_pressure3_message(time_boot_ms, press_abs, press_diff, temperature)
def scaled_pressure3_send(self, time_boot_ms, press_abs, press_diff, temperature, force_mavlink1=False):
'''
Barometer readings for 3rd barometer
time_boot_ms : Timestamp (time since system boot). (uint32_t)
press_abs : Absolute pressure (float)
press_diff : Differential pressure (float)
temperature : Temperature measurement (int16_t)
'''
return self.send(self.scaled_pressure3_encode(time_boot_ms, press_abs, press_diff, temperature), force_mavlink1=force_mavlink1)
def follow_target_encode(self, timestamp, est_capabilities, lat, lon, alt, vel, acc, attitude_q, rates, position_cov, custom_state):
'''
current motion information from a designated system
timestamp : Timestamp (time since system boot). (uint64_t)
est_capabilities : bit positions for tracker reporting capabilities (POS = 0, VEL = 1, ACCEL = 2, ATT + RATES = 3) (uint8_t)
lat : Latitude (WGS84) (int32_t)
lon : Longitude (WGS84) (int32_t)
alt : Altitude (AMSL) (float)
vel : target velocity (0,0,0) for unknown (float)
acc : linear target acceleration (0,0,0) for unknown (float)
attitude_q : (1 0 0 0 for unknown) (float)
rates : (0 0 0 for unknown) (float)
position_cov : eph epv (float)
custom_state : button states or switches of a tracker device (uint64_t)
'''
return MAVLink_follow_target_message(timestamp, est_capabilities, lat, lon, alt, vel, acc, attitude_q, rates, position_cov, custom_state)
def follow_target_send(self, timestamp, est_capabilities, lat, lon, alt, vel, acc, attitude_q, rates, position_cov, custom_state, force_mavlink1=False):
'''
current motion information from a designated system
timestamp : Timestamp (time since system boot). (uint64_t)
est_capabilities : bit positions for tracker reporting capabilities (POS = 0, VEL = 1, ACCEL = 2, ATT + RATES = 3) (uint8_t)
lat : Latitude (WGS84) (int32_t)
lon : Longitude (WGS84) (int32_t)
alt : Altitude (AMSL) (float)
vel : target velocity (0,0,0) for unknown (float)
acc : linear target acceleration (0,0,0) for unknown (float)
attitude_q : (1 0 0 0 for unknown) (float)
rates : (0 0 0 for unknown) (float)
position_cov : eph epv (float)
custom_state : button states or switches of a tracker device (uint64_t)
'''
return self.send(self.follow_target_encode(timestamp, est_capabilities, lat, lon, alt, vel, acc, attitude_q, rates, position_cov, custom_state), force_mavlink1=force_mavlink1)
def control_system_state_encode(self, time_usec, x_acc, y_acc, z_acc, x_vel, y_vel, z_vel, x_pos, y_pos, z_pos, airspeed, vel_variance, pos_variance, q, roll_rate, pitch_rate, yaw_rate):
'''
The smoothed, monotonic system state used to feed the control loops of
the system.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
x_acc : X acceleration in body frame (float)
y_acc : Y acceleration in body frame (float)
z_acc : Z acceleration in body frame (float)
x_vel : X velocity in body frame (float)
y_vel : Y velocity in body frame (float)
z_vel : Z velocity in body frame (float)
x_pos : X position in local frame (float)
y_pos : Y position in local frame (float)
z_pos : Z position in local frame (float)
airspeed : Airspeed, set to -1 if unknown (float)
vel_variance : Variance of body velocity estimate (float)
pos_variance : Variance in local position (float)
q : The attitude, represented as Quaternion (float)
roll_rate : Angular rate in roll axis (float)
pitch_rate : Angular rate in pitch axis (float)
yaw_rate : Angular rate in yaw axis (float)
'''
return MAVLink_control_system_state_message(time_usec, x_acc, y_acc, z_acc, x_vel, y_vel, z_vel, x_pos, y_pos, z_pos, airspeed, vel_variance, pos_variance, q, roll_rate, pitch_rate, yaw_rate)
def control_system_state_send(self, time_usec, x_acc, y_acc, z_acc, x_vel, y_vel, z_vel, x_pos, y_pos, z_pos, airspeed, vel_variance, pos_variance, q, roll_rate, pitch_rate, yaw_rate, force_mavlink1=False):
'''
The smoothed, monotonic system state used to feed the control loops of
the system.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
x_acc : X acceleration in body frame (float)
y_acc : Y acceleration in body frame (float)
z_acc : Z acceleration in body frame (float)
x_vel : X velocity in body frame (float)
y_vel : Y velocity in body frame (float)
z_vel : Z velocity in body frame (float)
x_pos : X position in local frame (float)
y_pos : Y position in local frame (float)
z_pos : Z position in local frame (float)
airspeed : Airspeed, set to -1 if unknown (float)
vel_variance : Variance of body velocity estimate (float)
pos_variance : Variance in local position (float)
q : The attitude, represented as Quaternion (float)
roll_rate : Angular rate in roll axis (float)
pitch_rate : Angular rate in pitch axis (float)
yaw_rate : Angular rate in yaw axis (float)
'''
return self.send(self.control_system_state_encode(time_usec, x_acc, y_acc, z_acc, x_vel, y_vel, z_vel, x_pos, y_pos, z_pos, airspeed, vel_variance, pos_variance, q, roll_rate, pitch_rate, yaw_rate), force_mavlink1=force_mavlink1)
def battery_status_encode(self, id, battery_function, type, temperature, voltages, current_battery, current_consumed, energy_consumed, battery_remaining, time_remaining=0, charge_state=0):
'''
Battery information
id : Battery ID (uint8_t)
battery_function : Function of the battery (uint8_t)
type : Type (chemistry) of the battery (uint8_t)
temperature : Temperature of the battery. INT16_MAX for unknown temperature. (int16_t)
voltages : Battery voltage of cells. Cells above the valid cell count for this battery should have the UINT16_MAX value. (uint16_t)
current_battery : Battery current, -1: autopilot does not measure the current (int16_t)
current_consumed : Consumed charge, -1: autopilot does not provide consumption estimate (int32_t)
energy_consumed : Consumed energy, -1: autopilot does not provide energy consumption estimate (int32_t)
battery_remaining : Remaining battery energy. Values: [0-100], -1: autopilot does not estimate the remaining battery. (int8_t)
time_remaining : Remaining battery time, 0: autopilot does not provide remaining battery time estimate (int32_t)
charge_state : State for extent of discharge, provided by autopilot for warning or external reactions (uint8_t)
'''
return MAVLink_battery_status_message(id, battery_function, type, temperature, voltages, current_battery, current_consumed, energy_consumed, battery_remaining, time_remaining, charge_state)
def battery_status_send(self, id, battery_function, type, temperature, voltages, current_battery, current_consumed, energy_consumed, battery_remaining, time_remaining=0, charge_state=0, force_mavlink1=False):
'''
Battery information
id : Battery ID (uint8_t)
battery_function : Function of the battery (uint8_t)
type : Type (chemistry) of the battery (uint8_t)
temperature : Temperature of the battery. INT16_MAX for unknown temperature. (int16_t)
voltages : Battery voltage of cells. Cells above the valid cell count for this battery should have the UINT16_MAX value. (uint16_t)
current_battery : Battery current, -1: autopilot does not measure the current (int16_t)
current_consumed : Consumed charge, -1: autopilot does not provide consumption estimate (int32_t)
energy_consumed : Consumed energy, -1: autopilot does not provide energy consumption estimate (int32_t)
battery_remaining : Remaining battery energy. Values: [0-100], -1: autopilot does not estimate the remaining battery. (int8_t)
time_remaining : Remaining battery time, 0: autopilot does not provide remaining battery time estimate (int32_t)
charge_state : State for extent of discharge, provided by autopilot for warning or external reactions (uint8_t)
'''
return self.send(self.battery_status_encode(id, battery_function, type, temperature, voltages, current_battery, current_consumed, energy_consumed, battery_remaining, time_remaining, charge_state), force_mavlink1=force_mavlink1)
def autopilot_version_encode(self, capabilities, flight_sw_version, middleware_sw_version, os_sw_version, board_version, flight_custom_version, middleware_custom_version, os_custom_version, vendor_id, product_id, uid, uid2=0):
'''
Version and capability of autopilot software
capabilities : Bitmap of capabilities (uint64_t)
flight_sw_version : Firmware version number (uint32_t)
middleware_sw_version : Middleware version number (uint32_t)
os_sw_version : Operating system version number (uint32_t)
board_version : HW / board version (last 8 bytes should be silicon ID, if any) (uint32_t)
flight_custom_version : Custom version field, commonly the first 8 bytes of the git hash. This is not an unique identifier, but should allow to identify the commit using the main version number even for very large code bases. (uint8_t)
middleware_custom_version : Custom version field, commonly the first 8 bytes of the git hash. This is not an unique identifier, but should allow to identify the commit using the main version number even for very large code bases. (uint8_t)
os_custom_version : Custom version field, commonly the first 8 bytes of the git hash. This is not an unique identifier, but should allow to identify the commit using the main version number even for very large code bases. (uint8_t)
vendor_id : ID of the board vendor (uint16_t)
product_id : ID of the product (uint16_t)
uid : UID if provided by hardware (see uid2) (uint64_t)
uid2 : UID if provided by hardware (supersedes the uid field. If this is non-zero, use this field, otherwise use uid) (uint8_t)
'''
return MAVLink_autopilot_version_message(capabilities, flight_sw_version, middleware_sw_version, os_sw_version, board_version, flight_custom_version, middleware_custom_version, os_custom_version, vendor_id, product_id, uid, uid2)
def autopilot_version_send(self, capabilities, flight_sw_version, middleware_sw_version, os_sw_version, board_version, flight_custom_version, middleware_custom_version, os_custom_version, vendor_id, product_id, uid, uid2=0, force_mavlink1=False):
'''
Version and capability of autopilot software
capabilities : Bitmap of capabilities (uint64_t)
flight_sw_version : Firmware version number (uint32_t)
middleware_sw_version : Middleware version number (uint32_t)
os_sw_version : Operating system version number (uint32_t)
board_version : HW / board version (last 8 bytes should be silicon ID, if any) (uint32_t)
flight_custom_version : Custom version field, commonly the first 8 bytes of the git hash. This is not an unique identifier, but should allow to identify the commit using the main version number even for very large code bases. (uint8_t)
middleware_custom_version : Custom version field, commonly the first 8 bytes of the git hash. This is not an unique identifier, but should allow to identify the commit using the main version number even for very large code bases. (uint8_t)
os_custom_version : Custom version field, commonly the first 8 bytes of the git hash. This is not an unique identifier, but should allow to identify the commit using the main version number even for very large code bases. (uint8_t)
vendor_id : ID of the board vendor (uint16_t)
product_id : ID of the product (uint16_t)
uid : UID if provided by hardware (see uid2) (uint64_t)
uid2 : UID if provided by hardware (supersedes the uid field. If this is non-zero, use this field, otherwise use uid) (uint8_t)
'''
return self.send(self.autopilot_version_encode(capabilities, flight_sw_version, middleware_sw_version, os_sw_version, board_version, flight_custom_version, middleware_custom_version, os_custom_version, vendor_id, product_id, uid, uid2), force_mavlink1=force_mavlink1)
def landing_target_encode(self, time_usec, target_num, frame, angle_x, angle_y, distance, size_x, size_y, x=0, y=0, z=0, q=0, type=0, position_valid=0):
'''
The location of a landing area captured from a downward facing camera
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
target_num : The ID of the target if multiple targets are present (uint8_t)
frame : Coordinate frame used for following fields. (uint8_t)
angle_x : X-axis angular offset of the target from the center of the image (float)
angle_y : Y-axis angular offset of the target from the center of the image (float)
distance : Distance to the target from the vehicle (float)
size_x : Size of target along x-axis (float)
size_y : Size of target along y-axis (float)
x : X Position of the landing target on MAV_FRAME (float)
y : Y Position of the landing target on MAV_FRAME (float)
z : Z Position of the landing target on MAV_FRAME (float)
q : Quaternion of landing target orientation (w, x, y, z order, zero-rotation is 1, 0, 0, 0) (float)
type : Type of landing target (uint8_t)
position_valid : Boolean indicating known position (1) or default unknown position (0), for validation of positioning of the landing target (uint8_t)
'''
return MAVLink_landing_target_message(time_usec, target_num, frame, angle_x, angle_y, distance, size_x, size_y, x, y, z, q, type, position_valid)
def landing_target_send(self, time_usec, target_num, frame, angle_x, angle_y, distance, size_x, size_y, x=0, y=0, z=0, q=0, type=0, position_valid=0, force_mavlink1=False):
'''
The location of a landing area captured from a downward facing camera
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
target_num : The ID of the target if multiple targets are present (uint8_t)
frame : Coordinate frame used for following fields. (uint8_t)
angle_x : X-axis angular offset of the target from the center of the image (float)
angle_y : Y-axis angular offset of the target from the center of the image (float)
distance : Distance to the target from the vehicle (float)
size_x : Size of target along x-axis (float)
size_y : Size of target along y-axis (float)
x : X Position of the landing target on MAV_FRAME (float)
y : Y Position of the landing target on MAV_FRAME (float)
z : Z Position of the landing target on MAV_FRAME (float)
q : Quaternion of landing target orientation (w, x, y, z order, zero-rotation is 1, 0, 0, 0) (float)
type : Type of landing target (uint8_t)
position_valid : Boolean indicating known position (1) or default unknown position (0), for validation of positioning of the landing target (uint8_t)
'''
return self.send(self.landing_target_encode(time_usec, target_num, frame, angle_x, angle_y, distance, size_x, size_y, x, y, z, q, type, position_valid), force_mavlink1=force_mavlink1)
def estimator_status_encode(self, time_usec, flags, vel_ratio, pos_horiz_ratio, pos_vert_ratio, mag_ratio, hagl_ratio, tas_ratio, pos_horiz_accuracy, pos_vert_accuracy):
'''
Estimator status message including flags, innovation test ratios and
estimated accuracies. The flags message is an integer
bitmask containing information on which EKF outputs
are valid. See the ESTIMATOR_STATUS_FLAGS enum
definition for further information. The innovation
test ratios show the magnitude of the sensor
innovation divided by the innovation check threshold.
Under normal operation the innovation test ratios
should be below 0.5 with occasional values up to 1.0.
Values greater than 1.0 should be rare under normal
operation and indicate that a measurement has been
rejected by the filter. The user should be notified if
an innovation test ratio greater than 1.0 is recorded.
Notifications for values in the range between 0.5 and
1.0 should be optional and controllable by the user.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
flags : Bitmap indicating which EKF outputs are valid. (uint16_t)
vel_ratio : Velocity innovation test ratio (float)
pos_horiz_ratio : Horizontal position innovation test ratio (float)
pos_vert_ratio : Vertical position innovation test ratio (float)
mag_ratio : Magnetometer innovation test ratio (float)
hagl_ratio : Height above terrain innovation test ratio (float)
tas_ratio : True airspeed innovation test ratio (float)
pos_horiz_accuracy : Horizontal position 1-STD accuracy relative to the EKF local origin (float)
pos_vert_accuracy : Vertical position 1-STD accuracy relative to the EKF local origin (float)
'''
return MAVLink_estimator_status_message(time_usec, flags, vel_ratio, pos_horiz_ratio, pos_vert_ratio, mag_ratio, hagl_ratio, tas_ratio, pos_horiz_accuracy, pos_vert_accuracy)
def estimator_status_send(self, time_usec, flags, vel_ratio, pos_horiz_ratio, pos_vert_ratio, mag_ratio, hagl_ratio, tas_ratio, pos_horiz_accuracy, pos_vert_accuracy, force_mavlink1=False):
'''
Estimator status message including flags, innovation test ratios and
estimated accuracies. The flags message is an integer
bitmask containing information on which EKF outputs
are valid. See the ESTIMATOR_STATUS_FLAGS enum
definition for further information. The innovation
test ratios show the magnitude of the sensor
innovation divided by the innovation check threshold.
Under normal operation the innovation test ratios
should be below 0.5 with occasional values up to 1.0.
Values greater than 1.0 should be rare under normal
operation and indicate that a measurement has been
rejected by the filter. The user should be notified if
an innovation test ratio greater than 1.0 is recorded.
Notifications for values in the range between 0.5 and
1.0 should be optional and controllable by the user.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
flags : Bitmap indicating which EKF outputs are valid. (uint16_t)
vel_ratio : Velocity innovation test ratio (float)
pos_horiz_ratio : Horizontal position innovation test ratio (float)
pos_vert_ratio : Vertical position innovation test ratio (float)
mag_ratio : Magnetometer innovation test ratio (float)
hagl_ratio : Height above terrain innovation test ratio (float)
tas_ratio : True airspeed innovation test ratio (float)
pos_horiz_accuracy : Horizontal position 1-STD accuracy relative to the EKF local origin (float)
pos_vert_accuracy : Vertical position 1-STD accuracy relative to the EKF local origin (float)
'''
return self.send(self.estimator_status_encode(time_usec, flags, vel_ratio, pos_horiz_ratio, pos_vert_ratio, mag_ratio, hagl_ratio, tas_ratio, pos_horiz_accuracy, pos_vert_accuracy), force_mavlink1=force_mavlink1)
def wind_cov_encode(self, time_usec, wind_x, wind_y, wind_z, var_horiz, var_vert, wind_alt, horiz_accuracy, vert_accuracy):
'''
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
wind_x : Wind in X (NED) direction (float)
wind_y : Wind in Y (NED) direction (float)
wind_z : Wind in Z (NED) direction (float)
var_horiz : Variability of the wind in XY. RMS of a 1 Hz lowpassed wind estimate. (float)
var_vert : Variability of the wind in Z. RMS of a 1 Hz lowpassed wind estimate. (float)
wind_alt : Altitude (AMSL) that this measurement was taken at (float)
horiz_accuracy : Horizontal speed 1-STD accuracy (float)
vert_accuracy : Vertical speed 1-STD accuracy (float)
'''
return MAVLink_wind_cov_message(time_usec, wind_x, wind_y, wind_z, var_horiz, var_vert, wind_alt, horiz_accuracy, vert_accuracy)
def wind_cov_send(self, time_usec, wind_x, wind_y, wind_z, var_horiz, var_vert, wind_alt, horiz_accuracy, vert_accuracy, force_mavlink1=False):
'''
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
wind_x : Wind in X (NED) direction (float)
wind_y : Wind in Y (NED) direction (float)
wind_z : Wind in Z (NED) direction (float)
var_horiz : Variability of the wind in XY. RMS of a 1 Hz lowpassed wind estimate. (float)
var_vert : Variability of the wind in Z. RMS of a 1 Hz lowpassed wind estimate. (float)
wind_alt : Altitude (AMSL) that this measurement was taken at (float)
horiz_accuracy : Horizontal speed 1-STD accuracy (float)
vert_accuracy : Vertical speed 1-STD accuracy (float)
'''
return self.send(self.wind_cov_encode(time_usec, wind_x, wind_y, wind_z, var_horiz, var_vert, wind_alt, horiz_accuracy, vert_accuracy), force_mavlink1=force_mavlink1)
def gps_input_encode(self, time_usec, gps_id, ignore_flags, time_week_ms, time_week, fix_type, lat, lon, alt, hdop, vdop, vn, ve, vd, speed_accuracy, horiz_accuracy, vert_accuracy, satellites_visible):
'''
GPS sensor input message. This is a raw sensor value sent by the GPS.
This is NOT the global position estimate of the
system.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
gps_id : ID of the GPS for multiple GPS inputs (uint8_t)
ignore_flags : Bitmap indicating which GPS input flags fields to ignore. All other fields must be provided. (uint16_t)
time_week_ms : GPS time (from start of GPS week) (uint32_t)
time_week : GPS week number (uint16_t)
fix_type : 0-1: no fix, 2: 2D fix, 3: 3D fix. 4: 3D with DGPS. 5: 3D with RTK (uint8_t)
lat : Latitude (WGS84) (int32_t)
lon : Longitude (WGS84) (int32_t)
alt : Altitude (AMSL). Positive for up. (float)
hdop : GPS HDOP horizontal dilution of position (float)
vdop : GPS VDOP vertical dilution of position (float)
vn : GPS velocity in NORTH direction in earth-fixed NED frame (float)
ve : GPS velocity in EAST direction in earth-fixed NED frame (float)
vd : GPS velocity in DOWN direction in earth-fixed NED frame (float)
speed_accuracy : GPS speed accuracy (float)
horiz_accuracy : GPS horizontal accuracy (float)
vert_accuracy : GPS vertical accuracy (float)
satellites_visible : Number of satellites visible. (uint8_t)
'''
return MAVLink_gps_input_message(time_usec, gps_id, ignore_flags, time_week_ms, time_week, fix_type, lat, lon, alt, hdop, vdop, vn, ve, vd, speed_accuracy, horiz_accuracy, vert_accuracy, satellites_visible)
def gps_input_send(self, time_usec, gps_id, ignore_flags, time_week_ms, time_week, fix_type, lat, lon, alt, hdop, vdop, vn, ve, vd, speed_accuracy, horiz_accuracy, vert_accuracy, satellites_visible, force_mavlink1=False):
'''
GPS sensor input message. This is a raw sensor value sent by the GPS.
This is NOT the global position estimate of the
system.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
gps_id : ID of the GPS for multiple GPS inputs (uint8_t)
ignore_flags : Bitmap indicating which GPS input flags fields to ignore. All other fields must be provided. (uint16_t)
time_week_ms : GPS time (from start of GPS week) (uint32_t)
time_week : GPS week number (uint16_t)
fix_type : 0-1: no fix, 2: 2D fix, 3: 3D fix. 4: 3D with DGPS. 5: 3D with RTK (uint8_t)
lat : Latitude (WGS84) (int32_t)
lon : Longitude (WGS84) (int32_t)
alt : Altitude (AMSL). Positive for up. (float)
hdop : GPS HDOP horizontal dilution of position (float)
vdop : GPS VDOP vertical dilution of position (float)
vn : GPS velocity in NORTH direction in earth-fixed NED frame (float)
ve : GPS velocity in EAST direction in earth-fixed NED frame (float)
vd : GPS velocity in DOWN direction in earth-fixed NED frame (float)
speed_accuracy : GPS speed accuracy (float)
horiz_accuracy : GPS horizontal accuracy (float)
vert_accuracy : GPS vertical accuracy (float)
satellites_visible : Number of satellites visible. (uint8_t)
'''
return self.send(self.gps_input_encode(time_usec, gps_id, ignore_flags, time_week_ms, time_week, fix_type, lat, lon, alt, hdop, vdop, vn, ve, vd, speed_accuracy, horiz_accuracy, vert_accuracy, satellites_visible), force_mavlink1=force_mavlink1)
def gps_rtcm_data_encode(self, flags, len, data):
'''
RTCM message for injecting into the onboard GPS (used for DGPS)
flags : LSB: 1 means message is fragmented, next 2 bits are the fragment ID, the remaining 5 bits are used for the sequence ID. Messages are only to be flushed to the GPS when the entire message has been reconstructed on the autopilot. The fragment ID specifies which order the fragments should be assembled into a buffer, while the sequence ID is used to detect a mismatch between different buffers. The buffer is considered fully reconstructed when either all 4 fragments are present, or all the fragments before the first fragment with a non full payload is received. This management is used to ensure that normal GPS operation doesn't corrupt RTCM data, and to recover from a unreliable transport delivery order. (uint8_t)
len : data length (uint8_t)
data : RTCM message (may be fragmented) (uint8_t)
'''
return MAVLink_gps_rtcm_data_message(flags, len, data)
def gps_rtcm_data_send(self, flags, len, data, force_mavlink1=False):
'''
RTCM message for injecting into the onboard GPS (used for DGPS)
flags : LSB: 1 means message is fragmented, next 2 bits are the fragment ID, the remaining 5 bits are used for the sequence ID. Messages are only to be flushed to the GPS when the entire message has been reconstructed on the autopilot. The fragment ID specifies which order the fragments should be assembled into a buffer, while the sequence ID is used to detect a mismatch between different buffers. The buffer is considered fully reconstructed when either all 4 fragments are present, or all the fragments before the first fragment with a non full payload is received. This management is used to ensure that normal GPS operation doesn't corrupt RTCM data, and to recover from a unreliable transport delivery order. (uint8_t)
len : data length (uint8_t)
data : RTCM message (may be fragmented) (uint8_t)
'''
return self.send(self.gps_rtcm_data_encode(flags, len, data), force_mavlink1=force_mavlink1)
def high_latency_encode(self, base_mode, custom_mode, landed_state, roll, pitch, heading, throttle, heading_sp, latitude, longitude, altitude_amsl, altitude_sp, airspeed, airspeed_sp, groundspeed, climb_rate, gps_nsat, gps_fix_type, battery_remaining, temperature, temperature_air, failsafe, wp_num, wp_distance):
'''
Message appropriate for high latency connections like Iridium
base_mode : Bitmap of enabled system modes. (uint8_t)
custom_mode : A bitfield for use for autopilot-specific flags. (uint32_t)
landed_state : The landed state. Is set to MAV_LANDED_STATE_UNDEFINED if landed state is unknown. (uint8_t)
roll : roll (int16_t)
pitch : pitch (int16_t)
heading : heading (uint16_t)
throttle : throttle (percentage) (int8_t)
heading_sp : heading setpoint (int16_t)
latitude : Latitude (int32_t)
longitude : Longitude (int32_t)
altitude_amsl : Altitude above mean sea level (int16_t)
altitude_sp : Altitude setpoint relative to the home position (int16_t)
airspeed : airspeed (uint8_t)
airspeed_sp : airspeed setpoint (uint8_t)
groundspeed : groundspeed (uint8_t)
climb_rate : climb rate (int8_t)
gps_nsat : Number of satellites visible. If unknown, set to 255 (uint8_t)
gps_fix_type : GPS Fix type. (uint8_t)
battery_remaining : Remaining battery (percentage) (uint8_t)
temperature : Autopilot temperature (degrees C) (int8_t)
temperature_air : Air temperature (degrees C) from airspeed sensor (int8_t)
failsafe : failsafe (each bit represents a failsafe where 0=ok, 1=failsafe active (bit0:RC, bit1:batt, bit2:GPS, bit3:GCS, bit4:fence) (uint8_t)
wp_num : current waypoint number (uint8_t)
wp_distance : distance to target (uint16_t)
'''
return MAVLink_high_latency_message(base_mode, custom_mode, landed_state, roll, pitch, heading, throttle, heading_sp, latitude, longitude, altitude_amsl, altitude_sp, airspeed, airspeed_sp, groundspeed, climb_rate, gps_nsat, gps_fix_type, battery_remaining, temperature, temperature_air, failsafe, wp_num, wp_distance)
def high_latency_send(self, base_mode, custom_mode, landed_state, roll, pitch, heading, throttle, heading_sp, latitude, longitude, altitude_amsl, altitude_sp, airspeed, airspeed_sp, groundspeed, climb_rate, gps_nsat, gps_fix_type, battery_remaining, temperature, temperature_air, failsafe, wp_num, wp_distance, force_mavlink1=False):
'''
Message appropriate for high latency connections like Iridium
base_mode : Bitmap of enabled system modes. (uint8_t)
custom_mode : A bitfield for use for autopilot-specific flags. (uint32_t)
landed_state : The landed state. Is set to MAV_LANDED_STATE_UNDEFINED if landed state is unknown. (uint8_t)
roll : roll (int16_t)
pitch : pitch (int16_t)
heading : heading (uint16_t)
throttle : throttle (percentage) (int8_t)
heading_sp : heading setpoint (int16_t)
latitude : Latitude (int32_t)
longitude : Longitude (int32_t)
altitude_amsl : Altitude above mean sea level (int16_t)
altitude_sp : Altitude setpoint relative to the home position (int16_t)
airspeed : airspeed (uint8_t)
airspeed_sp : airspeed setpoint (uint8_t)
groundspeed : groundspeed (uint8_t)
climb_rate : climb rate (int8_t)
gps_nsat : Number of satellites visible. If unknown, set to 255 (uint8_t)
gps_fix_type : GPS Fix type. (uint8_t)
battery_remaining : Remaining battery (percentage) (uint8_t)
temperature : Autopilot temperature (degrees C) (int8_t)
temperature_air : Air temperature (degrees C) from airspeed sensor (int8_t)
failsafe : failsafe (each bit represents a failsafe where 0=ok, 1=failsafe active (bit0:RC, bit1:batt, bit2:GPS, bit3:GCS, bit4:fence) (uint8_t)
wp_num : current waypoint number (uint8_t)
wp_distance : distance to target (uint16_t)
'''
return self.send(self.high_latency_encode(base_mode, custom_mode, landed_state, roll, pitch, heading, throttle, heading_sp, latitude, longitude, altitude_amsl, altitude_sp, airspeed, airspeed_sp, groundspeed, climb_rate, gps_nsat, gps_fix_type, battery_remaining, temperature, temperature_air, failsafe, wp_num, wp_distance), force_mavlink1=force_mavlink1)
def high_latency2_encode(self, timestamp, type, autopilot, custom_mode, latitude, longitude, altitude, target_altitude, heading, target_heading, target_distance, throttle, airspeed, airspeed_sp, groundspeed, windspeed, wind_heading, eph, epv, temperature_air, climb_rate, battery, wp_num, failure_flags, custom0, custom1, custom2):
'''
Message appropriate for high latency connections like Iridium (version
2)
timestamp : Timestamp (milliseconds since boot or Unix epoch) (uint32_t)
type : Type of the MAV (quadrotor, helicopter, etc.) (uint8_t)
autopilot : Autopilot type / class. (uint8_t)
custom_mode : A bitfield for use for autopilot-specific flags (2 byte version). (uint16_t)
latitude : Latitude (int32_t)
longitude : Longitude (int32_t)
altitude : Altitude above mean sea level (int16_t)
target_altitude : Altitude setpoint (int16_t)
heading : Heading (uint8_t)
target_heading : Heading setpoint (uint8_t)
target_distance : Distance to target waypoint or position (uint16_t)
throttle : Throttle (uint8_t)
airspeed : Airspeed (uint8_t)
airspeed_sp : Airspeed setpoint (uint8_t)
groundspeed : Groundspeed (uint8_t)
windspeed : Windspeed (uint8_t)
wind_heading : Wind heading (uint8_t)
eph : Maximum error horizontal position since last message (uint8_t)
epv : Maximum error vertical position since last message (uint8_t)
temperature_air : Air temperature from airspeed sensor (int8_t)
climb_rate : Maximum climb rate magnitude since last message (int8_t)
battery : Battery (percentage, -1 for DNU) (int8_t)
wp_num : Current waypoint number (uint16_t)
failure_flags : Bitmap of failure flags. (uint16_t)
custom0 : Field for custom payload. (int8_t)
custom1 : Field for custom payload. (int8_t)
custom2 : Field for custom payload. (int8_t)
'''
return MAVLink_high_latency2_message(timestamp, type, autopilot, custom_mode, latitude, longitude, altitude, target_altitude, heading, target_heading, target_distance, throttle, airspeed, airspeed_sp, groundspeed, windspeed, wind_heading, eph, epv, temperature_air, climb_rate, battery, wp_num, failure_flags, custom0, custom1, custom2)
def high_latency2_send(self, timestamp, type, autopilot, custom_mode, latitude, longitude, altitude, target_altitude, heading, target_heading, target_distance, throttle, airspeed, airspeed_sp, groundspeed, windspeed, wind_heading, eph, epv, temperature_air, climb_rate, battery, wp_num, failure_flags, custom0, custom1, custom2, force_mavlink1=False):
'''
Message appropriate for high latency connections like Iridium (version
2)
timestamp : Timestamp (milliseconds since boot or Unix epoch) (uint32_t)
type : Type of the MAV (quadrotor, helicopter, etc.) (uint8_t)
autopilot : Autopilot type / class. (uint8_t)
custom_mode : A bitfield for use for autopilot-specific flags (2 byte version). (uint16_t)
latitude : Latitude (int32_t)
longitude : Longitude (int32_t)
altitude : Altitude above mean sea level (int16_t)
target_altitude : Altitude setpoint (int16_t)
heading : Heading (uint8_t)
target_heading : Heading setpoint (uint8_t)
target_distance : Distance to target waypoint or position (uint16_t)
throttle : Throttle (uint8_t)
airspeed : Airspeed (uint8_t)
airspeed_sp : Airspeed setpoint (uint8_t)
groundspeed : Groundspeed (uint8_t)
windspeed : Windspeed (uint8_t)
wind_heading : Wind heading (uint8_t)
eph : Maximum error horizontal position since last message (uint8_t)
epv : Maximum error vertical position since last message (uint8_t)
temperature_air : Air temperature from airspeed sensor (int8_t)
climb_rate : Maximum climb rate magnitude since last message (int8_t)
battery : Battery (percentage, -1 for DNU) (int8_t)
wp_num : Current waypoint number (uint16_t)
failure_flags : Bitmap of failure flags. (uint16_t)
custom0 : Field for custom payload. (int8_t)
custom1 : Field for custom payload. (int8_t)
custom2 : Field for custom payload. (int8_t)
'''
return self.send(self.high_latency2_encode(timestamp, type, autopilot, custom_mode, latitude, longitude, altitude, target_altitude, heading, target_heading, target_distance, throttle, airspeed, airspeed_sp, groundspeed, windspeed, wind_heading, eph, epv, temperature_air, climb_rate, battery, wp_num, failure_flags, custom0, custom1, custom2), force_mavlink1=force_mavlink1)
def vibration_encode(self, time_usec, vibration_x, vibration_y, vibration_z, clipping_0, clipping_1, clipping_2):
'''
Vibration levels and accelerometer clipping
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
vibration_x : Vibration levels on X-axis (float)
vibration_y : Vibration levels on Y-axis (float)
vibration_z : Vibration levels on Z-axis (float)
clipping_0 : first accelerometer clipping count (uint32_t)
clipping_1 : second accelerometer clipping count (uint32_t)
clipping_2 : third accelerometer clipping count (uint32_t)
'''
return MAVLink_vibration_message(time_usec, vibration_x, vibration_y, vibration_z, clipping_0, clipping_1, clipping_2)
def vibration_send(self, time_usec, vibration_x, vibration_y, vibration_z, clipping_0, clipping_1, clipping_2, force_mavlink1=False):
'''
Vibration levels and accelerometer clipping
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
vibration_x : Vibration levels on X-axis (float)
vibration_y : Vibration levels on Y-axis (float)
vibration_z : Vibration levels on Z-axis (float)
clipping_0 : first accelerometer clipping count (uint32_t)
clipping_1 : second accelerometer clipping count (uint32_t)
clipping_2 : third accelerometer clipping count (uint32_t)
'''
return self.send(self.vibration_encode(time_usec, vibration_x, vibration_y, vibration_z, clipping_0, clipping_1, clipping_2), force_mavlink1=force_mavlink1)
def home_position_encode(self, latitude, longitude, altitude, x, y, z, q, approach_x, approach_y, approach_z, time_usec=0):
'''
This message can be requested by sending the MAV_CMD_GET_HOME_POSITION
command. The position the system will return to and
land on. The position is set automatically by the
system during the takeoff in case it was not
explicitly set by the operator before or after. The
position the system will return to and land on. The
global and local positions encode the position in the
respective coordinate frames, while the q parameter
encodes the orientation of the surface. Under normal
conditions it describes the heading and terrain slope,
which can be used by the aircraft to adjust the
approach. The approach 3D vector describes the point
to which the system should fly in normal flight mode
and then perform a landing sequence along the vector.
latitude : Latitude (WGS84) (int32_t)
longitude : Longitude (WGS84) (int32_t)
altitude : Altitude (AMSL). Positive for up. (int32_t)
x : Local X position of this position in the local coordinate frame (float)
y : Local Y position of this position in the local coordinate frame (float)
z : Local Z position of this position in the local coordinate frame (float)
q : World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground (float)
approach_x : Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
approach_y : Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
approach_z : Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
'''
return MAVLink_home_position_message(latitude, longitude, altitude, x, y, z, q, approach_x, approach_y, approach_z, time_usec)
def home_position_send(self, latitude, longitude, altitude, x, y, z, q, approach_x, approach_y, approach_z, time_usec=0, force_mavlink1=False):
'''
This message can be requested by sending the MAV_CMD_GET_HOME_POSITION
command. The position the system will return to and
land on. The position is set automatically by the
system during the takeoff in case it was not
explicitly set by the operator before or after. The
position the system will return to and land on. The
global and local positions encode the position in the
respective coordinate frames, while the q parameter
encodes the orientation of the surface. Under normal
conditions it describes the heading and terrain slope,
which can be used by the aircraft to adjust the
approach. The approach 3D vector describes the point
to which the system should fly in normal flight mode
and then perform a landing sequence along the vector.
latitude : Latitude (WGS84) (int32_t)
longitude : Longitude (WGS84) (int32_t)
altitude : Altitude (AMSL). Positive for up. (int32_t)
x : Local X position of this position in the local coordinate frame (float)
y : Local Y position of this position in the local coordinate frame (float)
z : Local Z position of this position in the local coordinate frame (float)
q : World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground (float)
approach_x : Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
approach_y : Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
approach_z : Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
'''
return self.send(self.home_position_encode(latitude, longitude, altitude, x, y, z, q, approach_x, approach_y, approach_z, time_usec), force_mavlink1=force_mavlink1)
def set_home_position_encode(self, target_system, latitude, longitude, altitude, x, y, z, q, approach_x, approach_y, approach_z, time_usec=0):
'''
The position the system will return to and land on. The position is
set automatically by the system during the takeoff in
case it was not explicitly set by the operator before
or after. The global and local positions encode the
position in the respective coordinate frames, while
the q parameter encodes the orientation of the
surface. Under normal conditions it describes the
heading and terrain slope, which can be used by the
aircraft to adjust the approach. The approach 3D
vector describes the point to which the system should
fly in normal flight mode and then perform a landing
sequence along the vector.
target_system : System ID. (uint8_t)
latitude : Latitude (WGS84) (int32_t)
longitude : Longitude (WGS84) (int32_t)
altitude : Altitude (AMSL). Positive for up. (int32_t)
x : Local X position of this position in the local coordinate frame (float)
y : Local Y position of this position in the local coordinate frame (float)
z : Local Z position of this position in the local coordinate frame (float)
q : World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground (float)
approach_x : Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
approach_y : Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
approach_z : Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
'''
return MAVLink_set_home_position_message(target_system, latitude, longitude, altitude, x, y, z, q, approach_x, approach_y, approach_z, time_usec)
def set_home_position_send(self, target_system, latitude, longitude, altitude, x, y, z, q, approach_x, approach_y, approach_z, time_usec=0, force_mavlink1=False):
'''
The position the system will return to and land on. The position is
set automatically by the system during the takeoff in
case it was not explicitly set by the operator before
or after. The global and local positions encode the
position in the respective coordinate frames, while
the q parameter encodes the orientation of the
surface. Under normal conditions it describes the
heading and terrain slope, which can be used by the
aircraft to adjust the approach. The approach 3D
vector describes the point to which the system should
fly in normal flight mode and then perform a landing
sequence along the vector.
target_system : System ID. (uint8_t)
latitude : Latitude (WGS84) (int32_t)
longitude : Longitude (WGS84) (int32_t)
altitude : Altitude (AMSL). Positive for up. (int32_t)
x : Local X position of this position in the local coordinate frame (float)
y : Local Y position of this position in the local coordinate frame (float)
z : Local Z position of this position in the local coordinate frame (float)
q : World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground (float)
approach_x : Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
approach_y : Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
approach_z : Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone. (float)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
'''
return self.send(self.set_home_position_encode(target_system, latitude, longitude, altitude, x, y, z, q, approach_x, approach_y, approach_z, time_usec), force_mavlink1=force_mavlink1)
def message_interval_encode(self, message_id, interval_us):
'''
The interval between messages for a particular MAVLink message ID.
This interface replaces DATA_STREAM
message_id : The ID of the requested MAVLink message. v1.0 is limited to 254 messages. (uint16_t)
interval_us : The interval between two messages. A value of -1 indicates this stream is disabled, 0 indicates it is not available, > 0 indicates the interval at which it is sent. (int32_t)
'''
return MAVLink_message_interval_message(message_id, interval_us)
def message_interval_send(self, message_id, interval_us, force_mavlink1=False):
'''
The interval between messages for a particular MAVLink message ID.
This interface replaces DATA_STREAM
message_id : The ID of the requested MAVLink message. v1.0 is limited to 254 messages. (uint16_t)
interval_us : The interval between two messages. A value of -1 indicates this stream is disabled, 0 indicates it is not available, > 0 indicates the interval at which it is sent. (int32_t)
'''
return self.send(self.message_interval_encode(message_id, interval_us), force_mavlink1=force_mavlink1)
def extended_sys_state_encode(self, vtol_state, landed_state):
'''
Provides state for additional features
vtol_state : The VTOL state if applicable. Is set to MAV_VTOL_STATE_UNDEFINED if UAV is not in VTOL configuration. (uint8_t)
landed_state : The landed state. Is set to MAV_LANDED_STATE_UNDEFINED if landed state is unknown. (uint8_t)
'''
return MAVLink_extended_sys_state_message(vtol_state, landed_state)
def extended_sys_state_send(self, vtol_state, landed_state, force_mavlink1=False):
'''
Provides state for additional features
vtol_state : The VTOL state if applicable. Is set to MAV_VTOL_STATE_UNDEFINED if UAV is not in VTOL configuration. (uint8_t)
landed_state : The landed state. Is set to MAV_LANDED_STATE_UNDEFINED if landed state is unknown. (uint8_t)
'''
return self.send(self.extended_sys_state_encode(vtol_state, landed_state), force_mavlink1=force_mavlink1)
def adsb_vehicle_encode(self, ICAO_address, lat, lon, altitude_type, altitude, heading, hor_velocity, ver_velocity, callsign, emitter_type, tslc, flags, squawk):
'''
The location and information of an ADSB vehicle
ICAO_address : ICAO address (uint32_t)
lat : Latitude (int32_t)
lon : Longitude (int32_t)
altitude_type : ADSB altitude type. (uint8_t)
altitude : Altitude(ASL) (int32_t)
heading : Course over ground (uint16_t)
hor_velocity : The horizontal velocity (uint16_t)
ver_velocity : The vertical velocity. Positive is up (int16_t)
callsign : The callsign, 8+null (char)
emitter_type : ADSB emitter type. (uint8_t)
tslc : Time since last communication in seconds (uint8_t)
flags : Bitmap to indicate various statuses including valid data fields (uint16_t)
squawk : Squawk code (uint16_t)
'''
return MAVLink_adsb_vehicle_message(ICAO_address, lat, lon, altitude_type, altitude, heading, hor_velocity, ver_velocity, callsign, emitter_type, tslc, flags, squawk)
def adsb_vehicle_send(self, ICAO_address, lat, lon, altitude_type, altitude, heading, hor_velocity, ver_velocity, callsign, emitter_type, tslc, flags, squawk, force_mavlink1=False):
'''
The location and information of an ADSB vehicle
ICAO_address : ICAO address (uint32_t)
lat : Latitude (int32_t)
lon : Longitude (int32_t)
altitude_type : ADSB altitude type. (uint8_t)
altitude : Altitude(ASL) (int32_t)
heading : Course over ground (uint16_t)
hor_velocity : The horizontal velocity (uint16_t)
ver_velocity : The vertical velocity. Positive is up (int16_t)
callsign : The callsign, 8+null (char)
emitter_type : ADSB emitter type. (uint8_t)
tslc : Time since last communication in seconds (uint8_t)
flags : Bitmap to indicate various statuses including valid data fields (uint16_t)
squawk : Squawk code (uint16_t)
'''
return self.send(self.adsb_vehicle_encode(ICAO_address, lat, lon, altitude_type, altitude, heading, hor_velocity, ver_velocity, callsign, emitter_type, tslc, flags, squawk), force_mavlink1=force_mavlink1)
def collision_encode(self, src, id, action, threat_level, time_to_minimum_delta, altitude_minimum_delta, horizontal_minimum_delta):
'''
Information about a potential collision
src : Collision data source (uint8_t)
id : Unique identifier, domain based on src field (uint32_t)
action : Action that is being taken to avoid this collision (uint8_t)
threat_level : How concerned the aircraft is about this collision (uint8_t)
time_to_minimum_delta : Estimated time until collision occurs (float)
altitude_minimum_delta : Closest vertical distance between vehicle and object (float)
horizontal_minimum_delta : Closest horizontal distance between vehicle and object (float)
'''
return MAVLink_collision_message(src, id, action, threat_level, time_to_minimum_delta, altitude_minimum_delta, horizontal_minimum_delta)
def collision_send(self, src, id, action, threat_level, time_to_minimum_delta, altitude_minimum_delta, horizontal_minimum_delta, force_mavlink1=False):
'''
Information about a potential collision
src : Collision data source (uint8_t)
id : Unique identifier, domain based on src field (uint32_t)
action : Action that is being taken to avoid this collision (uint8_t)
threat_level : How concerned the aircraft is about this collision (uint8_t)
time_to_minimum_delta : Estimated time until collision occurs (float)
altitude_minimum_delta : Closest vertical distance between vehicle and object (float)
horizontal_minimum_delta : Closest horizontal distance between vehicle and object (float)
'''
return self.send(self.collision_encode(src, id, action, threat_level, time_to_minimum_delta, altitude_minimum_delta, horizontal_minimum_delta), force_mavlink1=force_mavlink1)
def v2_extension_encode(self, target_network, target_system, target_component, message_type, payload):
'''
Message implementing parts of the V2 payload specs in V1 frames for
transitional support.
target_network : Network ID (0 for broadcast) (uint8_t)
target_system : System ID (0 for broadcast) (uint8_t)
target_component : Component ID (0 for broadcast) (uint8_t)
message_type : A code that identifies the software component that understands this message (analogous to USB device classes or mime type strings). If this code is less than 32768, it is considered a 'registered' protocol extension and the corresponding entry should be added to https://github.com/mavlink/mavlink/extension-message-ids.xml. Software creators can register blocks of message IDs as needed (useful for GCS specific metadata, etc...). Message_types greater than 32767 are considered local experiments and should not be checked in to any widely distributed codebase. (uint16_t)
payload : Variable length payload. The length is defined by the remaining message length when subtracting the header and other fields. The entire content of this block is opaque unless you understand any the encoding message_type. The particular encoding used can be extension specific and might not always be documented as part of the mavlink specification. (uint8_t)
'''
return MAVLink_v2_extension_message(target_network, target_system, target_component, message_type, payload)
def v2_extension_send(self, target_network, target_system, target_component, message_type, payload, force_mavlink1=False):
'''
Message implementing parts of the V2 payload specs in V1 frames for
transitional support.
target_network : Network ID (0 for broadcast) (uint8_t)
target_system : System ID (0 for broadcast) (uint8_t)
target_component : Component ID (0 for broadcast) (uint8_t)
message_type : A code that identifies the software component that understands this message (analogous to USB device classes or mime type strings). If this code is less than 32768, it is considered a 'registered' protocol extension and the corresponding entry should be added to https://github.com/mavlink/mavlink/extension-message-ids.xml. Software creators can register blocks of message IDs as needed (useful for GCS specific metadata, etc...). Message_types greater than 32767 are considered local experiments and should not be checked in to any widely distributed codebase. (uint16_t)
payload : Variable length payload. The length is defined by the remaining message length when subtracting the header and other fields. The entire content of this block is opaque unless you understand any the encoding message_type. The particular encoding used can be extension specific and might not always be documented as part of the mavlink specification. (uint8_t)
'''
return self.send(self.v2_extension_encode(target_network, target_system, target_component, message_type, payload), force_mavlink1=force_mavlink1)
def memory_vect_encode(self, address, ver, type, value):
'''
Send raw controller memory. The use of this message is discouraged for
normal packets, but a quite efficient way for testing
new messages and getting experimental debug output.
address : Starting address of the debug variables (uint16_t)
ver : Version code of the type variable. 0=unknown, type ignored and assumed int16_t. 1=as below (uint8_t)
type : Type code of the memory variables. for ver = 1: 0=16 x int16_t, 1=16 x uint16_t, 2=16 x Q15, 3=16 x 1Q14 (uint8_t)
value : Memory contents at specified address (int8_t)
'''
return MAVLink_memory_vect_message(address, ver, type, value)
def memory_vect_send(self, address, ver, type, value, force_mavlink1=False):
'''
Send raw controller memory. The use of this message is discouraged for
normal packets, but a quite efficient way for testing
new messages and getting experimental debug output.
address : Starting address of the debug variables (uint16_t)
ver : Version code of the type variable. 0=unknown, type ignored and assumed int16_t. 1=as below (uint8_t)
type : Type code of the memory variables. for ver = 1: 0=16 x int16_t, 1=16 x uint16_t, 2=16 x Q15, 3=16 x 1Q14 (uint8_t)
value : Memory contents at specified address (int8_t)
'''
return self.send(self.memory_vect_encode(address, ver, type, value), force_mavlink1=force_mavlink1)
def debug_vect_encode(self, name, time_usec, x, y, z):
'''
To debug something using a named 3D vector.
name : Name (char)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
x : x (float)
y : y (float)
z : z (float)
'''
return MAVLink_debug_vect_message(name, time_usec, x, y, z)
def debug_vect_send(self, name, time_usec, x, y, z, force_mavlink1=False):
'''
To debug something using a named 3D vector.
name : Name (char)
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
x : x (float)
y : y (float)
z : z (float)
'''
return self.send(self.debug_vect_encode(name, time_usec, x, y, z), force_mavlink1=force_mavlink1)
def named_value_float_encode(self, time_boot_ms, name, value):
'''
Send a key-value pair as float. The use of this message is discouraged
for normal packets, but a quite efficient way for
testing new messages and getting experimental debug
output.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
name : Name of the debug variable (char)
value : Floating point value (float)
'''
return MAVLink_named_value_float_message(time_boot_ms, name, value)
def named_value_float_send(self, time_boot_ms, name, value, force_mavlink1=False):
'''
Send a key-value pair as float. The use of this message is discouraged
for normal packets, but a quite efficient way for
testing new messages and getting experimental debug
output.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
name : Name of the debug variable (char)
value : Floating point value (float)
'''
return self.send(self.named_value_float_encode(time_boot_ms, name, value), force_mavlink1=force_mavlink1)
def named_value_int_encode(self, time_boot_ms, name, value):
'''
Send a key-value pair as integer. The use of this message is
discouraged for normal packets, but a quite efficient
way for testing new messages and getting experimental
debug output.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
name : Name of the debug variable (char)
value : Signed integer value (int32_t)
'''
return MAVLink_named_value_int_message(time_boot_ms, name, value)
def named_value_int_send(self, time_boot_ms, name, value, force_mavlink1=False):
'''
Send a key-value pair as integer. The use of this message is
discouraged for normal packets, but a quite efficient
way for testing new messages and getting experimental
debug output.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
name : Name of the debug variable (char)
value : Signed integer value (int32_t)
'''
return self.send(self.named_value_int_encode(time_boot_ms, name, value), force_mavlink1=force_mavlink1)
def statustext_encode(self, severity, text):
'''
Status text message. These messages are printed in yellow in the COMM
console of QGroundControl. WARNING: They consume quite
some bandwidth, so use only for important status and
error messages. If implemented wisely, these messages
are buffered on the MCU and sent only at a limited
rate (e.g. 10 Hz).
severity : Severity of status. Relies on the definitions within RFC-5424. (uint8_t)
text : Status text message, without null termination character (char)
'''
return MAVLink_statustext_message(severity, text)
def statustext_send(self, severity, text, force_mavlink1=False):
'''
Status text message. These messages are printed in yellow in the COMM
console of QGroundControl. WARNING: They consume quite
some bandwidth, so use only for important status and
error messages. If implemented wisely, these messages
are buffered on the MCU and sent only at a limited
rate (e.g. 10 Hz).
severity : Severity of status. Relies on the definitions within RFC-5424. (uint8_t)
text : Status text message, without null termination character (char)
'''
return self.send(self.statustext_encode(severity, text), force_mavlink1=force_mavlink1)
def debug_encode(self, time_boot_ms, ind, value):
'''
Send a debug value. The index is used to discriminate between values.
These values show up in the plot of QGroundControl as
DEBUG N.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
ind : index of debug variable (uint8_t)
value : DEBUG value (float)
'''
return MAVLink_debug_message(time_boot_ms, ind, value)
def debug_send(self, time_boot_ms, ind, value, force_mavlink1=False):
'''
Send a debug value. The index is used to discriminate between values.
These values show up in the plot of QGroundControl as
DEBUG N.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
ind : index of debug variable (uint8_t)
value : DEBUG value (float)
'''
return self.send(self.debug_encode(time_boot_ms, ind, value), force_mavlink1=force_mavlink1)
def setup_signing_encode(self, target_system, target_component, secret_key, initial_timestamp):
'''
Setup a MAVLink2 signing key. If called with secret_key of all zero
and zero initial_timestamp will disable signing
target_system : system id of the target (uint8_t)
target_component : component ID of the target (uint8_t)
secret_key : signing key (uint8_t)
initial_timestamp : initial timestamp (uint64_t)
'''
return MAVLink_setup_signing_message(target_system, target_component, secret_key, initial_timestamp)
def setup_signing_send(self, target_system, target_component, secret_key, initial_timestamp, force_mavlink1=False):
'''
Setup a MAVLink2 signing key. If called with secret_key of all zero
and zero initial_timestamp will disable signing
target_system : system id of the target (uint8_t)
target_component : component ID of the target (uint8_t)
secret_key : signing key (uint8_t)
initial_timestamp : initial timestamp (uint64_t)
'''
return self.send(self.setup_signing_encode(target_system, target_component, secret_key, initial_timestamp), force_mavlink1=force_mavlink1)
def button_change_encode(self, time_boot_ms, last_change_ms, state):
'''
Report button state change.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
last_change_ms : Time of last change of button state. (uint32_t)
state : Bitmap for state of buttons. (uint8_t)
'''
return MAVLink_button_change_message(time_boot_ms, last_change_ms, state)
def button_change_send(self, time_boot_ms, last_change_ms, state, force_mavlink1=False):
'''
Report button state change.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
last_change_ms : Time of last change of button state. (uint32_t)
state : Bitmap for state of buttons. (uint8_t)
'''
return self.send(self.button_change_encode(time_boot_ms, last_change_ms, state), force_mavlink1=force_mavlink1)
def play_tune_encode(self, target_system, target_component, tune, tune2=0):
'''
Control vehicle tone generation (buzzer)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
tune : tune in board specific format (char)
tune2 : tune extension (appended to tune) (char)
'''
return MAVLink_play_tune_message(target_system, target_component, tune, tune2)
def play_tune_send(self, target_system, target_component, tune, tune2=0, force_mavlink1=False):
'''
Control vehicle tone generation (buzzer)
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
tune : tune in board specific format (char)
tune2 : tune extension (appended to tune) (char)
'''
return self.send(self.play_tune_encode(target_system, target_component, tune, tune2), force_mavlink1=force_mavlink1)
def camera_information_encode(self, time_boot_ms, vendor_name, model_name, firmware_version, focal_length, sensor_size_h, sensor_size_v, resolution_h, resolution_v, lens_id, flags, cam_definition_version, cam_definition_uri):
'''
Information about a camera
time_boot_ms : Timestamp (time since system boot). (uint32_t)
vendor_name : Name of the camera vendor (uint8_t)
model_name : Name of the camera model (uint8_t)
firmware_version : Version of the camera firmware (v << 24 & 0xff = Dev, v << 16 & 0xff = Patch, v << 8 & 0xff = Minor, v & 0xff = Major) (uint32_t)
focal_length : Focal length (float)
sensor_size_h : Image sensor size horizontal (float)
sensor_size_v : Image sensor size vertical (float)
resolution_h : Horizontal image resolution (uint16_t)
resolution_v : Vertical image resolution (uint16_t)
lens_id : Reserved for a lens ID (uint8_t)
flags : Bitmap of camera capability flags. (uint32_t)
cam_definition_version : Camera definition version (iteration) (uint16_t)
cam_definition_uri : Camera definition URI (if any, otherwise only basic functions will be available). (char)
'''
return MAVLink_camera_information_message(time_boot_ms, vendor_name, model_name, firmware_version, focal_length, sensor_size_h, sensor_size_v, resolution_h, resolution_v, lens_id, flags, cam_definition_version, cam_definition_uri)
def camera_information_send(self, time_boot_ms, vendor_name, model_name, firmware_version, focal_length, sensor_size_h, sensor_size_v, resolution_h, resolution_v, lens_id, flags, cam_definition_version, cam_definition_uri, force_mavlink1=False):
'''
Information about a camera
time_boot_ms : Timestamp (time since system boot). (uint32_t)
vendor_name : Name of the camera vendor (uint8_t)
model_name : Name of the camera model (uint8_t)
firmware_version : Version of the camera firmware (v << 24 & 0xff = Dev, v << 16 & 0xff = Patch, v << 8 & 0xff = Minor, v & 0xff = Major) (uint32_t)
focal_length : Focal length (float)
sensor_size_h : Image sensor size horizontal (float)
sensor_size_v : Image sensor size vertical (float)
resolution_h : Horizontal image resolution (uint16_t)
resolution_v : Vertical image resolution (uint16_t)
lens_id : Reserved for a lens ID (uint8_t)
flags : Bitmap of camera capability flags. (uint32_t)
cam_definition_version : Camera definition version (iteration) (uint16_t)
cam_definition_uri : Camera definition URI (if any, otherwise only basic functions will be available). (char)
'''
return self.send(self.camera_information_encode(time_boot_ms, vendor_name, model_name, firmware_version, focal_length, sensor_size_h, sensor_size_v, resolution_h, resolution_v, lens_id, flags, cam_definition_version, cam_definition_uri), force_mavlink1=force_mavlink1)
def camera_settings_encode(self, time_boot_ms, mode_id):
'''
Settings of a camera, can be requested using
MAV_CMD_REQUEST_CAMERA_SETTINGS.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
mode_id : Camera mode (uint8_t)
'''
return MAVLink_camera_settings_message(time_boot_ms, mode_id)
def camera_settings_send(self, time_boot_ms, mode_id, force_mavlink1=False):
'''
Settings of a camera, can be requested using
MAV_CMD_REQUEST_CAMERA_SETTINGS.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
mode_id : Camera mode (uint8_t)
'''
return self.send(self.camera_settings_encode(time_boot_ms, mode_id), force_mavlink1=force_mavlink1)
def storage_information_encode(self, time_boot_ms, storage_id, storage_count, status, total_capacity, used_capacity, available_capacity, read_speed, write_speed):
'''
Information about a storage medium.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
storage_id : Storage ID (1 for first, 2 for second, etc.) (uint8_t)
storage_count : Number of storage devices (uint8_t)
status : Status of storage (0 not available, 1 unformatted, 2 formatted) (uint8_t)
total_capacity : Total capacity. (float)
used_capacity : Used capacity. (float)
available_capacity : Available storage capacity. (float)
read_speed : Read speed. (float)
write_speed : Write speed. (float)
'''
return MAVLink_storage_information_message(time_boot_ms, storage_id, storage_count, status, total_capacity, used_capacity, available_capacity, read_speed, write_speed)
def storage_information_send(self, time_boot_ms, storage_id, storage_count, status, total_capacity, used_capacity, available_capacity, read_speed, write_speed, force_mavlink1=False):
'''
Information about a storage medium.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
storage_id : Storage ID (1 for first, 2 for second, etc.) (uint8_t)
storage_count : Number of storage devices (uint8_t)
status : Status of storage (0 not available, 1 unformatted, 2 formatted) (uint8_t)
total_capacity : Total capacity. (float)
used_capacity : Used capacity. (float)
available_capacity : Available storage capacity. (float)
read_speed : Read speed. (float)
write_speed : Write speed. (float)
'''
return self.send(self.storage_information_encode(time_boot_ms, storage_id, storage_count, status, total_capacity, used_capacity, available_capacity, read_speed, write_speed), force_mavlink1=force_mavlink1)
def camera_capture_status_encode(self, time_boot_ms, image_status, video_status, image_interval, recording_time_ms, available_capacity):
'''
Information about the status of a capture.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
image_status : Current status of image capturing (0: idle, 1: capture in progress, 2: interval set but idle, 3: interval set and capture in progress) (uint8_t)
video_status : Current status of video capturing (0: idle, 1: capture in progress) (uint8_t)
image_interval : Image capture interval (float)
recording_time_ms : Time since recording started (uint32_t)
available_capacity : Available storage capacity. (float)
'''
return MAVLink_camera_capture_status_message(time_boot_ms, image_status, video_status, image_interval, recording_time_ms, available_capacity)
def camera_capture_status_send(self, time_boot_ms, image_status, video_status, image_interval, recording_time_ms, available_capacity, force_mavlink1=False):
'''
Information about the status of a capture.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
image_status : Current status of image capturing (0: idle, 1: capture in progress, 2: interval set but idle, 3: interval set and capture in progress) (uint8_t)
video_status : Current status of video capturing (0: idle, 1: capture in progress) (uint8_t)
image_interval : Image capture interval (float)
recording_time_ms : Time since recording started (uint32_t)
available_capacity : Available storage capacity. (float)
'''
return self.send(self.camera_capture_status_encode(time_boot_ms, image_status, video_status, image_interval, recording_time_ms, available_capacity), force_mavlink1=force_mavlink1)
def camera_image_captured_encode(self, time_boot_ms, time_utc, camera_id, lat, lon, alt, relative_alt, q, image_index, capture_result, file_url):
'''
Information about a captured image
time_boot_ms : Timestamp (time since system boot). (uint32_t)
time_utc : Timestamp (time since UNIX epoch) in UTC. 0 for unknown. (uint64_t)
camera_id : Camera ID (1 for first, 2 for second, etc.) (uint8_t)
lat : Latitude where image was taken (int32_t)
lon : Longitude where capture was taken (int32_t)
alt : Altitude (AMSL) where image was taken (int32_t)
relative_alt : Altitude above ground (int32_t)
q : Quaternion of camera orientation (w, x, y, z order, zero-rotation is 0, 0, 0, 0) (float)
image_index : Zero based index of this image (image count since armed -1) (int32_t)
capture_result : Boolean indicating success (1) or failure (0) while capturing this image. (int8_t)
file_url : URL of image taken. Either local storage or http://foo.jpg if camera provides an HTTP interface. (char)
'''
return MAVLink_camera_image_captured_message(time_boot_ms, time_utc, camera_id, lat, lon, alt, relative_alt, q, image_index, capture_result, file_url)
def camera_image_captured_send(self, time_boot_ms, time_utc, camera_id, lat, lon, alt, relative_alt, q, image_index, capture_result, file_url, force_mavlink1=False):
'''
Information about a captured image
time_boot_ms : Timestamp (time since system boot). (uint32_t)
time_utc : Timestamp (time since UNIX epoch) in UTC. 0 for unknown. (uint64_t)
camera_id : Camera ID (1 for first, 2 for second, etc.) (uint8_t)
lat : Latitude where image was taken (int32_t)
lon : Longitude where capture was taken (int32_t)
alt : Altitude (AMSL) where image was taken (int32_t)
relative_alt : Altitude above ground (int32_t)
q : Quaternion of camera orientation (w, x, y, z order, zero-rotation is 0, 0, 0, 0) (float)
image_index : Zero based index of this image (image count since armed -1) (int32_t)
capture_result : Boolean indicating success (1) or failure (0) while capturing this image. (int8_t)
file_url : URL of image taken. Either local storage or http://foo.jpg if camera provides an HTTP interface. (char)
'''
return self.send(self.camera_image_captured_encode(time_boot_ms, time_utc, camera_id, lat, lon, alt, relative_alt, q, image_index, capture_result, file_url), force_mavlink1=force_mavlink1)
def flight_information_encode(self, time_boot_ms, arming_time_utc, takeoff_time_utc, flight_uuid):
'''
Information about flight since last arming.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
arming_time_utc : Timestamp at arming (time since UNIX epoch) in UTC, 0 for unknown (uint64_t)
takeoff_time_utc : Timestamp at takeoff (time since UNIX epoch) in UTC, 0 for unknown (uint64_t)
flight_uuid : Universally unique identifier (UUID) of flight, should correspond to name of log files (uint64_t)
'''
return MAVLink_flight_information_message(time_boot_ms, arming_time_utc, takeoff_time_utc, flight_uuid)
def flight_information_send(self, time_boot_ms, arming_time_utc, takeoff_time_utc, flight_uuid, force_mavlink1=False):
'''
Information about flight since last arming.
time_boot_ms : Timestamp (time since system boot). (uint32_t)
arming_time_utc : Timestamp at arming (time since UNIX epoch) in UTC, 0 for unknown (uint64_t)
takeoff_time_utc : Timestamp at takeoff (time since UNIX epoch) in UTC, 0 for unknown (uint64_t)
flight_uuid : Universally unique identifier (UUID) of flight, should correspond to name of log files (uint64_t)
'''
return self.send(self.flight_information_encode(time_boot_ms, arming_time_utc, takeoff_time_utc, flight_uuid), force_mavlink1=force_mavlink1)
def mount_orientation_encode(self, time_boot_ms, roll, pitch, yaw, yaw_absolute=0):
'''
Orientation of a mount
time_boot_ms : Timestamp (time since system boot). (uint32_t)
roll : Roll in global frame (set to NaN for invalid). (float)
pitch : Pitch in global frame (set to NaN for invalid). (float)
yaw : Yaw relative to vehicle(set to NaN for invalid). (float)
yaw_absolute : Yaw in absolute frame, North is 0 (set to NaN for invalid). (float)
'''
return MAVLink_mount_orientation_message(time_boot_ms, roll, pitch, yaw, yaw_absolute)
def mount_orientation_send(self, time_boot_ms, roll, pitch, yaw, yaw_absolute=0, force_mavlink1=False):
'''
Orientation of a mount
time_boot_ms : Timestamp (time since system boot). (uint32_t)
roll : Roll in global frame (set to NaN for invalid). (float)
pitch : Pitch in global frame (set to NaN for invalid). (float)
yaw : Yaw relative to vehicle(set to NaN for invalid). (float)
yaw_absolute : Yaw in absolute frame, North is 0 (set to NaN for invalid). (float)
'''
return self.send(self.mount_orientation_encode(time_boot_ms, roll, pitch, yaw, yaw_absolute), force_mavlink1=force_mavlink1)
def logging_data_encode(self, target_system, target_component, sequence, length, first_message_offset, data):
'''
A message containing logged data (see also MAV_CMD_LOGGING_START)
target_system : system ID of the target (uint8_t)
target_component : component ID of the target (uint8_t)
sequence : sequence number (can wrap) (uint16_t)
length : data length (uint8_t)
first_message_offset : offset into data where first message starts. This can be used for recovery, when a previous message got lost (set to 255 if no start exists). (uint8_t)
data : logged data (uint8_t)
'''
return MAVLink_logging_data_message(target_system, target_component, sequence, length, first_message_offset, data)
def logging_data_send(self, target_system, target_component, sequence, length, first_message_offset, data, force_mavlink1=False):
'''
A message containing logged data (see also MAV_CMD_LOGGING_START)
target_system : system ID of the target (uint8_t)
target_component : component ID of the target (uint8_t)
sequence : sequence number (can wrap) (uint16_t)
length : data length (uint8_t)
first_message_offset : offset into data where first message starts. This can be used for recovery, when a previous message got lost (set to 255 if no start exists). (uint8_t)
data : logged data (uint8_t)
'''
return self.send(self.logging_data_encode(target_system, target_component, sequence, length, first_message_offset, data), force_mavlink1=force_mavlink1)
def logging_data_acked_encode(self, target_system, target_component, sequence, length, first_message_offset, data):
'''
A message containing logged data which requires a LOGGING_ACK to be
sent back
target_system : system ID of the target (uint8_t)
target_component : component ID of the target (uint8_t)
sequence : sequence number (can wrap) (uint16_t)
length : data length (uint8_t)
first_message_offset : offset into data where first message starts. This can be used for recovery, when a previous message got lost (set to 255 if no start exists). (uint8_t)
data : logged data (uint8_t)
'''
return MAVLink_logging_data_acked_message(target_system, target_component, sequence, length, first_message_offset, data)
def logging_data_acked_send(self, target_system, target_component, sequence, length, first_message_offset, data, force_mavlink1=False):
'''
A message containing logged data which requires a LOGGING_ACK to be
sent back
target_system : system ID of the target (uint8_t)
target_component : component ID of the target (uint8_t)
sequence : sequence number (can wrap) (uint16_t)
length : data length (uint8_t)
first_message_offset : offset into data where first message starts. This can be used for recovery, when a previous message got lost (set to 255 if no start exists). (uint8_t)
data : logged data (uint8_t)
'''
return self.send(self.logging_data_acked_encode(target_system, target_component, sequence, length, first_message_offset, data), force_mavlink1=force_mavlink1)
def logging_ack_encode(self, target_system, target_component, sequence):
'''
An ack for a LOGGING_DATA_ACKED message
target_system : system ID of the target (uint8_t)
target_component : component ID of the target (uint8_t)
sequence : sequence number (must match the one in LOGGING_DATA_ACKED) (uint16_t)
'''
return MAVLink_logging_ack_message(target_system, target_component, sequence)
def logging_ack_send(self, target_system, target_component, sequence, force_mavlink1=False):
'''
An ack for a LOGGING_DATA_ACKED message
target_system : system ID of the target (uint8_t)
target_component : component ID of the target (uint8_t)
sequence : sequence number (must match the one in LOGGING_DATA_ACKED) (uint16_t)
'''
return self.send(self.logging_ack_encode(target_system, target_component, sequence), force_mavlink1=force_mavlink1)
def video_stream_information_encode(self, camera_id, status, framerate, resolution_h, resolution_v, bitrate, rotation, uri):
'''
Information about video stream
camera_id : Camera ID (1 for first, 2 for second, etc.) (uint8_t)
status : Current status of video streaming (0: not running, 1: in progress) (uint8_t)
framerate : Frame rate (float)
resolution_h : Horizontal resolution (uint16_t)
resolution_v : Vertical resolution (uint16_t)
bitrate : Bit rate in bits per second (uint32_t)
rotation : Video image rotation clockwise (uint16_t)
uri : Video stream URI (char)
'''
return MAVLink_video_stream_information_message(camera_id, status, framerate, resolution_h, resolution_v, bitrate, rotation, uri)
def video_stream_information_send(self, camera_id, status, framerate, resolution_h, resolution_v, bitrate, rotation, uri, force_mavlink1=False):
'''
Information about video stream
camera_id : Camera ID (1 for first, 2 for second, etc.) (uint8_t)
status : Current status of video streaming (0: not running, 1: in progress) (uint8_t)
framerate : Frame rate (float)
resolution_h : Horizontal resolution (uint16_t)
resolution_v : Vertical resolution (uint16_t)
bitrate : Bit rate in bits per second (uint32_t)
rotation : Video image rotation clockwise (uint16_t)
uri : Video stream URI (char)
'''
return self.send(self.video_stream_information_encode(camera_id, status, framerate, resolution_h, resolution_v, bitrate, rotation, uri), force_mavlink1=force_mavlink1)
def set_video_stream_settings_encode(self, target_system, target_component, camera_id, framerate, resolution_h, resolution_v, bitrate, rotation, uri):
'''
Message that sets video stream settings
target_system : system ID of the target (uint8_t)
target_component : component ID of the target (uint8_t)
camera_id : Camera ID (1 for first, 2 for second, etc.) (uint8_t)
framerate : Frame rate (set to -1 for highest framerate possible) (float)
resolution_h : Horizontal resolution (set to -1 for highest resolution possible) (uint16_t)
resolution_v : Vertical resolution (set to -1 for highest resolution possible) (uint16_t)
bitrate : Bit rate (set to -1 for auto) (uint32_t)
rotation : Video image rotation clockwise (0-359 degrees) (uint16_t)
uri : Video stream URI (char)
'''
return MAVLink_set_video_stream_settings_message(target_system, target_component, camera_id, framerate, resolution_h, resolution_v, bitrate, rotation, uri)
def set_video_stream_settings_send(self, target_system, target_component, camera_id, framerate, resolution_h, resolution_v, bitrate, rotation, uri, force_mavlink1=False):
'''
Message that sets video stream settings
target_system : system ID of the target (uint8_t)
target_component : component ID of the target (uint8_t)
camera_id : Camera ID (1 for first, 2 for second, etc.) (uint8_t)
framerate : Frame rate (set to -1 for highest framerate possible) (float)
resolution_h : Horizontal resolution (set to -1 for highest resolution possible) (uint16_t)
resolution_v : Vertical resolution (set to -1 for highest resolution possible) (uint16_t)
bitrate : Bit rate (set to -1 for auto) (uint32_t)
rotation : Video image rotation clockwise (0-359 degrees) (uint16_t)
uri : Video stream URI (char)
'''
return self.send(self.set_video_stream_settings_encode(target_system, target_component, camera_id, framerate, resolution_h, resolution_v, bitrate, rotation, uri), force_mavlink1=force_mavlink1)
def wifi_config_ap_encode(self, ssid, password):
'''
Configure AP SSID and Password.
ssid : Name of Wi-Fi network (SSID). Leave it blank to leave it unchanged. (char)
password : Password. Leave it blank for an open AP. (char)
'''
return MAVLink_wifi_config_ap_message(ssid, password)
def wifi_config_ap_send(self, ssid, password, force_mavlink1=False):
'''
Configure AP SSID and Password.
ssid : Name of Wi-Fi network (SSID). Leave it blank to leave it unchanged. (char)
password : Password. Leave it blank for an open AP. (char)
'''
return self.send(self.wifi_config_ap_encode(ssid, password), force_mavlink1=force_mavlink1)
def protocol_version_encode(self, version, min_version, max_version, spec_version_hash, library_version_hash):
'''
Version and capability of protocol version. This message is the
response to REQUEST_PROTOCOL_VERSION and is used as
part of the handshaking to establish which MAVLink
version should be used on the network. Every node
should respond to REQUEST_PROTOCOL_VERSION to enable
the handshaking. Library implementers should consider
adding this into the default decoding state machine to
allow the protocol core to respond directly.
version : Currently active MAVLink version number * 100: v1.0 is 100, v2.0 is 200, etc. (uint16_t)
min_version : Minimum MAVLink version supported (uint16_t)
max_version : Maximum MAVLink version supported (set to the same value as version by default) (uint16_t)
spec_version_hash : The first 8 bytes (not characters printed in hex!) of the git hash. (uint8_t)
library_version_hash : The first 8 bytes (not characters printed in hex!) of the git hash. (uint8_t)
'''
return MAVLink_protocol_version_message(version, min_version, max_version, spec_version_hash, library_version_hash)
def protocol_version_send(self, version, min_version, max_version, spec_version_hash, library_version_hash, force_mavlink1=False):
'''
Version and capability of protocol version. This message is the
response to REQUEST_PROTOCOL_VERSION and is used as
part of the handshaking to establish which MAVLink
version should be used on the network. Every node
should respond to REQUEST_PROTOCOL_VERSION to enable
the handshaking. Library implementers should consider
adding this into the default decoding state machine to
allow the protocol core to respond directly.
version : Currently active MAVLink version number * 100: v1.0 is 100, v2.0 is 200, etc. (uint16_t)
min_version : Minimum MAVLink version supported (uint16_t)
max_version : Maximum MAVLink version supported (set to the same value as version by default) (uint16_t)
spec_version_hash : The first 8 bytes (not characters printed in hex!) of the git hash. (uint8_t)
library_version_hash : The first 8 bytes (not characters printed in hex!) of the git hash. (uint8_t)
'''
return self.send(self.protocol_version_encode(version, min_version, max_version, spec_version_hash, library_version_hash), force_mavlink1=force_mavlink1)
def uavcan_node_status_encode(self, time_usec, uptime_sec, health, mode, sub_mode, vendor_specific_status_code):
'''
General status information of an UAVCAN node. Please refer to the
definition of the UAVCAN message
"uavcan.protocol.NodeStatus" for the background
information. The UAVCAN specification is available at
http://uavcan.org.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
uptime_sec : Time since the start-up of the node. (uint32_t)
health : Generalized node health status. (uint8_t)
mode : Generalized operating mode. (uint8_t)
sub_mode : Not used currently. (uint8_t)
vendor_specific_status_code : Vendor-specific status information. (uint16_t)
'''
return MAVLink_uavcan_node_status_message(time_usec, uptime_sec, health, mode, sub_mode, vendor_specific_status_code)
def uavcan_node_status_send(self, time_usec, uptime_sec, health, mode, sub_mode, vendor_specific_status_code, force_mavlink1=False):
'''
General status information of an UAVCAN node. Please refer to the
definition of the UAVCAN message
"uavcan.protocol.NodeStatus" for the background
information. The UAVCAN specification is available at
http://uavcan.org.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
uptime_sec : Time since the start-up of the node. (uint32_t)
health : Generalized node health status. (uint8_t)
mode : Generalized operating mode. (uint8_t)
sub_mode : Not used currently. (uint8_t)
vendor_specific_status_code : Vendor-specific status information. (uint16_t)
'''
return self.send(self.uavcan_node_status_encode(time_usec, uptime_sec, health, mode, sub_mode, vendor_specific_status_code), force_mavlink1=force_mavlink1)
def uavcan_node_info_encode(self, time_usec, uptime_sec, name, hw_version_major, hw_version_minor, hw_unique_id, sw_version_major, sw_version_minor, sw_vcs_commit):
'''
General information describing a particular UAVCAN node. Please refer
to the definition of the UAVCAN service
"uavcan.protocol.GetNodeInfo" for the background
information. This message should be emitted by the
system whenever a new node appears online, or an
existing node reboots. Additionally, it can be emitted
upon request from the other end of the MAVLink channel
(see MAV_CMD_UAVCAN_GET_NODE_INFO). It is also not
prohibited to emit this message unconditionally at a
low frequency. The UAVCAN specification is available
at http://uavcan.org.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
uptime_sec : Time since the start-up of the node. (uint32_t)
name : Node name string. For example, "sapog.px4.io". (char)
hw_version_major : Hardware major version number. (uint8_t)
hw_version_minor : Hardware minor version number. (uint8_t)
hw_unique_id : Hardware unique 128-bit ID. (uint8_t)
sw_version_major : Software major version number. (uint8_t)
sw_version_minor : Software minor version number. (uint8_t)
sw_vcs_commit : Version control system (VCS) revision identifier (e.g. git short commit hash). Zero if unknown. (uint32_t)
'''
return MAVLink_uavcan_node_info_message(time_usec, uptime_sec, name, hw_version_major, hw_version_minor, hw_unique_id, sw_version_major, sw_version_minor, sw_vcs_commit)
def uavcan_node_info_send(self, time_usec, uptime_sec, name, hw_version_major, hw_version_minor, hw_unique_id, sw_version_major, sw_version_minor, sw_vcs_commit, force_mavlink1=False):
'''
General information describing a particular UAVCAN node. Please refer
to the definition of the UAVCAN service
"uavcan.protocol.GetNodeInfo" for the background
information. This message should be emitted by the
system whenever a new node appears online, or an
existing node reboots. Additionally, it can be emitted
upon request from the other end of the MAVLink channel
(see MAV_CMD_UAVCAN_GET_NODE_INFO). It is also not
prohibited to emit this message unconditionally at a
low frequency. The UAVCAN specification is available
at http://uavcan.org.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
uptime_sec : Time since the start-up of the node. (uint32_t)
name : Node name string. For example, "sapog.px4.io". (char)
hw_version_major : Hardware major version number. (uint8_t)
hw_version_minor : Hardware minor version number. (uint8_t)
hw_unique_id : Hardware unique 128-bit ID. (uint8_t)
sw_version_major : Software major version number. (uint8_t)
sw_version_minor : Software minor version number. (uint8_t)
sw_vcs_commit : Version control system (VCS) revision identifier (e.g. git short commit hash). Zero if unknown. (uint32_t)
'''
return self.send(self.uavcan_node_info_encode(time_usec, uptime_sec, name, hw_version_major, hw_version_minor, hw_unique_id, sw_version_major, sw_version_minor, sw_vcs_commit), force_mavlink1=force_mavlink1)
def param_ext_request_read_encode(self, target_system, target_component, param_id, param_index):
'''
Request to read the value of a parameter with the either the param_id
string id or param_index.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_index : Parameter index. Set to -1 to use the Parameter ID field as identifier (else param_id will be ignored) (int16_t)
'''
return MAVLink_param_ext_request_read_message(target_system, target_component, param_id, param_index)
def param_ext_request_read_send(self, target_system, target_component, param_id, param_index, force_mavlink1=False):
'''
Request to read the value of a parameter with the either the param_id
string id or param_index.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_index : Parameter index. Set to -1 to use the Parameter ID field as identifier (else param_id will be ignored) (int16_t)
'''
return self.send(self.param_ext_request_read_encode(target_system, target_component, param_id, param_index), force_mavlink1=force_mavlink1)
def param_ext_request_list_encode(self, target_system, target_component):
'''
Request all parameters of this component. After this request, all
parameters are emitted.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
return MAVLink_param_ext_request_list_message(target_system, target_component)
def param_ext_request_list_send(self, target_system, target_component, force_mavlink1=False):
'''
Request all parameters of this component. After this request, all
parameters are emitted.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
return self.send(self.param_ext_request_list_encode(target_system, target_component), force_mavlink1=force_mavlink1)
def param_ext_value_encode(self, param_id, param_value, param_type, param_count, param_index):
'''
Emit the value of a parameter. The inclusion of param_count and
param_index in the message allows the recipient to
keep track of received parameters and allows them to
re-request missing parameters after a loss or timeout.
param_id : Parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_value : Parameter value (char)
param_type : Parameter type. (uint8_t)
param_count : Total number of parameters (uint16_t)
param_index : Index of this parameter (uint16_t)
'''
return MAVLink_param_ext_value_message(param_id, param_value, param_type, param_count, param_index)
def param_ext_value_send(self, param_id, param_value, param_type, param_count, param_index, force_mavlink1=False):
'''
Emit the value of a parameter. The inclusion of param_count and
param_index in the message allows the recipient to
keep track of received parameters and allows them to
re-request missing parameters after a loss or timeout.
param_id : Parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_value : Parameter value (char)
param_type : Parameter type. (uint8_t)
param_count : Total number of parameters (uint16_t)
param_index : Index of this parameter (uint16_t)
'''
return self.send(self.param_ext_value_encode(param_id, param_value, param_type, param_count, param_index), force_mavlink1=force_mavlink1)
def param_ext_set_encode(self, target_system, target_component, param_id, param_value, param_type):
'''
Set a parameter value. In order to deal with message loss (and
retransmission of PARAM_EXT_SET), when setting a
parameter value and the new value is the same as the
current value, you will immediately get a
PARAM_ACK_ACCEPTED response. If the current state is
PARAM_ACK_IN_PROGRESS, you will accordingly receive a
PARAM_ACK_IN_PROGRESS in response.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_value : Parameter value (char)
param_type : Parameter type. (uint8_t)
'''
return MAVLink_param_ext_set_message(target_system, target_component, param_id, param_value, param_type)
def param_ext_set_send(self, target_system, target_component, param_id, param_value, param_type, force_mavlink1=False):
'''
Set a parameter value. In order to deal with message loss (and
retransmission of PARAM_EXT_SET), when setting a
parameter value and the new value is the same as the
current value, you will immediately get a
PARAM_ACK_ACCEPTED response. If the current state is
PARAM_ACK_IN_PROGRESS, you will accordingly receive a
PARAM_ACK_IN_PROGRESS in response.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_value : Parameter value (char)
param_type : Parameter type. (uint8_t)
'''
return self.send(self.param_ext_set_encode(target_system, target_component, param_id, param_value, param_type), force_mavlink1=force_mavlink1)
def param_ext_ack_encode(self, param_id, param_value, param_type, param_result):
'''
Response from a PARAM_EXT_SET message.
param_id : Parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_value : Parameter value (new value if PARAM_ACK_ACCEPTED, current value otherwise) (char)
param_type : Parameter type. (uint8_t)
param_result : Result code. (uint8_t)
'''
return MAVLink_param_ext_ack_message(param_id, param_value, param_type, param_result)
def param_ext_ack_send(self, param_id, param_value, param_type, param_result, force_mavlink1=False):
'''
Response from a PARAM_EXT_SET message.
param_id : Parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char)
param_value : Parameter value (new value if PARAM_ACK_ACCEPTED, current value otherwise) (char)
param_type : Parameter type. (uint8_t)
param_result : Result code. (uint8_t)
'''
return self.send(self.param_ext_ack_encode(param_id, param_value, param_type, param_result), force_mavlink1=force_mavlink1)
def obstacle_distance_encode(self, time_usec, sensor_type, distances, increment, min_distance, max_distance):
'''
Obstacle distances in front of the sensor, starting from the left in
increment degrees to the right
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
sensor_type : Class id of the distance sensor type. (uint8_t)
distances : Distance of obstacles around the UAV with index 0 corresponding to local North. A value of 0 means that the obstacle is right in front of the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm. (uint16_t)
increment : Angular width in degrees of each array element. (uint8_t)
min_distance : Minimum distance the sensor can measure. (uint16_t)
max_distance : Maximum distance the sensor can measure. (uint16_t)
'''
return MAVLink_obstacle_distance_message(time_usec, sensor_type, distances, increment, min_distance, max_distance)
def obstacle_distance_send(self, time_usec, sensor_type, distances, increment, min_distance, max_distance, force_mavlink1=False):
'''
Obstacle distances in front of the sensor, starting from the left in
increment degrees to the right
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
sensor_type : Class id of the distance sensor type. (uint8_t)
distances : Distance of obstacles around the UAV with index 0 corresponding to local North. A value of 0 means that the obstacle is right in front of the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm. (uint16_t)
increment : Angular width in degrees of each array element. (uint8_t)
min_distance : Minimum distance the sensor can measure. (uint16_t)
max_distance : Maximum distance the sensor can measure. (uint16_t)
'''
return self.send(self.obstacle_distance_encode(time_usec, sensor_type, distances, increment, min_distance, max_distance), force_mavlink1=force_mavlink1)
def odometry_encode(self, time_usec, frame_id, child_frame_id, x, y, z, q, vx, vy, vz, rollspeed, pitchspeed, yawspeed, pose_covariance, twist_covariance):
'''
Odometry message to communicate odometry information with an external
interface. Fits ROS REP 147 standard for aerial
vehicles (http://www.ros.org/reps/rep-0147.html).
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
frame_id : Coordinate frame of reference for the pose data. (uint8_t)
child_frame_id : Coordinate frame of reference for the velocity in free space (twist) data. (uint8_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
q : Quaternion components, w, x, y, z (1 0 0 0 is the null-rotation) (float)
vx : X linear speed (float)
vy : Y linear speed (float)
vz : Z linear speed (float)
rollspeed : Roll angular speed (float)
pitchspeed : Pitch angular speed (float)
yawspeed : Yaw angular speed (float)
pose_covariance : Pose (states: x, y, z, roll, pitch, yaw) covariance matrix upper right triangle (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
twist_covariance : Twist (states: vx, vy, vz, rollspeed, pitchspeed, yawspeed) covariance matrix upper right triangle (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
'''
return MAVLink_odometry_message(time_usec, frame_id, child_frame_id, x, y, z, q, vx, vy, vz, rollspeed, pitchspeed, yawspeed, pose_covariance, twist_covariance)
def odometry_send(self, time_usec, frame_id, child_frame_id, x, y, z, q, vx, vy, vz, rollspeed, pitchspeed, yawspeed, pose_covariance, twist_covariance, force_mavlink1=False):
'''
Odometry message to communicate odometry information with an external
interface. Fits ROS REP 147 standard for aerial
vehicles (http://www.ros.org/reps/rep-0147.html).
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
frame_id : Coordinate frame of reference for the pose data. (uint8_t)
child_frame_id : Coordinate frame of reference for the velocity in free space (twist) data. (uint8_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
q : Quaternion components, w, x, y, z (1 0 0 0 is the null-rotation) (float)
vx : X linear speed (float)
vy : Y linear speed (float)
vz : Z linear speed (float)
rollspeed : Roll angular speed (float)
pitchspeed : Pitch angular speed (float)
yawspeed : Yaw angular speed (float)
pose_covariance : Pose (states: x, y, z, roll, pitch, yaw) covariance matrix upper right triangle (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
twist_covariance : Twist (states: vx, vy, vz, rollspeed, pitchspeed, yawspeed) covariance matrix upper right triangle (first six entries are the first ROW, next five entries are the second ROW, etc.) (float)
'''
return self.send(self.odometry_encode(time_usec, frame_id, child_frame_id, x, y, z, q, vx, vy, vz, rollspeed, pitchspeed, yawspeed, pose_covariance, twist_covariance), force_mavlink1=force_mavlink1)
def trajectory_representation_waypoints_encode(self, time_usec, valid_points, pos_x, pos_y, pos_z, vel_x, vel_y, vel_z, acc_x, acc_y, acc_z, pos_yaw, vel_yaw):
'''
Describe a trajectory using an array of up-to 5 waypoints in the local
frame.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
valid_points : Number of valid points (up-to 5 waypoints are possible) (uint8_t)
pos_x : X-coordinate of waypoint, set to NaN if not being used (float)
pos_y : Y-coordinate of waypoint, set to NaN if not being used (float)
pos_z : Z-coordinate of waypoint, set to NaN if not being used (float)
vel_x : X-velocity of waypoint, set to NaN if not being used (float)
vel_y : Y-velocity of waypoint, set to NaN if not being used (float)
vel_z : Z-velocity of waypoint, set to NaN if not being used (float)
acc_x : X-acceleration of waypoint, set to NaN if not being used (float)
acc_y : Y-acceleration of waypoint, set to NaN if not being used (float)
acc_z : Z-acceleration of waypoint, set to NaN if not being used (float)
pos_yaw : Yaw angle, set to NaN if not being used (float)
vel_yaw : Yaw rate, set to NaN if not being used (float)
'''
return MAVLink_trajectory_representation_waypoints_message(time_usec, valid_points, pos_x, pos_y, pos_z, vel_x, vel_y, vel_z, acc_x, acc_y, acc_z, pos_yaw, vel_yaw)
def trajectory_representation_waypoints_send(self, time_usec, valid_points, pos_x, pos_y, pos_z, vel_x, vel_y, vel_z, acc_x, acc_y, acc_z, pos_yaw, vel_yaw, force_mavlink1=False):
'''
Describe a trajectory using an array of up-to 5 waypoints in the local
frame.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
valid_points : Number of valid points (up-to 5 waypoints are possible) (uint8_t)
pos_x : X-coordinate of waypoint, set to NaN if not being used (float)
pos_y : Y-coordinate of waypoint, set to NaN if not being used (float)
pos_z : Z-coordinate of waypoint, set to NaN if not being used (float)
vel_x : X-velocity of waypoint, set to NaN if not being used (float)
vel_y : Y-velocity of waypoint, set to NaN if not being used (float)
vel_z : Z-velocity of waypoint, set to NaN if not being used (float)
acc_x : X-acceleration of waypoint, set to NaN if not being used (float)
acc_y : Y-acceleration of waypoint, set to NaN if not being used (float)
acc_z : Z-acceleration of waypoint, set to NaN if not being used (float)
pos_yaw : Yaw angle, set to NaN if not being used (float)
vel_yaw : Yaw rate, set to NaN if not being used (float)
'''
return self.send(self.trajectory_representation_waypoints_encode(time_usec, valid_points, pos_x, pos_y, pos_z, vel_x, vel_y, vel_z, acc_x, acc_y, acc_z, pos_yaw, vel_yaw), force_mavlink1=force_mavlink1)
def trajectory_representation_bezier_encode(self, time_usec, valid_points, pos_x, pos_y, pos_z, delta, pos_yaw):
'''
Describe a trajectory using an array of up-to 5 bezier points in the
local frame.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
valid_points : Number of valid points (up-to 5 waypoints are possible) (uint8_t)
pos_x : X-coordinate of starting bezier point, set to NaN if not being used (float)
pos_y : Y-coordinate of starting bezier point, set to NaN if not being used (float)
pos_z : Z-coordinate of starting bezier point, set to NaN if not being used (float)
delta : Bezier time horizon, set to NaN if velocity/acceleration should not be incorporated (float)
pos_yaw : Yaw, set to NaN for unchanged (float)
'''
return MAVLink_trajectory_representation_bezier_message(time_usec, valid_points, pos_x, pos_y, pos_z, delta, pos_yaw)
def trajectory_representation_bezier_send(self, time_usec, valid_points, pos_x, pos_y, pos_z, delta, pos_yaw, force_mavlink1=False):
'''
Describe a trajectory using an array of up-to 5 bezier points in the
local frame.
time_usec : Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude the number. (uint64_t)
valid_points : Number of valid points (up-to 5 waypoints are possible) (uint8_t)
pos_x : X-coordinate of starting bezier point, set to NaN if not being used (float)
pos_y : Y-coordinate of starting bezier point, set to NaN if not being used (float)
pos_z : Z-coordinate of starting bezier point, set to NaN if not being used (float)
delta : Bezier time horizon, set to NaN if velocity/acceleration should not be incorporated (float)
pos_yaw : Yaw, set to NaN for unchanged (float)
'''
return self.send(self.trajectory_representation_bezier_encode(time_usec, valid_points, pos_x, pos_y, pos_z, delta, pos_yaw), force_mavlink1=force_mavlink1)