cpython/Lib/rational.py

461 lines
15 KiB
Python
Executable File

# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
"""Rational, infinite-precision, real numbers."""
import math
import numbers
import operator
import re
__all__ = ["Rational"]
RationalAbc = numbers.Rational
def gcd(a, b):
"""Calculate the Greatest Common Divisor of a and b.
Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).
"""
while b:
a, b = b, a%b
return a
_RATIONAL_FORMAT = re.compile(
r'^\s*(?P<sign>[-+]?)(?P<num>\d+)'
r'(?:/(?P<denom>\d+)|\.(?P<decimal>\d+))?\s*$')
class Rational(RationalAbc):
"""This class implements rational numbers.
Rational(8, 6) will produce a rational number equivalent to
4/3. Both arguments must be Integral. The numerator defaults to 0
and the denominator defaults to 1 so that Rational(3) == 3 and
Rational() == 0.
Rationals can also be constructed from strings of the form
'[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
"""
__slots__ = ('numerator', 'denominator')
# We're immutable, so use __new__ not __init__
def __new__(cls, numerator=0, denominator=1):
"""Constructs a Rational.
Takes a string like '3/2' or '1.5', another Rational, or a
numerator/denominator pair.
"""
self = super(Rational, cls).__new__(cls)
if denominator == 1:
if isinstance(numerator, str):
# Handle construction from strings.
input = numerator
m = _RATIONAL_FORMAT.match(input)
if m is None:
raise ValueError('Invalid literal for Rational: ' + input)
numerator = m.group('num')
decimal = m.group('decimal')
if decimal:
# The literal is a decimal number.
numerator = int(numerator + decimal)
denominator = 10**len(decimal)
else:
# The literal is an integer or fraction.
numerator = int(numerator)
# Default denominator to 1.
denominator = int(m.group('denom') or 1)
if m.group('sign') == '-':
numerator = -numerator
elif (not isinstance(numerator, numbers.Integral) and
isinstance(numerator, RationalAbc)):
# Handle copies from other rationals.
other_rational = numerator
numerator = other_rational.numerator
denominator = other_rational.denominator
if (not isinstance(numerator, numbers.Integral) or
not isinstance(denominator, numbers.Integral)):
raise TypeError("Rational(%(numerator)s, %(denominator)s):"
" Both arguments must be integral." % locals())
if denominator == 0:
raise ZeroDivisionError('Rational(%s, 0)' % numerator)
g = gcd(numerator, denominator)
self.numerator = int(numerator // g)
self.denominator = int(denominator // g)
return self
@classmethod
def from_float(cls, f):
"""Converts a finite float to a rational number, exactly.
Beware that Rational.from_float(0.3) != Rational(3, 10).
"""
if not isinstance(f, float):
raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
(cls.__name__, f, type(f).__name__))
if math.isnan(f) or math.isinf(f):
raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
return cls(*f.as_integer_ratio())
@classmethod
def from_decimal(cls, dec):
"""Converts a finite Decimal instance to a rational number, exactly."""
from decimal import Decimal
if not isinstance(dec, Decimal):
raise TypeError(
"%s.from_decimal() only takes Decimals, not %r (%s)" %
(cls.__name__, dec, type(dec).__name__))
if not dec.is_finite():
# Catches infinities and nans.
raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
sign, digits, exp = dec.as_tuple()
digits = int(''.join(map(str, digits)))
if sign:
digits = -digits
if exp >= 0:
return cls(digits * 10 ** exp)
else:
return cls(digits, 10 ** -exp)
@classmethod
def from_continued_fraction(cls, seq):
'Build a Rational from a continued fraction expessed as a sequence'
n, d = 1, 0
for e in reversed(seq):
n, d = d, n
n += e * d
return cls(n, d) if seq else cls(0)
def as_continued_fraction(self):
'Return continued fraction expressed as a list'
n = self.numerator
d = self.denominator
cf = []
while d:
e = int(n // d)
cf.append(e)
n -= e * d
n, d = d, n
return cf
def approximate(self, max_denominator):
'Best rational approximation with a denominator <= max_denominator'
# XXX First cut at algorithm
# Still needs rounding rules as specified at
# http://en.wikipedia.org/wiki/Continued_fraction
if self.denominator <= max_denominator:
return self
cf = self.as_continued_fraction()
result = Rational(0)
for i in range(1, len(cf)):
new = self.from_continued_fraction(cf[:i])
if new.denominator > max_denominator:
break
result = new
return result
def __repr__(self):
"""repr(self)"""
return ('Rational(%r,%r)' % (self.numerator, self.denominator))
def __str__(self):
"""str(self)"""
if self.denominator == 1:
return str(self.numerator)
else:
return '%s/%s' % (self.numerator, self.denominator)
""" XXX This section needs a lot more commentary
* Explain the typical sequence of checks, calls, and fallbacks.
* Explain the subtle reasons why this logic was needed.
* It is not clear how common cases are handled (for example, how
does the ratio of two huge integers get converted to a float
without overflowing the long-->float conversion.
"""
def _operator_fallbacks(monomorphic_operator, fallback_operator):
"""Generates forward and reverse operators given a purely-rational
operator and a function from the operator module.
Use this like:
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
"""
def forward(a, b):
if isinstance(b, RationalAbc):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(b, float):
return fallback_operator(float(a), b)
elif isinstance(b, complex):
return fallback_operator(complex(a), b)
else:
return NotImplemented
forward.__name__ = '__' + fallback_operator.__name__ + '__'
forward.__doc__ = monomorphic_operator.__doc__
def reverse(b, a):
if isinstance(a, RationalAbc):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float(b))
elif isinstance(a, numbers.Complex):
return fallback_operator(complex(a), complex(b))
else:
return NotImplemented
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
reverse.__doc__ = monomorphic_operator.__doc__
return forward, reverse
def _add(a, b):
"""a + b"""
return Rational(a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
def _sub(a, b):
"""a - b"""
return Rational(a.numerator * b.denominator -
b.numerator * a.denominator,
a.denominator * b.denominator)
__sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
def _mul(a, b):
"""a * b"""
return Rational(a.numerator * b.numerator, a.denominator * b.denominator)
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
def _div(a, b):
"""a / b"""
return Rational(a.numerator * b.denominator,
a.denominator * b.numerator)
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
def __floordiv__(a, b):
"""a // b"""
return math.floor(a / b)
def __rfloordiv__(b, a):
"""a // b"""
return math.floor(a / b)
def __mod__(a, b):
"""a % b"""
div = a // b
return a - b * div
def __rmod__(b, a):
"""a % b"""
div = a // b
return a - b * div
def __pow__(a, b):
"""a ** b
If b is not an integer, the result will be a float or complex
since roots are generally irrational. If b is an integer, the
result will be rational.
"""
if isinstance(b, RationalAbc):
if b.denominator == 1:
power = b.numerator
if power >= 0:
return Rational(a.numerator ** power,
a.denominator ** power)
else:
return Rational(a.denominator ** -power,
a.numerator ** -power)
else:
# A fractional power will generally produce an
# irrational number.
return float(a) ** float(b)
else:
return float(a) ** b
def __rpow__(b, a):
"""a ** b"""
if b.denominator == 1 and b.numerator >= 0:
# If a is an int, keep it that way if possible.
return a ** b.numerator
if isinstance(a, RationalAbc):
return Rational(a.numerator, a.denominator) ** b
if b.denominator == 1:
return a ** b.numerator
return a ** float(b)
def __pos__(a):
"""+a: Coerces a subclass instance to Rational"""
return Rational(a.numerator, a.denominator)
def __neg__(a):
"""-a"""
return Rational(-a.numerator, a.denominator)
def __abs__(a):
"""abs(a)"""
return Rational(abs(a.numerator), a.denominator)
def __trunc__(a):
"""trunc(a)"""
if a.numerator < 0:
return -(-a.numerator // a.denominator)
else:
return a.numerator // a.denominator
__int__ = __trunc__
def __floor__(a):
"""Will be math.floor(a) in 3.0."""
return a.numerator // a.denominator
def __ceil__(a):
"""Will be math.ceil(a) in 3.0."""
# The negations cleverly convince floordiv to return the ceiling.
return -(-a.numerator // a.denominator)
def __round__(self, ndigits=None):
"""Will be round(self, ndigits) in 3.0.
Rounds half toward even.
"""
if ndigits is None:
floor, remainder = divmod(self.numerator, self.denominator)
if remainder * 2 < self.denominator:
return floor
elif remainder * 2 > self.denominator:
return floor + 1
# Deal with the half case:
elif floor % 2 == 0:
return floor
else:
return floor + 1
shift = 10**abs(ndigits)
# See _operator_fallbacks.forward to check that the results of
# these operations will always be Rational and therefore have
# round().
if ndigits > 0:
return Rational(round(self * shift), shift)
else:
return Rational(round(self / shift) * shift)
def __hash__(self):
"""hash(self)
Tricky because values that are exactly representable as a
float must have the same hash as that float.
"""
# XXX since this method is expensive, consider caching the result
if self.denominator == 1:
# Get integers right.
return hash(self.numerator)
# Expensive check, but definitely correct.
if self == float(self):
return hash(float(self))
else:
# Use tuple's hash to avoid a high collision rate on
# simple fractions.
return hash((self.numerator, self.denominator))
def __eq__(a, b):
"""a == b"""
if isinstance(b, RationalAbc):
return (a.numerator == b.numerator and
a.denominator == b.denominator)
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
return a == a.from_float(b)
else:
# XXX: If b.__eq__ is implemented like this method, it may
# give the wrong answer after float(a) changes a's
# value. Better ways of doing this are welcome.
return float(a) == b
def _subtractAndCompareToZero(a, b, op):
"""Helper function for comparison operators.
Subtracts b from a, exactly if possible, and compares the
result with 0 using op, in such a way that the comparison
won't recurse. If the difference raises a TypeError, returns
NotImplemented instead.
"""
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
b = a.from_float(b)
try:
# XXX: If b <: Real but not <: RationalAbc, this is likely
# to fall back to a float. If the actual values differ by
# less than MIN_FLOAT, this could falsely call them equal,
# which would make <= inconsistent with ==. Better ways of
# doing this are welcome.
diff = a - b
except TypeError:
return NotImplemented
if isinstance(diff, RationalAbc):
return op(diff.numerator, 0)
return op(diff, 0)
def __lt__(a, b):
"""a < b"""
return a._subtractAndCompareToZero(b, operator.lt)
def __gt__(a, b):
"""a > b"""
return a._subtractAndCompareToZero(b, operator.gt)
def __le__(a, b):
"""a <= b"""
return a._subtractAndCompareToZero(b, operator.le)
def __ge__(a, b):
"""a >= b"""
return a._subtractAndCompareToZero(b, operator.ge)
def __bool__(a):
"""a != 0"""
return a.numerator != 0
# support for pickling, copy, and deepcopy
def __reduce__(self):
return (self.__class__, (str(self),))
def __copy__(self):
if type(self) == Rational:
return self # I'm immutable; therefore I am my own clone
return self.__class__(self.numerator, self.denominator)
def __deepcopy__(self, memo):
if type(self) == Rational:
return self # My components are also immutable
return self.__class__(self.numerator, self.denominator)