mirror of https://github.com/python/cpython
1446 lines
48 KiB
Python
1446 lines
48 KiB
Python
"""Print a summary of specialization stats for all files in the
|
|
default stats folders.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
# NOTE: Bytecode introspection modules (opcode, dis, etc.) should only
|
|
# be imported when loading a single dataset. When comparing datasets, it
|
|
# could get it wrong, leading to subtle errors.
|
|
|
|
import argparse
|
|
import collections
|
|
from collections.abc import KeysView
|
|
from dataclasses import dataclass
|
|
from datetime import date
|
|
import enum
|
|
import functools
|
|
import itertools
|
|
import json
|
|
from operator import itemgetter
|
|
import os
|
|
from pathlib import Path
|
|
import re
|
|
import sys
|
|
import textwrap
|
|
from typing import Any, Callable, TextIO, TypeAlias
|
|
|
|
|
|
RawData: TypeAlias = dict[str, Any]
|
|
Rows: TypeAlias = list[tuple]
|
|
Columns: TypeAlias = tuple[str, ...]
|
|
RowCalculator: TypeAlias = Callable[["Stats"], Rows]
|
|
|
|
|
|
# TODO: Check for parity
|
|
|
|
|
|
if os.name == "nt":
|
|
DEFAULT_DIR = "c:\\temp\\py_stats\\"
|
|
else:
|
|
DEFAULT_DIR = "/tmp/py_stats/"
|
|
|
|
|
|
SOURCE_DIR = Path(__file__).parents[2]
|
|
|
|
|
|
TOTAL = "specialization.hit", "specialization.miss", "execution_count"
|
|
|
|
|
|
def pretty(name: str) -> str:
|
|
return name.replace("_", " ").lower()
|
|
|
|
|
|
def _load_metadata_from_source():
|
|
def get_defines(filepath: Path, prefix: str = "SPEC_FAIL"):
|
|
with open(SOURCE_DIR / filepath) as spec_src:
|
|
defines = collections.defaultdict(list)
|
|
start = "#define " + prefix + "_"
|
|
for line in spec_src:
|
|
line = line.strip()
|
|
if not line.startswith(start):
|
|
continue
|
|
line = line[len(start) :]
|
|
name, val = line.split()
|
|
defines[int(val.strip())].append(name.strip())
|
|
return defines
|
|
|
|
import opcode
|
|
|
|
return {
|
|
"_specialized_instructions": [
|
|
op for op in opcode._specialized_opmap.keys() if "__" not in op # type: ignore
|
|
],
|
|
"_stats_defines": get_defines(
|
|
Path("Include") / "cpython" / "pystats.h", "EVAL_CALL"
|
|
),
|
|
"_defines": get_defines(Path("Python") / "specialize.c"),
|
|
}
|
|
|
|
|
|
def load_raw_data(input: Path) -> RawData:
|
|
if input.is_file():
|
|
with open(input, "r") as fd:
|
|
data = json.load(fd)
|
|
|
|
data["_stats_defines"] = {int(k): v for k, v in data["_stats_defines"].items()}
|
|
data["_defines"] = {int(k): v for k, v in data["_defines"].items()}
|
|
|
|
return data
|
|
|
|
elif input.is_dir():
|
|
stats = collections.Counter[str]()
|
|
|
|
for filename in input.iterdir():
|
|
with open(filename) as fd:
|
|
for line in fd:
|
|
try:
|
|
key, value = line.split(":")
|
|
except ValueError:
|
|
print(
|
|
f"Unparsable line: '{line.strip()}' in {filename}",
|
|
file=sys.stderr,
|
|
)
|
|
continue
|
|
# Hack to handle older data files where some uops
|
|
# are missing an underscore prefix in their name
|
|
if key.startswith("uops[") and key[5:6] != "_":
|
|
key = "uops[_" + key[5:]
|
|
stats[key.strip()] += int(value)
|
|
stats["__nfiles__"] += 1
|
|
|
|
data = dict(stats)
|
|
data.update(_load_metadata_from_source())
|
|
return data
|
|
|
|
else:
|
|
raise ValueError(f"{input} is not a file or directory path")
|
|
|
|
|
|
def save_raw_data(data: RawData, json_output: TextIO):
|
|
json.dump(data, json_output)
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class Doc:
|
|
text: str
|
|
doc: str
|
|
|
|
def markdown(self) -> str:
|
|
return textwrap.dedent(
|
|
f"""
|
|
{self.text}
|
|
<details>
|
|
<summary>ⓘ</summary>
|
|
|
|
{self.doc}
|
|
</details>
|
|
"""
|
|
)
|
|
|
|
|
|
class Count(int):
|
|
def markdown(self) -> str:
|
|
return format(self, ",d")
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class Ratio:
|
|
num: int
|
|
den: int | None = None
|
|
percentage: bool = True
|
|
|
|
def __float__(self):
|
|
if self.den == 0:
|
|
return 0.0
|
|
elif self.den is None:
|
|
return self.num
|
|
else:
|
|
return self.num / self.den
|
|
|
|
def markdown(self) -> str:
|
|
if self.den is None:
|
|
return ""
|
|
elif self.den == 0:
|
|
if self.num != 0:
|
|
return f"{self.num:,} / 0 !!"
|
|
return ""
|
|
elif self.percentage:
|
|
return f"{self.num / self.den:,.01%}"
|
|
else:
|
|
return f"{self.num / self.den:,.02f}"
|
|
|
|
|
|
class DiffRatio(Ratio):
|
|
def __init__(self, base: int | str, head: int | str):
|
|
if isinstance(base, str) or isinstance(head, str):
|
|
super().__init__(0, 0)
|
|
else:
|
|
super().__init__(head - base, base)
|
|
|
|
|
|
class OpcodeStats:
|
|
"""
|
|
Manages the data related to specific set of opcodes, e.g. tier1 (with prefix
|
|
"opcode") or tier2 (with prefix "uops").
|
|
"""
|
|
|
|
def __init__(self, data: dict[str, Any], defines, specialized_instructions):
|
|
self._data = data
|
|
self._defines = defines
|
|
self._specialized_instructions = specialized_instructions
|
|
|
|
def get_opcode_names(self) -> KeysView[str]:
|
|
return self._data.keys()
|
|
|
|
def get_pair_counts(self) -> dict[tuple[str, str], int]:
|
|
pair_counts = {}
|
|
for name_i, opcode_stat in self._data.items():
|
|
for key, value in opcode_stat.items():
|
|
if value and key.startswith("pair_count"):
|
|
name_j, _, _ = key[len("pair_count") + 1 :].partition("]")
|
|
pair_counts[(name_i, name_j)] = value
|
|
return pair_counts
|
|
|
|
def get_total_execution_count(self) -> int:
|
|
return sum(x.get("execution_count", 0) for x in self._data.values())
|
|
|
|
def get_execution_counts(self) -> dict[str, tuple[int, int]]:
|
|
counts = {}
|
|
for name, opcode_stat in self._data.items():
|
|
if "execution_count" in opcode_stat:
|
|
count = opcode_stat["execution_count"]
|
|
miss = 0
|
|
if "specializable" not in opcode_stat:
|
|
miss = opcode_stat.get("specialization.miss", 0)
|
|
counts[name] = (count, miss)
|
|
return counts
|
|
|
|
@functools.cache
|
|
def _get_pred_succ(
|
|
self,
|
|
) -> tuple[dict[str, collections.Counter], dict[str, collections.Counter]]:
|
|
pair_counts = self.get_pair_counts()
|
|
|
|
predecessors: dict[str, collections.Counter] = collections.defaultdict(
|
|
collections.Counter
|
|
)
|
|
successors: dict[str, collections.Counter] = collections.defaultdict(
|
|
collections.Counter
|
|
)
|
|
for (first, second), count in pair_counts.items():
|
|
if count:
|
|
predecessors[second][first] = count
|
|
successors[first][second] = count
|
|
|
|
return predecessors, successors
|
|
|
|
def get_predecessors(self, opcode: str) -> collections.Counter[str]:
|
|
return self._get_pred_succ()[0][opcode]
|
|
|
|
def get_successors(self, opcode: str) -> collections.Counter[str]:
|
|
return self._get_pred_succ()[1][opcode]
|
|
|
|
def _get_stats_for_opcode(self, opcode: str) -> dict[str, int]:
|
|
return self._data[opcode]
|
|
|
|
def get_specialization_total(self, opcode: str) -> int:
|
|
family_stats = self._get_stats_for_opcode(opcode)
|
|
return sum(family_stats.get(kind, 0) for kind in TOTAL)
|
|
|
|
def get_specialization_counts(self, opcode: str) -> dict[str, int]:
|
|
family_stats = self._get_stats_for_opcode(opcode)
|
|
|
|
result = {}
|
|
for key, value in sorted(family_stats.items()):
|
|
if key.startswith("specialization."):
|
|
label = key[len("specialization.") :]
|
|
if label in ("success", "failure") or label.startswith("failure_kinds"):
|
|
continue
|
|
elif key in (
|
|
"execution_count",
|
|
"specializable",
|
|
) or key.startswith("pair"):
|
|
continue
|
|
else:
|
|
label = key
|
|
result[label] = value
|
|
|
|
return result
|
|
|
|
def get_specialization_success_failure(self, opcode: str) -> dict[str, int]:
|
|
family_stats = self._get_stats_for_opcode(opcode)
|
|
result = {}
|
|
for key in ("specialization.success", "specialization.failure"):
|
|
label = key[len("specialization.") :]
|
|
val = family_stats.get(key, 0)
|
|
result[label] = val
|
|
return result
|
|
|
|
def get_specialization_failure_total(self, opcode: str) -> int:
|
|
return self._get_stats_for_opcode(opcode).get("specialization.failure", 0)
|
|
|
|
def get_specialization_failure_kinds(self, opcode: str) -> dict[str, int]:
|
|
def kind_to_text(kind: int, opcode: str):
|
|
if kind <= 8:
|
|
return pretty(self._defines[kind][0])
|
|
if opcode == "LOAD_SUPER_ATTR":
|
|
opcode = "SUPER"
|
|
elif opcode.endswith("ATTR"):
|
|
opcode = "ATTR"
|
|
elif opcode in ("FOR_ITER", "SEND"):
|
|
opcode = "ITER"
|
|
elif opcode.endswith("SUBSCR"):
|
|
opcode = "SUBSCR"
|
|
for name in self._defines[kind]:
|
|
if name.startswith(opcode):
|
|
return pretty(name[len(opcode) + 1 :])
|
|
return "kind " + str(kind)
|
|
|
|
family_stats = self._get_stats_for_opcode(opcode)
|
|
failure_kinds = [0] * 40
|
|
for key in family_stats:
|
|
if not key.startswith("specialization.failure_kind"):
|
|
continue
|
|
index = int(key[:-1].split("[")[1])
|
|
failure_kinds[index] = family_stats[key]
|
|
return {
|
|
kind_to_text(index, opcode): value
|
|
for (index, value) in enumerate(failure_kinds)
|
|
if value
|
|
}
|
|
|
|
def is_specializable(self, opcode: str) -> bool:
|
|
return "specializable" in self._get_stats_for_opcode(opcode)
|
|
|
|
def get_specialized_total_counts(self) -> tuple[int, int, int]:
|
|
basic = 0
|
|
specialized_hits = 0
|
|
specialized_misses = 0
|
|
not_specialized = 0
|
|
for opcode, opcode_stat in self._data.items():
|
|
if "execution_count" not in opcode_stat:
|
|
continue
|
|
count = opcode_stat["execution_count"]
|
|
if "specializable" in opcode_stat:
|
|
not_specialized += count
|
|
elif opcode in self._specialized_instructions:
|
|
miss = opcode_stat.get("specialization.miss", 0)
|
|
specialized_hits += count - miss
|
|
specialized_misses += miss
|
|
else:
|
|
basic += count
|
|
return basic, specialized_hits, specialized_misses, not_specialized
|
|
|
|
def get_deferred_counts(self) -> dict[str, int]:
|
|
return {
|
|
opcode: opcode_stat.get("specialization.deferred", 0)
|
|
for opcode, opcode_stat in self._data.items()
|
|
if opcode != "RESUME"
|
|
}
|
|
|
|
def get_misses_counts(self) -> dict[str, int]:
|
|
return {
|
|
opcode: opcode_stat.get("specialization.miss", 0)
|
|
for opcode, opcode_stat in self._data.items()
|
|
if not self.is_specializable(opcode)
|
|
}
|
|
|
|
def get_opcode_counts(self) -> dict[str, int]:
|
|
counts = {}
|
|
for opcode, entry in self._data.items():
|
|
count = entry.get("count", 0)
|
|
if count:
|
|
counts[opcode] = count
|
|
return counts
|
|
|
|
|
|
class Stats:
|
|
def __init__(self, data: RawData):
|
|
self._data = data
|
|
|
|
def get(self, key: str) -> int:
|
|
return self._data.get(key, 0)
|
|
|
|
@functools.cache
|
|
def get_opcode_stats(self, prefix: str) -> OpcodeStats:
|
|
opcode_stats = collections.defaultdict[str, dict](dict)
|
|
for key, value in self._data.items():
|
|
if not key.startswith(prefix):
|
|
continue
|
|
name, _, rest = key[len(prefix) + 1 :].partition("]")
|
|
opcode_stats[name][rest.strip(".")] = value
|
|
return OpcodeStats(
|
|
opcode_stats,
|
|
self._data["_defines"],
|
|
self._data["_specialized_instructions"],
|
|
)
|
|
|
|
def get_call_stats(self) -> dict[str, int]:
|
|
defines = self._data["_stats_defines"]
|
|
result = {}
|
|
for key, value in sorted(self._data.items()):
|
|
if "Calls to" in key:
|
|
result[key] = value
|
|
elif key.startswith("Calls "):
|
|
name, index = key[:-1].split("[")
|
|
label = f"{name} ({pretty(defines[int(index)][0])})"
|
|
result[label] = value
|
|
|
|
for key, value in sorted(self._data.items()):
|
|
if key.startswith("Frame"):
|
|
result[key] = value
|
|
|
|
return result
|
|
|
|
def get_object_stats(self) -> dict[str, tuple[int, int]]:
|
|
total_materializations = self._data.get("Object inline values", 0)
|
|
total_allocations = self._data.get("Object allocations", 0) + self._data.get(
|
|
"Object allocations from freelist", 0
|
|
)
|
|
total_increfs = self._data.get(
|
|
"Object interpreter increfs", 0
|
|
) + self._data.get("Object increfs", 0)
|
|
total_decrefs = self._data.get(
|
|
"Object interpreter decrefs", 0
|
|
) + self._data.get("Object decrefs", 0)
|
|
|
|
result = {}
|
|
for key, value in self._data.items():
|
|
if key.startswith("Object"):
|
|
if "materialize" in key:
|
|
den = total_materializations
|
|
elif "allocations" in key:
|
|
den = total_allocations
|
|
elif "increfs" in key:
|
|
den = total_increfs
|
|
elif "decrefs" in key:
|
|
den = total_decrefs
|
|
else:
|
|
den = None
|
|
label = key[6:].strip()
|
|
label = label[0].upper() + label[1:]
|
|
result[label] = (value, den)
|
|
return result
|
|
|
|
def get_gc_stats(self) -> list[dict[str, int]]:
|
|
gc_stats: list[dict[str, int]] = []
|
|
for key, value in self._data.items():
|
|
if not key.startswith("GC"):
|
|
continue
|
|
n, _, rest = key[3:].partition("]")
|
|
name = rest.strip()
|
|
gen_n = int(n)
|
|
while len(gc_stats) <= gen_n:
|
|
gc_stats.append({})
|
|
gc_stats[gen_n][name] = value
|
|
return gc_stats
|
|
|
|
def get_optimization_stats(self) -> dict[str, tuple[int, int | None]]:
|
|
if "Optimization attempts" not in self._data:
|
|
return {}
|
|
|
|
attempts = self._data["Optimization attempts"]
|
|
created = self._data["Optimization traces created"]
|
|
executed = self._data["Optimization traces executed"]
|
|
uops = self._data["Optimization uops executed"]
|
|
trace_stack_overflow = self._data["Optimization trace stack overflow"]
|
|
trace_stack_underflow = self._data["Optimization trace stack underflow"]
|
|
trace_too_long = self._data["Optimization trace too long"]
|
|
trace_too_short = self._data["Optimization trace too short"]
|
|
inner_loop = self._data["Optimization inner loop"]
|
|
recursive_call = self._data["Optimization recursive call"]
|
|
low_confidence = self._data["Optimization low confidence"]
|
|
executors_invalidated = self._data["Executors invalidated"]
|
|
|
|
return {
|
|
Doc(
|
|
"Optimization attempts",
|
|
"The number of times a potential trace is identified. Specifically, this "
|
|
"occurs in the JUMP BACKWARD instruction when the counter reaches a "
|
|
"threshold.",
|
|
): (attempts, None),
|
|
Doc(
|
|
"Traces created", "The number of traces that were successfully created."
|
|
): (created, attempts),
|
|
Doc(
|
|
"Trace stack overflow",
|
|
"A trace is truncated because it would require more than 5 stack frames.",
|
|
): (trace_stack_overflow, attempts),
|
|
Doc(
|
|
"Trace stack underflow",
|
|
"A potential trace is abandoned because it pops more frames than it pushes.",
|
|
): (trace_stack_underflow, attempts),
|
|
Doc(
|
|
"Trace too long",
|
|
"A trace is truncated because it is longer than the instruction buffer.",
|
|
): (trace_too_long, attempts),
|
|
Doc(
|
|
"Trace too short",
|
|
"A potential trace is abandoced because it it too short.",
|
|
): (trace_too_short, attempts),
|
|
Doc(
|
|
"Inner loop found", "A trace is truncated because it has an inner loop"
|
|
): (inner_loop, attempts),
|
|
Doc(
|
|
"Recursive call",
|
|
"A trace is truncated because it has a recursive call.",
|
|
): (recursive_call, attempts),
|
|
Doc(
|
|
"Low confidence",
|
|
"A trace is abandoned because the likelihood of the jump to top being taken "
|
|
"is too low.",
|
|
): (low_confidence, attempts),
|
|
Doc(
|
|
"Executors invalidated",
|
|
"The number of executors that were invalidated due to watched "
|
|
"dictionary changes.",
|
|
): (executors_invalidated, created),
|
|
Doc("Traces executed", "The number of traces that were executed"): (
|
|
executed,
|
|
None,
|
|
),
|
|
Doc(
|
|
"Uops executed",
|
|
"The total number of uops (micro-operations) that were executed",
|
|
): (
|
|
uops,
|
|
executed,
|
|
),
|
|
}
|
|
|
|
def get_optimizer_stats(self) -> dict[str, tuple[int, int | None]]:
|
|
attempts = self._data["Optimization optimizer attempts"]
|
|
successes = self._data["Optimization optimizer successes"]
|
|
no_memory = self._data["Optimization optimizer failure no memory"]
|
|
builtins_changed = self._data["Optimizer remove globals builtins changed"]
|
|
incorrect_keys = self._data["Optimizer remove globals incorrect keys"]
|
|
|
|
return {
|
|
Doc(
|
|
"Optimizer attempts",
|
|
"The number of times the trace optimizer (_Py_uop_analyze_and_optimize) was run.",
|
|
): (attempts, None),
|
|
Doc(
|
|
"Optimizer successes",
|
|
"The number of traces that were successfully optimized.",
|
|
): (successes, attempts),
|
|
Doc(
|
|
"Optimizer no memory",
|
|
"The number of optimizations that failed due to no memory.",
|
|
): (no_memory, attempts),
|
|
Doc(
|
|
"Remove globals builtins changed",
|
|
"The builtins changed during optimization",
|
|
): (builtins_changed, attempts),
|
|
Doc(
|
|
"Remove globals incorrect keys",
|
|
"The keys in the globals dictionary aren't what was expected",
|
|
): (incorrect_keys, attempts),
|
|
}
|
|
|
|
def get_histogram(self, prefix: str) -> list[tuple[int, int]]:
|
|
rows = []
|
|
for k, v in self._data.items():
|
|
match = re.match(f"{prefix}\\[([0-9]+)\\]", k)
|
|
if match is not None:
|
|
entry = int(match.groups()[0])
|
|
rows.append((entry, v))
|
|
rows.sort()
|
|
return rows
|
|
|
|
def get_rare_events(self) -> list[tuple[str, int]]:
|
|
prefix = "Rare event "
|
|
return [
|
|
(key[len(prefix) + 1 : -1].replace("_", " "), val)
|
|
for key, val in self._data.items()
|
|
if key.startswith(prefix)
|
|
]
|
|
|
|
|
|
class JoinMode(enum.Enum):
|
|
# Join using the first column as a key
|
|
SIMPLE = 0
|
|
# Join using the first column as a key, and indicate the change in the
|
|
# second column of each input table as a new column
|
|
CHANGE = 1
|
|
# Join using the first column as a key, indicating the change in the second
|
|
# column of each input table as a new column, and omit all other columns
|
|
CHANGE_ONE_COLUMN = 2
|
|
# Join using the first column as a key, and indicate the change as a new
|
|
# column, but don't sort by the amount of change.
|
|
CHANGE_NO_SORT = 3
|
|
|
|
|
|
class Table:
|
|
"""
|
|
A Table defines how to convert a set of Stats into a specific set of rows
|
|
displaying some aspect of the data.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
column_names: Columns,
|
|
calc_rows: RowCalculator,
|
|
join_mode: JoinMode = JoinMode.SIMPLE,
|
|
):
|
|
self.columns = column_names
|
|
self.calc_rows = calc_rows
|
|
self.join_mode = join_mode
|
|
|
|
def join_row(self, key: str, row_a: tuple, row_b: tuple) -> tuple:
|
|
match self.join_mode:
|
|
case JoinMode.SIMPLE:
|
|
return (key, *row_a, *row_b)
|
|
case JoinMode.CHANGE | JoinMode.CHANGE_NO_SORT:
|
|
return (key, *row_a, *row_b, DiffRatio(row_a[0], row_b[0]))
|
|
case JoinMode.CHANGE_ONE_COLUMN:
|
|
return (key, row_a[0], row_b[0], DiffRatio(row_a[0], row_b[0]))
|
|
|
|
def join_columns(self, columns: Columns) -> Columns:
|
|
match self.join_mode:
|
|
case JoinMode.SIMPLE:
|
|
return (
|
|
columns[0],
|
|
*("Base " + x for x in columns[1:]),
|
|
*("Head " + x for x in columns[1:]),
|
|
)
|
|
case JoinMode.CHANGE | JoinMode.CHANGE_NO_SORT:
|
|
return (
|
|
columns[0],
|
|
*("Base " + x for x in columns[1:]),
|
|
*("Head " + x for x in columns[1:]),
|
|
) + ("Change:",)
|
|
case JoinMode.CHANGE_ONE_COLUMN:
|
|
return (
|
|
columns[0],
|
|
"Base " + columns[1],
|
|
"Head " + columns[1],
|
|
"Change:",
|
|
)
|
|
|
|
def join_tables(self, rows_a: Rows, rows_b: Rows) -> tuple[Columns, Rows]:
|
|
ncols = len(self.columns)
|
|
|
|
default = ("",) * (ncols - 1)
|
|
data_a = {x[0]: x[1:] for x in rows_a}
|
|
data_b = {x[0]: x[1:] for x in rows_b}
|
|
|
|
if len(data_a) != len(rows_a) or len(data_b) != len(rows_b):
|
|
raise ValueError("Duplicate keys")
|
|
|
|
# To preserve ordering, use A's keys as is and then add any in B that
|
|
# aren't in A
|
|
keys = list(data_a.keys()) + [k for k in data_b.keys() if k not in data_a]
|
|
rows = [
|
|
self.join_row(k, data_a.get(k, default), data_b.get(k, default))
|
|
for k in keys
|
|
]
|
|
if self.join_mode in (JoinMode.CHANGE, JoinMode.CHANGE_ONE_COLUMN):
|
|
rows.sort(key=lambda row: abs(float(row[-1])), reverse=True)
|
|
|
|
columns = self.join_columns(self.columns)
|
|
return columns, rows
|
|
|
|
def get_table(
|
|
self, base_stats: Stats, head_stats: Stats | None = None
|
|
) -> tuple[Columns, Rows]:
|
|
if head_stats is None:
|
|
rows = self.calc_rows(base_stats)
|
|
return self.columns, rows
|
|
else:
|
|
rows_a = self.calc_rows(base_stats)
|
|
rows_b = self.calc_rows(head_stats)
|
|
cols, rows = self.join_tables(rows_a, rows_b)
|
|
return cols, rows
|
|
|
|
|
|
class Section:
|
|
"""
|
|
A Section defines a section of the output document.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
title: str = "",
|
|
summary: str = "",
|
|
part_iter=None,
|
|
*,
|
|
comparative: bool = True,
|
|
doc: str = "",
|
|
):
|
|
self.title = title
|
|
if not summary:
|
|
self.summary = title.lower()
|
|
else:
|
|
self.summary = summary
|
|
self.doc = textwrap.dedent(doc)
|
|
if part_iter is None:
|
|
part_iter = []
|
|
if isinstance(part_iter, list):
|
|
|
|
def iter_parts(base_stats: Stats, head_stats: Stats | None):
|
|
yield from part_iter
|
|
|
|
self.part_iter = iter_parts
|
|
else:
|
|
self.part_iter = part_iter
|
|
self.comparative = comparative
|
|
|
|
|
|
def calc_execution_count_table(prefix: str) -> RowCalculator:
|
|
def calc(stats: Stats) -> Rows:
|
|
opcode_stats = stats.get_opcode_stats(prefix)
|
|
counts = opcode_stats.get_execution_counts()
|
|
total = opcode_stats.get_total_execution_count()
|
|
cumulative = 0
|
|
rows: Rows = []
|
|
for opcode, (count, miss) in sorted(
|
|
counts.items(), key=itemgetter(1), reverse=True
|
|
):
|
|
cumulative += count
|
|
if miss:
|
|
miss_val = Ratio(miss, count)
|
|
else:
|
|
miss_val = None
|
|
rows.append(
|
|
(
|
|
opcode,
|
|
Count(count),
|
|
Ratio(count, total),
|
|
Ratio(cumulative, total),
|
|
miss_val,
|
|
)
|
|
)
|
|
return rows
|
|
|
|
return calc
|
|
|
|
|
|
def execution_count_section() -> Section:
|
|
return Section(
|
|
"Execution counts",
|
|
"Execution counts for Tier 1 instructions.",
|
|
[
|
|
Table(
|
|
("Name", "Count:", "Self:", "Cumulative:", "Miss ratio:"),
|
|
calc_execution_count_table("opcode"),
|
|
join_mode=JoinMode.CHANGE_ONE_COLUMN,
|
|
)
|
|
],
|
|
doc="""
|
|
The "miss ratio" column shows the percentage of times the instruction
|
|
executed that it deoptimized. When this happens, the base unspecialized
|
|
instruction is not counted.
|
|
""",
|
|
)
|
|
|
|
|
|
def pair_count_section() -> Section:
|
|
def calc_pair_count_table(stats: Stats) -> Rows:
|
|
opcode_stats = stats.get_opcode_stats("opcode")
|
|
pair_counts = opcode_stats.get_pair_counts()
|
|
total = opcode_stats.get_total_execution_count()
|
|
|
|
cumulative = 0
|
|
rows: Rows = []
|
|
for (opcode_i, opcode_j), count in itertools.islice(
|
|
sorted(pair_counts.items(), key=itemgetter(1), reverse=True), 100
|
|
):
|
|
cumulative += count
|
|
rows.append(
|
|
(
|
|
f"{opcode_i} {opcode_j}",
|
|
Count(count),
|
|
Ratio(count, total),
|
|
Ratio(cumulative, total),
|
|
)
|
|
)
|
|
return rows
|
|
|
|
return Section(
|
|
"Pair counts",
|
|
"Pair counts for top 100 Tier 1 instructions",
|
|
[
|
|
Table(
|
|
("Pair", "Count:", "Self:", "Cumulative:"),
|
|
calc_pair_count_table,
|
|
)
|
|
],
|
|
comparative=False,
|
|
doc="""
|
|
Pairs of specialized operations that deoptimize and are then followed by
|
|
the corresponding unspecialized instruction are not counted as pairs.
|
|
""",
|
|
)
|
|
|
|
|
|
def pre_succ_pairs_section() -> Section:
|
|
def iter_pre_succ_pairs_tables(base_stats: Stats, head_stats: Stats | None = None):
|
|
assert head_stats is None
|
|
|
|
opcode_stats = base_stats.get_opcode_stats("opcode")
|
|
|
|
for opcode in opcode_stats.get_opcode_names():
|
|
predecessors = opcode_stats.get_predecessors(opcode)
|
|
successors = opcode_stats.get_successors(opcode)
|
|
predecessors_total = predecessors.total()
|
|
successors_total = successors.total()
|
|
if predecessors_total == 0 and successors_total == 0:
|
|
continue
|
|
pred_rows = [
|
|
(pred, Count(count), Ratio(count, predecessors_total))
|
|
for (pred, count) in predecessors.most_common(5)
|
|
]
|
|
succ_rows = [
|
|
(succ, Count(count), Ratio(count, successors_total))
|
|
for (succ, count) in successors.most_common(5)
|
|
]
|
|
|
|
yield Section(
|
|
opcode,
|
|
f"Successors and predecessors for {opcode}",
|
|
[
|
|
Table(
|
|
("Predecessors", "Count:", "Percentage:"),
|
|
lambda *_: pred_rows, # type: ignore
|
|
),
|
|
Table(
|
|
("Successors", "Count:", "Percentage:"),
|
|
lambda *_: succ_rows, # type: ignore
|
|
),
|
|
],
|
|
)
|
|
|
|
return Section(
|
|
"Predecessor/Successor Pairs",
|
|
"Top 5 predecessors and successors of each Tier 1 opcode.",
|
|
iter_pre_succ_pairs_tables,
|
|
comparative=False,
|
|
doc="""
|
|
This does not include the unspecialized instructions that occur after a
|
|
specialized instruction deoptimizes.
|
|
""",
|
|
)
|
|
|
|
|
|
def specialization_section() -> Section:
|
|
def calc_specialization_table(opcode: str) -> RowCalculator:
|
|
def calc(stats: Stats) -> Rows:
|
|
DOCS = {
|
|
"deferred": 'Lists the number of "deferred" (i.e. not specialized) instructions executed.',
|
|
"hit": "Specialized instructions that complete.",
|
|
"miss": "Specialized instructions that deopt.",
|
|
"deopt": "Specialized instructions that deopt.",
|
|
}
|
|
|
|
opcode_stats = stats.get_opcode_stats("opcode")
|
|
total = opcode_stats.get_specialization_total(opcode)
|
|
specialization_counts = opcode_stats.get_specialization_counts(opcode)
|
|
|
|
return [
|
|
(
|
|
Doc(label, DOCS[label]),
|
|
Count(count),
|
|
Ratio(count, total),
|
|
)
|
|
for label, count in specialization_counts.items()
|
|
]
|
|
|
|
return calc
|
|
|
|
def calc_specialization_success_failure_table(name: str) -> RowCalculator:
|
|
def calc(stats: Stats) -> Rows:
|
|
values = stats.get_opcode_stats(
|
|
"opcode"
|
|
).get_specialization_success_failure(name)
|
|
total = sum(values.values())
|
|
if total:
|
|
return [
|
|
(label.capitalize(), Count(val), Ratio(val, total))
|
|
for label, val in values.items()
|
|
]
|
|
else:
|
|
return []
|
|
|
|
return calc
|
|
|
|
def calc_specialization_failure_kind_table(name: str) -> RowCalculator:
|
|
def calc(stats: Stats) -> Rows:
|
|
opcode_stats = stats.get_opcode_stats("opcode")
|
|
failures = opcode_stats.get_specialization_failure_kinds(name)
|
|
total = opcode_stats.get_specialization_failure_total(name)
|
|
|
|
return sorted(
|
|
[
|
|
(label, Count(value), Ratio(value, total))
|
|
for label, value in failures.items()
|
|
if value
|
|
],
|
|
key=itemgetter(1),
|
|
reverse=True,
|
|
)
|
|
|
|
return calc
|
|
|
|
def iter_specialization_tables(base_stats: Stats, head_stats: Stats | None = None):
|
|
opcode_base_stats = base_stats.get_opcode_stats("opcode")
|
|
names = opcode_base_stats.get_opcode_names()
|
|
if head_stats is not None:
|
|
opcode_head_stats = head_stats.get_opcode_stats("opcode")
|
|
names &= opcode_head_stats.get_opcode_names() # type: ignore
|
|
else:
|
|
opcode_head_stats = None
|
|
|
|
for opcode in sorted(names):
|
|
if not opcode_base_stats.is_specializable(opcode):
|
|
continue
|
|
if opcode_base_stats.get_specialization_total(opcode) == 0 and (
|
|
opcode_head_stats is None
|
|
or opcode_head_stats.get_specialization_total(opcode) == 0
|
|
):
|
|
continue
|
|
yield Section(
|
|
opcode,
|
|
f"specialization stats for {opcode} family",
|
|
[
|
|
Table(
|
|
("Kind", "Count:", "Ratio:"),
|
|
calc_specialization_table(opcode),
|
|
JoinMode.CHANGE,
|
|
),
|
|
Table(
|
|
("Success", "Count:", "Ratio:"),
|
|
calc_specialization_success_failure_table(opcode),
|
|
JoinMode.CHANGE,
|
|
),
|
|
Table(
|
|
("Failure kind", "Count:", "Ratio:"),
|
|
calc_specialization_failure_kind_table(opcode),
|
|
JoinMode.CHANGE,
|
|
),
|
|
],
|
|
)
|
|
|
|
return Section(
|
|
"Specialization stats",
|
|
"Specialization stats by family",
|
|
iter_specialization_tables,
|
|
)
|
|
|
|
|
|
def specialization_effectiveness_section() -> Section:
|
|
def calc_specialization_effectiveness_table(stats: Stats) -> Rows:
|
|
opcode_stats = stats.get_opcode_stats("opcode")
|
|
total = opcode_stats.get_total_execution_count()
|
|
|
|
(
|
|
basic,
|
|
specialized_hits,
|
|
specialized_misses,
|
|
not_specialized,
|
|
) = opcode_stats.get_specialized_total_counts()
|
|
|
|
return [
|
|
(
|
|
Doc(
|
|
"Basic",
|
|
"Instructions that are not and cannot be specialized, e.g. `LOAD_FAST`.",
|
|
),
|
|
Count(basic),
|
|
Ratio(basic, total),
|
|
),
|
|
(
|
|
Doc(
|
|
"Not specialized",
|
|
"Instructions that could be specialized but aren't, e.g. `LOAD_ATTR`, `BINARY_SLICE`.",
|
|
),
|
|
Count(not_specialized),
|
|
Ratio(not_specialized, total),
|
|
),
|
|
(
|
|
Doc(
|
|
"Specialized hits",
|
|
"Specialized instructions, e.g. `LOAD_ATTR_MODULE` that complete.",
|
|
),
|
|
Count(specialized_hits),
|
|
Ratio(specialized_hits, total),
|
|
),
|
|
(
|
|
Doc(
|
|
"Specialized misses",
|
|
"Specialized instructions, e.g. `LOAD_ATTR_MODULE` that deopt.",
|
|
),
|
|
Count(specialized_misses),
|
|
Ratio(specialized_misses, total),
|
|
),
|
|
]
|
|
|
|
def calc_deferred_by_table(stats: Stats) -> Rows:
|
|
opcode_stats = stats.get_opcode_stats("opcode")
|
|
deferred_counts = opcode_stats.get_deferred_counts()
|
|
total = sum(deferred_counts.values())
|
|
if total == 0:
|
|
return []
|
|
|
|
return [
|
|
(name, Count(value), Ratio(value, total))
|
|
for name, value in sorted(
|
|
deferred_counts.items(), key=itemgetter(1), reverse=True
|
|
)[:10]
|
|
]
|
|
|
|
def calc_misses_by_table(stats: Stats) -> Rows:
|
|
opcode_stats = stats.get_opcode_stats("opcode")
|
|
misses_counts = opcode_stats.get_misses_counts()
|
|
total = sum(misses_counts.values())
|
|
if total == 0:
|
|
return []
|
|
|
|
return [
|
|
(name, Count(value), Ratio(value, total))
|
|
for name, value in sorted(
|
|
misses_counts.items(), key=itemgetter(1), reverse=True
|
|
)[:10]
|
|
]
|
|
|
|
return Section(
|
|
"Specialization effectiveness",
|
|
"",
|
|
[
|
|
Table(
|
|
("Instructions", "Count:", "Ratio:"),
|
|
calc_specialization_effectiveness_table,
|
|
JoinMode.CHANGE,
|
|
),
|
|
Section(
|
|
"Deferred by instruction",
|
|
"Breakdown of deferred (not specialized) instruction counts by family",
|
|
[
|
|
Table(
|
|
("Name", "Count:", "Ratio:"),
|
|
calc_deferred_by_table,
|
|
JoinMode.CHANGE,
|
|
)
|
|
],
|
|
),
|
|
Section(
|
|
"Misses by instruction",
|
|
"Breakdown of misses (specialized deopts) instruction counts by family",
|
|
[
|
|
Table(
|
|
("Name", "Count:", "Ratio:"),
|
|
calc_misses_by_table,
|
|
JoinMode.CHANGE,
|
|
)
|
|
],
|
|
),
|
|
],
|
|
doc="""
|
|
All entries are execution counts. Should add up to the total number of
|
|
Tier 1 instructions executed.
|
|
""",
|
|
)
|
|
|
|
|
|
def call_stats_section() -> Section:
|
|
def calc_call_stats_table(stats: Stats) -> Rows:
|
|
call_stats = stats.get_call_stats()
|
|
total = sum(v for k, v in call_stats.items() if "Calls to" in k)
|
|
return [
|
|
(key, Count(value), Ratio(value, total))
|
|
for key, value in call_stats.items()
|
|
]
|
|
|
|
return Section(
|
|
"Call stats",
|
|
"Inlined calls and frame stats",
|
|
[
|
|
Table(
|
|
("", "Count:", "Ratio:"),
|
|
calc_call_stats_table,
|
|
JoinMode.CHANGE,
|
|
)
|
|
],
|
|
doc="""
|
|
This shows what fraction of calls to Python functions are inlined (i.e.
|
|
not having a call at the C level) and for those that are not, where the
|
|
call comes from. The various categories overlap.
|
|
|
|
Also includes the count of frame objects created.
|
|
""",
|
|
)
|
|
|
|
|
|
def object_stats_section() -> Section:
|
|
def calc_object_stats_table(stats: Stats) -> Rows:
|
|
object_stats = stats.get_object_stats()
|
|
return [
|
|
(label, Count(value), Ratio(value, den))
|
|
for label, (value, den) in object_stats.items()
|
|
]
|
|
|
|
return Section(
|
|
"Object stats",
|
|
"Allocations, frees and dict materializatons",
|
|
[
|
|
Table(
|
|
("", "Count:", "Ratio:"),
|
|
calc_object_stats_table,
|
|
JoinMode.CHANGE,
|
|
)
|
|
],
|
|
doc="""
|
|
Below, "allocations" means "allocations that are not from a freelist".
|
|
Total allocations = "Allocations from freelist" + "Allocations".
|
|
|
|
"Inline values" is the number of values arrays inlined into objects.
|
|
|
|
The cache hit/miss numbers are for the MRO cache, split into dunder and
|
|
other names.
|
|
""",
|
|
)
|
|
|
|
|
|
def gc_stats_section() -> Section:
|
|
def calc_gc_stats(stats: Stats) -> Rows:
|
|
gc_stats = stats.get_gc_stats()
|
|
|
|
return [
|
|
(
|
|
Count(i),
|
|
Count(gen["collections"]),
|
|
Count(gen["objects collected"]),
|
|
Count(gen["object visits"]),
|
|
)
|
|
for (i, gen) in enumerate(gc_stats)
|
|
]
|
|
|
|
return Section(
|
|
"GC stats",
|
|
"GC collections and effectiveness",
|
|
[
|
|
Table(
|
|
("Generation:", "Collections:", "Objects collected:", "Object visits:"),
|
|
calc_gc_stats,
|
|
)
|
|
],
|
|
doc="""
|
|
Collected/visits gives some measure of efficiency.
|
|
""",
|
|
)
|
|
|
|
|
|
def optimization_section() -> Section:
|
|
def calc_optimization_table(stats: Stats) -> Rows:
|
|
optimization_stats = stats.get_optimization_stats()
|
|
|
|
return [
|
|
(
|
|
label,
|
|
Count(value),
|
|
Ratio(value, den, percentage=label != "Uops executed"),
|
|
)
|
|
for label, (value, den) in optimization_stats.items()
|
|
]
|
|
|
|
def calc_optimizer_table(stats: Stats) -> Rows:
|
|
optimizer_stats = stats.get_optimizer_stats()
|
|
|
|
return [
|
|
(label, Count(value), Ratio(value, den))
|
|
for label, (value, den) in optimizer_stats.items()
|
|
]
|
|
|
|
def calc_histogram_table(key: str, den: str) -> RowCalculator:
|
|
def calc(stats: Stats) -> Rows:
|
|
histogram = stats.get_histogram(key)
|
|
denominator = stats.get(den)
|
|
|
|
rows: Rows = []
|
|
last_non_zero = 0
|
|
for k, v in histogram:
|
|
if v != 0:
|
|
last_non_zero = len(rows)
|
|
rows.append(
|
|
(
|
|
f"<= {k:,d}",
|
|
Count(v),
|
|
Ratio(v, denominator),
|
|
)
|
|
)
|
|
# Don't include any zero entries at the end
|
|
rows = rows[: last_non_zero + 1]
|
|
return rows
|
|
|
|
return calc
|
|
|
|
def calc_unsupported_opcodes_table(stats: Stats) -> Rows:
|
|
unsupported_opcodes = stats.get_opcode_stats("unsupported_opcode")
|
|
return sorted(
|
|
[
|
|
(opcode, Count(count))
|
|
for opcode, count in unsupported_opcodes.get_opcode_counts().items()
|
|
],
|
|
key=itemgetter(1),
|
|
reverse=True,
|
|
)
|
|
|
|
def calc_error_in_opcodes_table(stats: Stats) -> Rows:
|
|
error_in_opcodes = stats.get_opcode_stats("error_in_opcode")
|
|
return sorted(
|
|
[
|
|
(opcode, Count(count))
|
|
for opcode, count in error_in_opcodes.get_opcode_counts().items()
|
|
],
|
|
key=itemgetter(1),
|
|
reverse=True,
|
|
)
|
|
|
|
def iter_optimization_tables(base_stats: Stats, head_stats: Stats | None = None):
|
|
if not base_stats.get_optimization_stats() or (
|
|
head_stats is not None and not head_stats.get_optimization_stats()
|
|
):
|
|
return
|
|
|
|
yield Table(("", "Count:", "Ratio:"), calc_optimization_table, JoinMode.CHANGE)
|
|
yield Table(("", "Count:", "Ratio:"), calc_optimizer_table, JoinMode.CHANGE)
|
|
for name, den in [
|
|
("Trace length", "Optimization traces created"),
|
|
("Optimized trace length", "Optimization traces created"),
|
|
("Trace run length", "Optimization traces executed"),
|
|
]:
|
|
yield Section(
|
|
f"{name} histogram",
|
|
"",
|
|
[
|
|
Table(
|
|
("Range", "Count:", "Ratio:"),
|
|
calc_histogram_table(name, den),
|
|
JoinMode.CHANGE_NO_SORT,
|
|
)
|
|
],
|
|
)
|
|
yield Section(
|
|
"Uop execution stats",
|
|
"",
|
|
[
|
|
Table(
|
|
("Name", "Count:", "Self:", "Cumulative:", "Miss ratio:"),
|
|
calc_execution_count_table("uops"),
|
|
JoinMode.CHANGE_ONE_COLUMN,
|
|
)
|
|
],
|
|
)
|
|
yield Section(
|
|
"Unsupported opcodes",
|
|
"",
|
|
[
|
|
Table(
|
|
("Opcode", "Count:"),
|
|
calc_unsupported_opcodes_table,
|
|
JoinMode.CHANGE,
|
|
)
|
|
],
|
|
)
|
|
yield Section(
|
|
"Optimizer errored out with opcode",
|
|
"Optimization stopped after encountering this opcode",
|
|
[Table(("Opcode", "Count:"), calc_error_in_opcodes_table, JoinMode.CHANGE)],
|
|
)
|
|
|
|
return Section(
|
|
"Optimization (Tier 2) stats",
|
|
"statistics about the Tier 2 optimizer",
|
|
iter_optimization_tables,
|
|
)
|
|
|
|
|
|
def rare_event_section() -> Section:
|
|
def calc_rare_event_table(stats: Stats) -> Table:
|
|
DOCS = {
|
|
"set class": "Setting an object's class, `obj.__class__ = ...`",
|
|
"set bases": "Setting the bases of a class, `cls.__bases__ = ...`",
|
|
"set eval frame func": (
|
|
"Setting the PEP 523 frame eval function "
|
|
"`_PyInterpreterState_SetFrameEvalFunc()`"
|
|
),
|
|
"builtin dict": "Modifying the builtins, `__builtins__.__dict__[var] = ...`",
|
|
"func modification": "Modifying a function, e.g. `func.__defaults__ = ...`, etc.",
|
|
"watched dict modification": "A watched dict has been modified",
|
|
"watched globals modification": "A watched `globals()` dict has been modified",
|
|
}
|
|
return [(Doc(x, DOCS[x]), Count(y)) for x, y in stats.get_rare_events()]
|
|
|
|
return Section(
|
|
"Rare events",
|
|
"Counts of rare/unlikely events",
|
|
[Table(("Event", "Count:"), calc_rare_event_table, JoinMode.CHANGE)],
|
|
)
|
|
|
|
|
|
def meta_stats_section() -> Section:
|
|
def calc_rows(stats: Stats) -> Rows:
|
|
return [("Number of data files", Count(stats.get("__nfiles__")))]
|
|
|
|
return Section(
|
|
"Meta stats",
|
|
"Meta statistics",
|
|
[Table(("", "Count:"), calc_rows, JoinMode.CHANGE)],
|
|
)
|
|
|
|
|
|
LAYOUT = [
|
|
execution_count_section(),
|
|
pair_count_section(),
|
|
pre_succ_pairs_section(),
|
|
specialization_section(),
|
|
specialization_effectiveness_section(),
|
|
call_stats_section(),
|
|
object_stats_section(),
|
|
gc_stats_section(),
|
|
optimization_section(),
|
|
rare_event_section(),
|
|
meta_stats_section(),
|
|
]
|
|
|
|
|
|
def output_markdown(
|
|
out: TextIO,
|
|
obj: Section | Table | list,
|
|
base_stats: Stats,
|
|
head_stats: Stats | None = None,
|
|
level: int = 2,
|
|
) -> None:
|
|
def to_markdown(x):
|
|
if hasattr(x, "markdown"):
|
|
return x.markdown()
|
|
elif isinstance(x, str):
|
|
return x
|
|
elif x is None:
|
|
return ""
|
|
else:
|
|
raise TypeError(f"Can't convert {x} to markdown")
|
|
|
|
match obj:
|
|
case Section():
|
|
if obj.title:
|
|
print("#" * level, obj.title, file=out)
|
|
print(file=out)
|
|
print("<details>", file=out)
|
|
print("<summary>", obj.summary, "</summary>", file=out)
|
|
print(file=out)
|
|
if obj.doc:
|
|
print(obj.doc, file=out)
|
|
|
|
if head_stats is not None and obj.comparative is False:
|
|
print("Not included in comparative output.\n")
|
|
else:
|
|
for part in obj.part_iter(base_stats, head_stats):
|
|
output_markdown(out, part, base_stats, head_stats, level=level + 1)
|
|
print(file=out)
|
|
if obj.title:
|
|
print("</details>", file=out)
|
|
print(file=out)
|
|
|
|
case Table():
|
|
header, rows = obj.get_table(base_stats, head_stats)
|
|
if len(rows) == 0:
|
|
return
|
|
|
|
alignments = []
|
|
for item in header:
|
|
if item.endswith(":"):
|
|
alignments.append("right")
|
|
else:
|
|
alignments.append("left")
|
|
|
|
print("<table>", file=out)
|
|
print("<thead>", file=out)
|
|
print("<tr>", file=out)
|
|
for item, align in zip(header, alignments):
|
|
if item.endswith(":"):
|
|
item = item[:-1]
|
|
print(f'<th align="{align}">{item}</th>', file=out)
|
|
print("</tr>", file=out)
|
|
print("</thead>", file=out)
|
|
|
|
print("<tbody>", file=out)
|
|
for row in rows:
|
|
if len(row) != len(header):
|
|
raise ValueError(
|
|
"Wrong number of elements in row '" + str(row) + "'"
|
|
)
|
|
print("<tr>", file=out)
|
|
for col, align in zip(row, alignments):
|
|
print(f'<td align="{align}">{to_markdown(col)}</td>', file=out)
|
|
print("</tr>", file=out)
|
|
print("</tbody>", file=out)
|
|
|
|
print("</table>", file=out)
|
|
print(file=out)
|
|
|
|
case list():
|
|
for part in obj:
|
|
output_markdown(out, part, base_stats, head_stats, level=level)
|
|
|
|
print("---", file=out)
|
|
print("Stats gathered on:", date.today(), file=out)
|
|
|
|
|
|
def output_stats(inputs: list[Path], json_output=str | None):
|
|
match len(inputs):
|
|
case 1:
|
|
data = load_raw_data(Path(inputs[0]))
|
|
if json_output is not None:
|
|
with open(json_output, "w", encoding="utf-8") as f:
|
|
save_raw_data(data, f) # type: ignore
|
|
stats = Stats(data)
|
|
output_markdown(sys.stdout, LAYOUT, stats)
|
|
case 2:
|
|
if json_output is not None:
|
|
raise ValueError(
|
|
"Can not output to JSON when there are multiple inputs"
|
|
)
|
|
base_data = load_raw_data(Path(inputs[0]))
|
|
head_data = load_raw_data(Path(inputs[1]))
|
|
base_stats = Stats(base_data)
|
|
head_stats = Stats(head_data)
|
|
output_markdown(sys.stdout, LAYOUT, base_stats, head_stats)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Summarize pystats results")
|
|
|
|
parser.add_argument(
|
|
"inputs",
|
|
nargs="*",
|
|
type=str,
|
|
default=[DEFAULT_DIR],
|
|
help=f"""
|
|
Input source(s).
|
|
For each entry, if a .json file, the output provided by --json-output from a previous run;
|
|
if a directory, a directory containing raw pystats .txt files.
|
|
If one source is provided, its stats are printed.
|
|
If two sources are provided, comparative stats are printed.
|
|
Default is {DEFAULT_DIR}.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--json-output",
|
|
nargs="?",
|
|
help="Output complete raw results to the given JSON file.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if len(args.inputs) > 2:
|
|
raise ValueError("0-2 arguments may be provided.")
|
|
|
|
output_stats(args.inputs, json_output=args.json_output)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|