cpython/Python/bytecodes.c

3074 lines
121 KiB
C

// This file contains instruction definitions.
// It is read by Tools/cases_generator/generate_cases.py
// to generate Python/generated_cases.c.h.
// Note that there is some dummy C code at the top and bottom of the file
// to fool text editors like VS Code into believing this is valid C code.
// The actual instruction definitions start at // BEGIN BYTECODES //.
// See Tools/cases_generator/README.md for more information.
#include "Python.h"
#include "pycore_abstract.h" // _PyIndex_Check()
#include "pycore_call.h" // _PyObject_FastCallDictTstate()
#include "pycore_ceval.h" // _PyEval_SignalAsyncExc()
#include "pycore_code.h"
#include "pycore_function.h"
#include "pycore_intrinsics.h"
#include "pycore_long.h" // _PyLong_GetZero()
#include "pycore_object.h" // _PyObject_GC_TRACK()
#include "pycore_moduleobject.h" // PyModuleObject
#include "pycore_opcode.h" // EXTRA_CASES
#include "pycore_pyerrors.h" // _PyErr_GetRaisedException()
#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
#include "pycore_pystate.h" // _PyInterpreterState_GET()
#include "pycore_range.h" // _PyRangeIterObject
#include "pycore_sliceobject.h" // _PyBuildSlice_ConsumeRefs
#include "pycore_sysmodule.h" // _PySys_Audit()
#include "pycore_tuple.h" // _PyTuple_ITEMS()
#include "pycore_emscripten_signal.h" // _Py_CHECK_EMSCRIPTEN_SIGNALS
#include "pycore_dict.h"
#include "dictobject.h"
#include "pycore_frame.h"
#include "opcode.h"
#include "pydtrace.h"
#include "setobject.h"
#include "structmember.h" // struct PyMemberDef, T_OFFSET_EX
#define USE_COMPUTED_GOTOS 0
#include "ceval_macros.h"
/* Flow control macros */
#define DEOPT_IF(cond, instname) ((void)0)
#define ERROR_IF(cond, labelname) ((void)0)
#define GO_TO_INSTRUCTION(instname) ((void)0)
#define PREDICT(opname) ((void)0)
#define inst(name, ...) case name:
#define op(name, ...) /* NAME is ignored */
#define macro(name) static int MACRO_##name
#define super(name) static int SUPER_##name
#define family(name, ...) static int family_##name
// Dummy variables for stack effects.
static PyObject *value, *value1, *value2, *left, *right, *res, *sum, *prod, *sub;
static PyObject *container, *start, *stop, *v, *lhs, *rhs, *res2;
static PyObject *list, *tuple, *dict, *owner, *set, *str, *tup, *map, *keys;
static PyObject *exit_func, *lasti, *val, *retval, *obj, *iter;
static PyObject *aiter, *awaitable, *iterable, *w, *exc_value, *bc;
static PyObject *orig, *excs, *update, *b, *fromlist, *level, *from;
static PyObject **pieces, **values;
static size_t jump;
// Dummy variables for cache effects
static uint16_t invert, counter, index, hint;
static uint32_t type_version;
static PyObject *
dummy_func(
PyThreadState *tstate,
_PyInterpreterFrame *frame,
unsigned char opcode,
unsigned int oparg,
_Py_atomic_int * const eval_breaker,
_PyCFrame cframe,
_Py_CODEUNIT *next_instr,
PyObject **stack_pointer,
PyObject *kwnames,
int throwflag,
binaryfunc binary_ops[],
PyObject *args[]
)
{
// Dummy labels.
pop_1_error:
// Dummy locals.
PyObject *annotations;
PyObject *attrs;
PyObject *bottom;
PyObject *callable;
PyObject *callargs;
PyObject *closure;
PyObject *codeobj;
PyObject *cond;
PyObject *defaults;
PyObject *descr;
_PyInterpreterFrame entry_frame;
PyObject *exc;
PyObject *exit;
PyObject *fget;
PyObject *fmt_spec;
PyObject *func;
uint32_t func_version;
PyObject *getattribute;
PyObject *kwargs;
PyObject *kwdefaults;
PyObject *len_o;
PyObject *match;
PyObject *match_type;
PyObject *method;
PyObject *mgr;
Py_ssize_t min_args;
PyObject *names;
PyObject *new_exc;
PyObject *next;
PyObject *none;
PyObject *null;
PyObject *prev_exc;
PyObject *receiver;
PyObject *rest;
int result;
PyObject *self;
PyObject *seq;
PyObject *slice;
PyObject *step;
PyObject *subject;
PyObject *top;
PyObject *type;
int values_or_none;
switch (opcode) {
// BEGIN BYTECODES //
inst(NOP, (--)) {
}
inst(RESUME, (--)) {
assert(tstate->cframe == &cframe);
assert(frame == cframe.current_frame);
if (_Py_atomic_load_relaxed_int32(eval_breaker) && oparg < 2) {
goto handle_eval_breaker;
}
}
inst(LOAD_CLOSURE, (-- value)) {
/* We keep LOAD_CLOSURE so that the bytecode stays more readable. */
value = GETLOCAL(oparg);
ERROR_IF(value == NULL, unbound_local_error);
Py_INCREF(value);
}
inst(LOAD_FAST_CHECK, (-- value)) {
value = GETLOCAL(oparg);
ERROR_IF(value == NULL, unbound_local_error);
Py_INCREF(value);
}
inst(LOAD_FAST, (-- value)) {
value = GETLOCAL(oparg);
assert(value != NULL);
Py_INCREF(value);
}
inst(LOAD_CONST, (-- value)) {
value = GETITEM(frame->f_code->co_consts, oparg);
Py_INCREF(value);
}
inst(STORE_FAST, (value --)) {
SETLOCAL(oparg, value);
}
super(LOAD_FAST__LOAD_FAST) = LOAD_FAST + LOAD_FAST;
super(LOAD_FAST__LOAD_CONST) = LOAD_FAST + LOAD_CONST;
super(STORE_FAST__LOAD_FAST) = STORE_FAST + LOAD_FAST;
super(STORE_FAST__STORE_FAST) = STORE_FAST + STORE_FAST;
super(LOAD_CONST__LOAD_FAST) = LOAD_CONST + LOAD_FAST;
inst(POP_TOP, (value --)) {
DECREF_INPUTS();
}
inst(PUSH_NULL, (-- res)) {
res = NULL;
}
macro(END_FOR) = POP_TOP + POP_TOP;
inst(UNARY_NEGATIVE, (value -- res)) {
res = PyNumber_Negative(value);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
inst(UNARY_NOT, (value -- res)) {
int err = PyObject_IsTrue(value);
DECREF_INPUTS();
ERROR_IF(err < 0, error);
if (err == 0) {
res = Py_True;
}
else {
res = Py_False;
}
Py_INCREF(res);
}
inst(UNARY_INVERT, (value -- res)) {
res = PyNumber_Invert(value);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
family(binary_op, INLINE_CACHE_ENTRIES_BINARY_OP) = {
BINARY_OP,
BINARY_OP_ADD_FLOAT,
BINARY_OP_ADD_INT,
BINARY_OP_ADD_UNICODE,
// BINARY_OP_INPLACE_ADD_UNICODE, // This is an odd duck.
BINARY_OP_MULTIPLY_FLOAT,
BINARY_OP_MULTIPLY_INT,
BINARY_OP_SUBTRACT_FLOAT,
BINARY_OP_SUBTRACT_INT,
};
inst(BINARY_OP_MULTIPLY_INT, (unused/1, left, right -- prod)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyLong_CheckExact(left), BINARY_OP);
DEOPT_IF(!PyLong_CheckExact(right), BINARY_OP);
STAT_INC(BINARY_OP, hit);
prod = _PyLong_Multiply((PyLongObject *)left, (PyLongObject *)right);
_Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free);
_Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free);
ERROR_IF(prod == NULL, error);
}
inst(BINARY_OP_MULTIPLY_FLOAT, (unused/1, left, right -- prod)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyFloat_CheckExact(left), BINARY_OP);
DEOPT_IF(!PyFloat_CheckExact(right), BINARY_OP);
STAT_INC(BINARY_OP, hit);
double dprod = ((PyFloatObject *)left)->ob_fval *
((PyFloatObject *)right)->ob_fval;
DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dprod, prod);
}
inst(BINARY_OP_SUBTRACT_INT, (unused/1, left, right -- sub)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyLong_CheckExact(left), BINARY_OP);
DEOPT_IF(!PyLong_CheckExact(right), BINARY_OP);
STAT_INC(BINARY_OP, hit);
sub = _PyLong_Subtract((PyLongObject *)left, (PyLongObject *)right);
_Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free);
_Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free);
ERROR_IF(sub == NULL, error);
}
inst(BINARY_OP_SUBTRACT_FLOAT, (unused/1, left, right -- sub)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyFloat_CheckExact(left), BINARY_OP);
DEOPT_IF(!PyFloat_CheckExact(right), BINARY_OP);
STAT_INC(BINARY_OP, hit);
double dsub = ((PyFloatObject *)left)->ob_fval - ((PyFloatObject *)right)->ob_fval;
DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dsub, sub);
}
inst(BINARY_OP_ADD_UNICODE, (unused/1, left, right -- res)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyUnicode_CheckExact(left), BINARY_OP);
DEOPT_IF(Py_TYPE(right) != Py_TYPE(left), BINARY_OP);
STAT_INC(BINARY_OP, hit);
res = PyUnicode_Concat(left, right);
_Py_DECREF_SPECIALIZED(left, _PyUnicode_ExactDealloc);
_Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc);
ERROR_IF(res == NULL, error);
}
// This is a subtle one. It's a super-instruction for
// BINARY_OP_ADD_UNICODE followed by STORE_FAST
// where the store goes into the left argument.
// So the inputs are the same as for all BINARY_OP
// specializations, but there is no output.
// At the end we just skip over the STORE_FAST.
inst(BINARY_OP_INPLACE_ADD_UNICODE, (left, right --)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyUnicode_CheckExact(left), BINARY_OP);
DEOPT_IF(Py_TYPE(right) != Py_TYPE(left), BINARY_OP);
_Py_CODEUNIT true_next = next_instr[INLINE_CACHE_ENTRIES_BINARY_OP];
assert(true_next.op.code == STORE_FAST ||
true_next.op.code == STORE_FAST__LOAD_FAST);
PyObject **target_local = &GETLOCAL(true_next.op.arg);
DEOPT_IF(*target_local != left, BINARY_OP);
STAT_INC(BINARY_OP, hit);
/* Handle `left = left + right` or `left += right` for str.
*
* When possible, extend `left` in place rather than
* allocating a new PyUnicodeObject. This attempts to avoid
* quadratic behavior when one neglects to use str.join().
*
* If `left` has only two references remaining (one from
* the stack, one in the locals), DECREFing `left` leaves
* only the locals reference, so PyUnicode_Append knows
* that the string is safe to mutate.
*/
assert(Py_REFCNT(left) >= 2);
_Py_DECREF_NO_DEALLOC(left);
PyUnicode_Append(target_local, right);
_Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc);
ERROR_IF(*target_local == NULL, error);
// The STORE_FAST is already done.
JUMPBY(INLINE_CACHE_ENTRIES_BINARY_OP + 1);
}
inst(BINARY_OP_ADD_FLOAT, (unused/1, left, right -- sum)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyFloat_CheckExact(left), BINARY_OP);
DEOPT_IF(Py_TYPE(right) != Py_TYPE(left), BINARY_OP);
STAT_INC(BINARY_OP, hit);
double dsum = ((PyFloatObject *)left)->ob_fval +
((PyFloatObject *)right)->ob_fval;
DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dsum, sum);
}
inst(BINARY_OP_ADD_INT, (unused/1, left, right -- sum)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyLong_CheckExact(left), BINARY_OP);
DEOPT_IF(Py_TYPE(right) != Py_TYPE(left), BINARY_OP);
STAT_INC(BINARY_OP, hit);
sum = _PyLong_Add((PyLongObject *)left, (PyLongObject *)right);
_Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free);
_Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free);
ERROR_IF(sum == NULL, error);
}
family(binary_subscr, INLINE_CACHE_ENTRIES_BINARY_SUBSCR) = {
BINARY_SUBSCR,
BINARY_SUBSCR_DICT,
BINARY_SUBSCR_GETITEM,
BINARY_SUBSCR_LIST_INT,
BINARY_SUBSCR_TUPLE_INT,
};
inst(BINARY_SUBSCR, (unused/1, container, sub -- res)) {
#if ENABLE_SPECIALIZATION
_PyBinarySubscrCache *cache = (_PyBinarySubscrCache *)next_instr;
if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) {
assert(cframe.use_tracing == 0);
next_instr--;
_Py_Specialize_BinarySubscr(container, sub, next_instr);
DISPATCH_SAME_OPARG();
}
STAT_INC(BINARY_SUBSCR, deferred);
DECREMENT_ADAPTIVE_COUNTER(cache->counter);
#endif /* ENABLE_SPECIALIZATION */
res = PyObject_GetItem(container, sub);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
inst(BINARY_SLICE, (container, start, stop -- res)) {
PyObject *slice = _PyBuildSlice_ConsumeRefs(start, stop);
// Can't use ERROR_IF() here, because we haven't
// DECREF'ed container yet, and we still own slice.
if (slice == NULL) {
res = NULL;
}
else {
res = PyObject_GetItem(container, slice);
Py_DECREF(slice);
}
Py_DECREF(container);
ERROR_IF(res == NULL, error);
}
inst(STORE_SLICE, (v, container, start, stop -- )) {
PyObject *slice = _PyBuildSlice_ConsumeRefs(start, stop);
int err;
if (slice == NULL) {
err = 1;
}
else {
err = PyObject_SetItem(container, slice, v);
Py_DECREF(slice);
}
Py_DECREF(v);
Py_DECREF(container);
ERROR_IF(err, error);
}
inst(BINARY_SUBSCR_LIST_INT, (unused/1, list, sub -- res)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyLong_CheckExact(sub), BINARY_SUBSCR);
DEOPT_IF(!PyList_CheckExact(list), BINARY_SUBSCR);
// Deopt unless 0 <= sub < PyList_Size(list)
DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub), BINARY_SUBSCR);
Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0];
DEOPT_IF(index >= PyList_GET_SIZE(list), BINARY_SUBSCR);
STAT_INC(BINARY_SUBSCR, hit);
res = PyList_GET_ITEM(list, index);
assert(res != NULL);
Py_INCREF(res);
_Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free);
Py_DECREF(list);
}
inst(BINARY_SUBSCR_TUPLE_INT, (unused/1, tuple, sub -- res)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyLong_CheckExact(sub), BINARY_SUBSCR);
DEOPT_IF(!PyTuple_CheckExact(tuple), BINARY_SUBSCR);
// Deopt unless 0 <= sub < PyTuple_Size(list)
DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub), BINARY_SUBSCR);
Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0];
DEOPT_IF(index >= PyTuple_GET_SIZE(tuple), BINARY_SUBSCR);
STAT_INC(BINARY_SUBSCR, hit);
res = PyTuple_GET_ITEM(tuple, index);
assert(res != NULL);
Py_INCREF(res);
_Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free);
Py_DECREF(tuple);
}
inst(BINARY_SUBSCR_DICT, (unused/1, dict, sub -- res)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyDict_CheckExact(dict), BINARY_SUBSCR);
STAT_INC(BINARY_SUBSCR, hit);
res = PyDict_GetItemWithError(dict, sub);
if (res == NULL) {
if (!_PyErr_Occurred(tstate)) {
_PyErr_SetKeyError(sub);
}
DECREF_INPUTS();
ERROR_IF(true, error);
}
Py_INCREF(res); // Do this before DECREF'ing dict, sub
DECREF_INPUTS();
}
inst(BINARY_SUBSCR_GETITEM, (unused/1, container, sub -- unused)) {
PyTypeObject *tp = Py_TYPE(container);
DEOPT_IF(!PyType_HasFeature(tp, Py_TPFLAGS_HEAPTYPE), BINARY_SUBSCR);
PyHeapTypeObject *ht = (PyHeapTypeObject *)tp;
PyObject *cached = ht->_spec_cache.getitem;
DEOPT_IF(cached == NULL, BINARY_SUBSCR);
assert(PyFunction_Check(cached));
PyFunctionObject *getitem = (PyFunctionObject *)cached;
uint32_t cached_version = ht->_spec_cache.getitem_version;
DEOPT_IF(getitem->func_version != cached_version, BINARY_SUBSCR);
PyCodeObject *code = (PyCodeObject *)getitem->func_code;
assert(code->co_argcount == 2);
DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize), BINARY_SUBSCR);
STAT_INC(BINARY_SUBSCR, hit);
Py_INCREF(getitem);
_PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, getitem, 2);
STACK_SHRINK(2);
new_frame->localsplus[0] = container;
new_frame->localsplus[1] = sub;
JUMPBY(INLINE_CACHE_ENTRIES_BINARY_SUBSCR);
DISPATCH_INLINED(new_frame);
}
inst(LIST_APPEND, (list, unused[oparg-1], v -- list, unused[oparg-1])) {
ERROR_IF(_PyList_AppendTakeRef((PyListObject *)list, v) < 0, error);
PREDICT(JUMP_BACKWARD);
}
inst(SET_ADD, (set, unused[oparg-1], v -- set, unused[oparg-1])) {
int err = PySet_Add(set, v);
DECREF_INPUTS();
ERROR_IF(err, error);
PREDICT(JUMP_BACKWARD);
}
family(store_subscr, INLINE_CACHE_ENTRIES_STORE_SUBSCR) = {
STORE_SUBSCR,
STORE_SUBSCR_DICT,
STORE_SUBSCR_LIST_INT,
};
inst(STORE_SUBSCR, (counter/1, v, container, sub -- )) {
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
assert(cframe.use_tracing == 0);
next_instr--;
_Py_Specialize_StoreSubscr(container, sub, next_instr);
DISPATCH_SAME_OPARG();
}
STAT_INC(STORE_SUBSCR, deferred);
_PyStoreSubscrCache *cache = (_PyStoreSubscrCache *)next_instr;
DECREMENT_ADAPTIVE_COUNTER(cache->counter);
#else
(void)counter; // Unused.
#endif /* ENABLE_SPECIALIZATION */
/* container[sub] = v */
int err = PyObject_SetItem(container, sub, v);
DECREF_INPUTS();
ERROR_IF(err, error);
}
inst(STORE_SUBSCR_LIST_INT, (unused/1, value, list, sub -- )) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyLong_CheckExact(sub), STORE_SUBSCR);
DEOPT_IF(!PyList_CheckExact(list), STORE_SUBSCR);
// Ensure nonnegative, zero-or-one-digit ints.
DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub), STORE_SUBSCR);
Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0];
// Ensure index < len(list)
DEOPT_IF(index >= PyList_GET_SIZE(list), STORE_SUBSCR);
STAT_INC(STORE_SUBSCR, hit);
PyObject *old_value = PyList_GET_ITEM(list, index);
PyList_SET_ITEM(list, index, value);
assert(old_value != NULL);
Py_DECREF(old_value);
_Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free);
Py_DECREF(list);
}
inst(STORE_SUBSCR_DICT, (unused/1, value, dict, sub -- )) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyDict_CheckExact(dict), STORE_SUBSCR);
STAT_INC(STORE_SUBSCR, hit);
int err = _PyDict_SetItem_Take2((PyDictObject *)dict, sub, value);
Py_DECREF(dict);
ERROR_IF(err, error);
}
inst(DELETE_SUBSCR, (container, sub --)) {
/* del container[sub] */
int err = PyObject_DelItem(container, sub);
DECREF_INPUTS();
ERROR_IF(err, error);
}
inst(CALL_INTRINSIC_1, (value -- res)) {
assert(oparg <= MAX_INTRINSIC_1);
res = _PyIntrinsics_UnaryFunctions[oparg](tstate, value);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
inst(CALL_INTRINSIC_2, (value2, value1 -- res)) {
assert(oparg <= MAX_INTRINSIC_2);
res = _PyIntrinsics_BinaryFunctions[oparg](tstate, value2, value1);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
inst(RAISE_VARARGS, (args[oparg] -- )) {
PyObject *cause = NULL, *exc = NULL;
switch (oparg) {
case 2:
cause = args[1];
/* fall through */
case 1:
exc = args[0];
/* fall through */
case 0:
ERROR_IF(do_raise(tstate, exc, cause), exception_unwind);
break;
default:
_PyErr_SetString(tstate, PyExc_SystemError,
"bad RAISE_VARARGS oparg");
break;
}
ERROR_IF(true, error);
}
inst(INTERPRETER_EXIT, (retval --)) {
assert(frame == &entry_frame);
assert(_PyFrame_IsIncomplete(frame));
STACK_SHRINK(1); // Since we're not going to DISPATCH()
assert(EMPTY());
/* Restore previous cframe and return. */
tstate->cframe = cframe.previous;
tstate->cframe->use_tracing = cframe.use_tracing;
assert(tstate->cframe->current_frame == frame->previous);
assert(!_PyErr_Occurred(tstate));
_Py_LeaveRecursiveCallTstate(tstate);
return retval;
}
inst(RETURN_VALUE, (retval --)) {
STACK_SHRINK(1);
assert(EMPTY());
_PyFrame_SetStackPointer(frame, stack_pointer);
TRACE_FUNCTION_EXIT();
DTRACE_FUNCTION_EXIT();
_Py_LeaveRecursiveCallPy(tstate);
assert(frame != &entry_frame);
// GH-99729: We need to unlink the frame *before* clearing it:
_PyInterpreterFrame *dying = frame;
frame = cframe.current_frame = dying->previous;
_PyEvalFrameClearAndPop(tstate, dying);
_PyFrame_StackPush(frame, retval);
goto resume_frame;
}
inst(RETURN_CONST, (--)) {
PyObject *retval = GETITEM(frame->f_code->co_consts, oparg);
Py_INCREF(retval);
assert(EMPTY());
_PyFrame_SetStackPointer(frame, stack_pointer);
TRACE_FUNCTION_EXIT();
DTRACE_FUNCTION_EXIT();
_Py_LeaveRecursiveCallPy(tstate);
assert(frame != &entry_frame);
// GH-99729: We need to unlink the frame *before* clearing it:
_PyInterpreterFrame *dying = frame;
frame = cframe.current_frame = dying->previous;
_PyEvalFrameClearAndPop(tstate, dying);
_PyFrame_StackPush(frame, retval);
goto resume_frame;
}
inst(GET_AITER, (obj -- iter)) {
unaryfunc getter = NULL;
PyTypeObject *type = Py_TYPE(obj);
if (type->tp_as_async != NULL) {
getter = type->tp_as_async->am_aiter;
}
if (getter == NULL) {
_PyErr_Format(tstate, PyExc_TypeError,
"'async for' requires an object with "
"__aiter__ method, got %.100s",
type->tp_name);
DECREF_INPUTS();
ERROR_IF(true, error);
}
iter = (*getter)(obj);
DECREF_INPUTS();
ERROR_IF(iter == NULL, error);
if (Py_TYPE(iter)->tp_as_async == NULL ||
Py_TYPE(iter)->tp_as_async->am_anext == NULL) {
_PyErr_Format(tstate, PyExc_TypeError,
"'async for' received an object from __aiter__ "
"that does not implement __anext__: %.100s",
Py_TYPE(iter)->tp_name);
Py_DECREF(iter);
ERROR_IF(true, error);
}
}
inst(GET_ANEXT, (aiter -- aiter, awaitable)) {
unaryfunc getter = NULL;
PyObject *next_iter = NULL;
PyTypeObject *type = Py_TYPE(aiter);
if (PyAsyncGen_CheckExact(aiter)) {
awaitable = type->tp_as_async->am_anext(aiter);
if (awaitable == NULL) {
goto error;
}
} else {
if (type->tp_as_async != NULL){
getter = type->tp_as_async->am_anext;
}
if (getter != NULL) {
next_iter = (*getter)(aiter);
if (next_iter == NULL) {
goto error;
}
}
else {
_PyErr_Format(tstate, PyExc_TypeError,
"'async for' requires an iterator with "
"__anext__ method, got %.100s",
type->tp_name);
goto error;
}
awaitable = _PyCoro_GetAwaitableIter(next_iter);
if (awaitable == NULL) {
_PyErr_FormatFromCause(
PyExc_TypeError,
"'async for' received an invalid object "
"from __anext__: %.100s",
Py_TYPE(next_iter)->tp_name);
Py_DECREF(next_iter);
goto error;
} else {
Py_DECREF(next_iter);
}
}
PREDICT(LOAD_CONST);
}
inst(GET_AWAITABLE, (iterable -- iter)) {
iter = _PyCoro_GetAwaitableIter(iterable);
if (iter == NULL) {
format_awaitable_error(tstate, Py_TYPE(iterable), oparg);
}
DECREF_INPUTS();
if (iter != NULL && PyCoro_CheckExact(iter)) {
PyObject *yf = _PyGen_yf((PyGenObject*)iter);
if (yf != NULL) {
/* `iter` is a coroutine object that is being
awaited, `yf` is a pointer to the current awaitable
being awaited on. */
Py_DECREF(yf);
Py_CLEAR(iter);
_PyErr_SetString(tstate, PyExc_RuntimeError,
"coroutine is being awaited already");
/* The code below jumps to `error` if `iter` is NULL. */
}
}
ERROR_IF(iter == NULL, error);
PREDICT(LOAD_CONST);
}
family(for_iter, INLINE_CACHE_ENTRIES_FOR_ITER) = {
SEND,
SEND_GEN,
};
inst(SEND, (unused/1, receiver, v -- receiver, retval)) {
#if ENABLE_SPECIALIZATION
_PySendCache *cache = (_PySendCache *)next_instr;
if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) {
assert(cframe.use_tracing == 0);
next_instr--;
_Py_Specialize_Send(receiver, next_instr);
DISPATCH_SAME_OPARG();
}
STAT_INC(SEND, deferred);
DECREMENT_ADAPTIVE_COUNTER(cache->counter);
#endif /* ENABLE_SPECIALIZATION */
assert(frame != &entry_frame);
if (Py_IsNone(v) && PyIter_Check(receiver)) {
retval = Py_TYPE(receiver)->tp_iternext(receiver);
}
else {
retval = PyObject_CallMethodOneArg(receiver, &_Py_ID(send), v);
}
if (retval == NULL) {
if (tstate->c_tracefunc != NULL
&& _PyErr_ExceptionMatches(tstate, PyExc_StopIteration))
call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, tstate, frame);
if (_PyGen_FetchStopIterationValue(&retval) == 0) {
assert(retval != NULL);
JUMPBY(oparg);
}
else {
assert(retval == NULL);
goto error;
}
}
else {
assert(retval != NULL);
}
Py_DECREF(v);
}
inst(SEND_GEN, (unused/1, receiver, v -- receiver)) {
assert(cframe.use_tracing == 0);
PyGenObject *gen = (PyGenObject *)receiver;
DEOPT_IF(Py_TYPE(gen) != &PyGen_Type &&
Py_TYPE(gen) != &PyCoro_Type, SEND);
DEOPT_IF(gen->gi_frame_state >= FRAME_EXECUTING, SEND);
STAT_INC(SEND, hit);
_PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe;
frame->yield_offset = oparg;
STACK_SHRINK(1);
_PyFrame_StackPush(gen_frame, v);
gen->gi_frame_state = FRAME_EXECUTING;
gen->gi_exc_state.previous_item = tstate->exc_info;
tstate->exc_info = &gen->gi_exc_state;
JUMPBY(INLINE_CACHE_ENTRIES_SEND + oparg);
DISPATCH_INLINED(gen_frame);
}
inst(YIELD_VALUE, (retval -- unused)) {
// NOTE: It's important that YIELD_VALUE never raises an exception!
// The compiler treats any exception raised here as a failed close()
// or throw() call.
assert(frame != &entry_frame);
PyGenObject *gen = _PyFrame_GetGenerator(frame);
gen->gi_frame_state = FRAME_SUSPENDED;
_PyFrame_SetStackPointer(frame, stack_pointer - 1);
TRACE_FUNCTION_EXIT();
DTRACE_FUNCTION_EXIT();
tstate->exc_info = gen->gi_exc_state.previous_item;
gen->gi_exc_state.previous_item = NULL;
_Py_LeaveRecursiveCallPy(tstate);
_PyInterpreterFrame *gen_frame = frame;
frame = cframe.current_frame = frame->previous;
gen_frame->previous = NULL;
frame->prev_instr -= frame->yield_offset;
_PyFrame_StackPush(frame, retval);
goto resume_frame;
}
inst(POP_EXCEPT, (exc_value -- )) {
_PyErr_StackItem *exc_info = tstate->exc_info;
Py_XSETREF(exc_info->exc_value, exc_value);
}
inst(RERAISE, (values[oparg], exc -- values[oparg])) {
assert(oparg >= 0 && oparg <= 2);
if (oparg) {
PyObject *lasti = values[0];
if (PyLong_Check(lasti)) {
frame->prev_instr = _PyCode_CODE(frame->f_code) + PyLong_AsLong(lasti);
assert(!_PyErr_Occurred(tstate));
}
else {
assert(PyLong_Check(lasti));
_PyErr_SetString(tstate, PyExc_SystemError, "lasti is not an int");
goto error;
}
}
assert(exc && PyExceptionInstance_Check(exc));
Py_INCREF(exc);
_PyErr_SetRaisedException(tstate, exc);
goto exception_unwind;
}
inst(END_ASYNC_FOR, (awaitable, exc -- )) {
assert(exc && PyExceptionInstance_Check(exc));
if (PyErr_GivenExceptionMatches(exc, PyExc_StopAsyncIteration)) {
DECREF_INPUTS();
}
else {
Py_INCREF(exc);
_PyErr_SetRaisedException(tstate, exc);
goto exception_unwind;
}
}
inst(CLEANUP_THROW, (sub_iter, last_sent_val, exc_value -- none, value)) {
assert(throwflag);
assert(exc_value && PyExceptionInstance_Check(exc_value));
if (PyErr_GivenExceptionMatches(exc_value, PyExc_StopIteration)) {
value = Py_NewRef(((PyStopIterationObject *)exc_value)->value);
DECREF_INPUTS();
none = Py_NewRef(Py_None);
}
else {
_PyErr_SetRaisedException(tstate, Py_NewRef(exc_value));
goto exception_unwind;
}
}
inst(LOAD_ASSERTION_ERROR, ( -- value)) {
value = Py_NewRef(PyExc_AssertionError);
}
inst(LOAD_BUILD_CLASS, ( -- bc)) {
if (PyDict_CheckExact(BUILTINS())) {
bc = _PyDict_GetItemWithError(BUILTINS(),
&_Py_ID(__build_class__));
if (bc == NULL) {
if (!_PyErr_Occurred(tstate)) {
_PyErr_SetString(tstate, PyExc_NameError,
"__build_class__ not found");
}
ERROR_IF(true, error);
}
Py_INCREF(bc);
}
else {
bc = PyObject_GetItem(BUILTINS(), &_Py_ID(__build_class__));
if (bc == NULL) {
if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError))
_PyErr_SetString(tstate, PyExc_NameError,
"__build_class__ not found");
ERROR_IF(true, error);
}
}
}
inst(STORE_NAME, (v -- )) {
PyObject *name = GETITEM(frame->f_code->co_names, oparg);
PyObject *ns = LOCALS();
int err;
if (ns == NULL) {
_PyErr_Format(tstate, PyExc_SystemError,
"no locals found when storing %R", name);
DECREF_INPUTS();
ERROR_IF(true, error);
}
if (PyDict_CheckExact(ns))
err = PyDict_SetItem(ns, name, v);
else
err = PyObject_SetItem(ns, name, v);
DECREF_INPUTS();
ERROR_IF(err, error);
}
inst(DELETE_NAME, (--)) {
PyObject *name = GETITEM(frame->f_code->co_names, oparg);
PyObject *ns = LOCALS();
int err;
if (ns == NULL) {
_PyErr_Format(tstate, PyExc_SystemError,
"no locals when deleting %R", name);
goto error;
}
err = PyObject_DelItem(ns, name);
// Can't use ERROR_IF here.
if (err != 0) {
format_exc_check_arg(tstate, PyExc_NameError,
NAME_ERROR_MSG,
name);
goto error;
}
}
family(unpack_sequence, INLINE_CACHE_ENTRIES_UNPACK_SEQUENCE) = {
UNPACK_SEQUENCE,
UNPACK_SEQUENCE_TWO_TUPLE,
UNPACK_SEQUENCE_TUPLE,
UNPACK_SEQUENCE_LIST,
};
inst(UNPACK_SEQUENCE, (unused/1, seq -- unused[oparg])) {
#if ENABLE_SPECIALIZATION
_PyUnpackSequenceCache *cache = (_PyUnpackSequenceCache *)next_instr;
if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) {
assert(cframe.use_tracing == 0);
next_instr--;
_Py_Specialize_UnpackSequence(seq, next_instr, oparg);
DISPATCH_SAME_OPARG();
}
STAT_INC(UNPACK_SEQUENCE, deferred);
DECREMENT_ADAPTIVE_COUNTER(cache->counter);
#endif /* ENABLE_SPECIALIZATION */
PyObject **top = stack_pointer + oparg - 1;
int res = unpack_iterable(tstate, seq, oparg, -1, top);
DECREF_INPUTS();
ERROR_IF(res == 0, error);
}
inst(UNPACK_SEQUENCE_TWO_TUPLE, (unused/1, seq -- values[oparg])) {
DEOPT_IF(!PyTuple_CheckExact(seq), UNPACK_SEQUENCE);
DEOPT_IF(PyTuple_GET_SIZE(seq) != 2, UNPACK_SEQUENCE);
assert(oparg == 2);
STAT_INC(UNPACK_SEQUENCE, hit);
values[0] = Py_NewRef(PyTuple_GET_ITEM(seq, 1));
values[1] = Py_NewRef(PyTuple_GET_ITEM(seq, 0));
DECREF_INPUTS();
}
inst(UNPACK_SEQUENCE_TUPLE, (unused/1, seq -- values[oparg])) {
DEOPT_IF(!PyTuple_CheckExact(seq), UNPACK_SEQUENCE);
DEOPT_IF(PyTuple_GET_SIZE(seq) != oparg, UNPACK_SEQUENCE);
STAT_INC(UNPACK_SEQUENCE, hit);
PyObject **items = _PyTuple_ITEMS(seq);
for (int i = oparg; --i >= 0; ) {
*values++ = Py_NewRef(items[i]);
}
DECREF_INPUTS();
}
inst(UNPACK_SEQUENCE_LIST, (unused/1, seq -- values[oparg])) {
DEOPT_IF(!PyList_CheckExact(seq), UNPACK_SEQUENCE);
DEOPT_IF(PyList_GET_SIZE(seq) != oparg, UNPACK_SEQUENCE);
STAT_INC(UNPACK_SEQUENCE, hit);
PyObject **items = _PyList_ITEMS(seq);
for (int i = oparg; --i >= 0; ) {
*values++ = Py_NewRef(items[i]);
}
DECREF_INPUTS();
}
inst(UNPACK_EX, (seq -- unused[oparg & 0xFF], unused, unused[oparg >> 8])) {
int totalargs = 1 + (oparg & 0xFF) + (oparg >> 8);
PyObject **top = stack_pointer + totalargs - 1;
int res = unpack_iterable(tstate, seq, oparg & 0xFF, oparg >> 8, top);
DECREF_INPUTS();
ERROR_IF(res == 0, error);
}
family(store_attr, INLINE_CACHE_ENTRIES_STORE_ATTR) = {
STORE_ATTR,
STORE_ATTR_INSTANCE_VALUE,
STORE_ATTR_SLOT,
STORE_ATTR_WITH_HINT,
};
inst(STORE_ATTR, (counter/1, unused/3, v, owner --)) {
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
assert(cframe.use_tracing == 0);
PyObject *name = GETITEM(frame->f_code->co_names, oparg);
next_instr--;
_Py_Specialize_StoreAttr(owner, next_instr, name);
DISPATCH_SAME_OPARG();
}
STAT_INC(STORE_ATTR, deferred);
_PyAttrCache *cache = (_PyAttrCache *)next_instr;
DECREMENT_ADAPTIVE_COUNTER(cache->counter);
#else
(void)counter; // Unused.
#endif /* ENABLE_SPECIALIZATION */
PyObject *name = GETITEM(frame->f_code->co_names, oparg);
int err = PyObject_SetAttr(owner, name, v);
DECREF_INPUTS();
ERROR_IF(err, error);
}
inst(DELETE_ATTR, (owner --)) {
PyObject *name = GETITEM(frame->f_code->co_names, oparg);
int err = PyObject_SetAttr(owner, name, (PyObject *)NULL);
DECREF_INPUTS();
ERROR_IF(err, error);
}
inst(STORE_GLOBAL, (v --)) {
PyObject *name = GETITEM(frame->f_code->co_names, oparg);
int err = PyDict_SetItem(GLOBALS(), name, v);
DECREF_INPUTS();
ERROR_IF(err, error);
}
inst(DELETE_GLOBAL, (--)) {
PyObject *name = GETITEM(frame->f_code->co_names, oparg);
int err;
err = PyDict_DelItem(GLOBALS(), name);
// Can't use ERROR_IF here.
if (err != 0) {
if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) {
format_exc_check_arg(tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
goto error;
}
}
inst(LOAD_NAME, ( -- v)) {
PyObject *name = GETITEM(frame->f_code->co_names, oparg);
PyObject *locals = LOCALS();
if (locals == NULL) {
_PyErr_Format(tstate, PyExc_SystemError,
"no locals when loading %R", name);
goto error;
}
if (PyDict_CheckExact(locals)) {
v = PyDict_GetItemWithError(locals, name);
if (v != NULL) {
Py_INCREF(v);
}
else if (_PyErr_Occurred(tstate)) {
goto error;
}
}
else {
v = PyObject_GetItem(locals, name);
if (v == NULL) {
if (!_PyErr_ExceptionMatches(tstate, PyExc_KeyError))
goto error;
_PyErr_Clear(tstate);
}
}
if (v == NULL) {
v = PyDict_GetItemWithError(GLOBALS(), name);
if (v != NULL) {
Py_INCREF(v);
}
else if (_PyErr_Occurred(tstate)) {
goto error;
}
else {
if (PyDict_CheckExact(BUILTINS())) {
v = PyDict_GetItemWithError(BUILTINS(), name);
if (v == NULL) {
if (!_PyErr_Occurred(tstate)) {
format_exc_check_arg(
tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
goto error;
}
Py_INCREF(v);
}
else {
v = PyObject_GetItem(BUILTINS(), name);
if (v == NULL) {
if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) {
format_exc_check_arg(
tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
goto error;
}
}
}
}
}
family(load_global, INLINE_CACHE_ENTRIES_LOAD_GLOBAL) = {
LOAD_GLOBAL,
LOAD_GLOBAL_MODULE,
LOAD_GLOBAL_BUILTIN,
};
inst(LOAD_GLOBAL, (unused/1, unused/1, unused/1, unused/1 -- null if (oparg & 1), v)) {
#if ENABLE_SPECIALIZATION
_PyLoadGlobalCache *cache = (_PyLoadGlobalCache *)next_instr;
if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) {
assert(cframe.use_tracing == 0);
PyObject *name = GETITEM(frame->f_code->co_names, oparg>>1);
next_instr--;
_Py_Specialize_LoadGlobal(GLOBALS(), BUILTINS(), next_instr, name);
DISPATCH_SAME_OPARG();
}
STAT_INC(LOAD_GLOBAL, deferred);
DECREMENT_ADAPTIVE_COUNTER(cache->counter);
#endif /* ENABLE_SPECIALIZATION */
PyObject *name = GETITEM(frame->f_code->co_names, oparg>>1);
if (PyDict_CheckExact(GLOBALS())
&& PyDict_CheckExact(BUILTINS()))
{
v = _PyDict_LoadGlobal((PyDictObject *)GLOBALS(),
(PyDictObject *)BUILTINS(),
name);
if (v == NULL) {
if (!_PyErr_Occurred(tstate)) {
/* _PyDict_LoadGlobal() returns NULL without raising
* an exception if the key doesn't exist */
format_exc_check_arg(tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
ERROR_IF(true, error);
}
Py_INCREF(v);
}
else {
/* Slow-path if globals or builtins is not a dict */
/* namespace 1: globals */
v = PyObject_GetItem(GLOBALS(), name);
if (v == NULL) {
ERROR_IF(!_PyErr_ExceptionMatches(tstate, PyExc_KeyError), error);
_PyErr_Clear(tstate);
/* namespace 2: builtins */
v = PyObject_GetItem(BUILTINS(), name);
if (v == NULL) {
if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) {
format_exc_check_arg(
tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
ERROR_IF(true, error);
}
}
}
null = NULL;
}
inst(LOAD_GLOBAL_MODULE, (unused/1, index/1, version/1, unused/1 -- null if (oparg & 1), res)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyDict_CheckExact(GLOBALS()), LOAD_GLOBAL);
PyDictObject *dict = (PyDictObject *)GLOBALS();
DEOPT_IF(dict->ma_keys->dk_version != version, LOAD_GLOBAL);
assert(DK_IS_UNICODE(dict->ma_keys));
PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(dict->ma_keys);
res = entries[index].me_value;
DEOPT_IF(res == NULL, LOAD_GLOBAL);
Py_INCREF(res);
STAT_INC(LOAD_GLOBAL, hit);
null = NULL;
}
inst(LOAD_GLOBAL_BUILTIN, (unused/1, index/1, mod_version/1, bltn_version/1 -- null if (oparg & 1), res)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyDict_CheckExact(GLOBALS()), LOAD_GLOBAL);
DEOPT_IF(!PyDict_CheckExact(BUILTINS()), LOAD_GLOBAL);
PyDictObject *mdict = (PyDictObject *)GLOBALS();
PyDictObject *bdict = (PyDictObject *)BUILTINS();
DEOPT_IF(mdict->ma_keys->dk_version != mod_version, LOAD_GLOBAL);
DEOPT_IF(bdict->ma_keys->dk_version != bltn_version, LOAD_GLOBAL);
assert(DK_IS_UNICODE(bdict->ma_keys));
PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(bdict->ma_keys);
res = entries[index].me_value;
DEOPT_IF(res == NULL, LOAD_GLOBAL);
Py_INCREF(res);
STAT_INC(LOAD_GLOBAL, hit);
null = NULL;
}
inst(DELETE_FAST, (--)) {
PyObject *v = GETLOCAL(oparg);
ERROR_IF(v == NULL, unbound_local_error);
SETLOCAL(oparg, NULL);
}
inst(MAKE_CELL, (--)) {
// "initial" is probably NULL but not if it's an arg (or set
// via PyFrame_LocalsToFast() before MAKE_CELL has run).
PyObject *initial = GETLOCAL(oparg);
PyObject *cell = PyCell_New(initial);
if (cell == NULL) {
goto resume_with_error;
}
SETLOCAL(oparg, cell);
}
inst(DELETE_DEREF, (--)) {
PyObject *cell = GETLOCAL(oparg);
PyObject *oldobj = PyCell_GET(cell);
// Can't use ERROR_IF here.
// Fortunately we don't need its superpower.
if (oldobj == NULL) {
format_exc_unbound(tstate, frame->f_code, oparg);
goto error;
}
PyCell_SET(cell, NULL);
Py_DECREF(oldobj);
}
inst(LOAD_CLASSDEREF, ( -- value)) {
PyObject *name, *locals = LOCALS();
assert(locals);
assert(oparg >= 0 && oparg < frame->f_code->co_nlocalsplus);
name = PyTuple_GET_ITEM(frame->f_code->co_localsplusnames, oparg);
if (PyDict_CheckExact(locals)) {
value = PyDict_GetItemWithError(locals, name);
if (value != NULL) {
Py_INCREF(value);
}
else if (_PyErr_Occurred(tstate)) {
goto error;
}
}
else {
value = PyObject_GetItem(locals, name);
if (value == NULL) {
if (!_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) {
goto error;
}
_PyErr_Clear(tstate);
}
}
if (!value) {
PyObject *cell = GETLOCAL(oparg);
value = PyCell_GET(cell);
if (value == NULL) {
format_exc_unbound(tstate, frame->f_code, oparg);
goto error;
}
Py_INCREF(value);
}
}
inst(LOAD_DEREF, ( -- value)) {
PyObject *cell = GETLOCAL(oparg);
value = PyCell_GET(cell);
if (value == NULL) {
format_exc_unbound(tstate, frame->f_code, oparg);
ERROR_IF(true, error);
}
Py_INCREF(value);
}
inst(STORE_DEREF, (v --)) {
PyObject *cell = GETLOCAL(oparg);
PyObject *oldobj = PyCell_GET(cell);
PyCell_SET(cell, v);
Py_XDECREF(oldobj);
}
inst(COPY_FREE_VARS, (--)) {
/* Copy closure variables to free variables */
PyCodeObject *co = frame->f_code;
assert(PyFunction_Check(frame->f_funcobj));
PyObject *closure = ((PyFunctionObject *)frame->f_funcobj)->func_closure;
assert(oparg == co->co_nfreevars);
int offset = co->co_nlocalsplus - oparg;
for (int i = 0; i < oparg; ++i) {
PyObject *o = PyTuple_GET_ITEM(closure, i);
frame->localsplus[offset + i] = Py_NewRef(o);
}
}
inst(BUILD_STRING, (pieces[oparg] -- str)) {
str = _PyUnicode_JoinArray(&_Py_STR(empty), pieces, oparg);
DECREF_INPUTS();
ERROR_IF(str == NULL, error);
}
inst(BUILD_TUPLE, (values[oparg] -- tup)) {
tup = _PyTuple_FromArraySteal(values, oparg);
ERROR_IF(tup == NULL, error);
}
inst(BUILD_LIST, (values[oparg] -- list)) {
list = _PyList_FromArraySteal(values, oparg);
ERROR_IF(list == NULL, error);
}
inst(LIST_EXTEND, (list, unused[oparg-1], iterable -- list, unused[oparg-1])) {
PyObject *none_val = _PyList_Extend((PyListObject *)list, iterable);
if (none_val == NULL) {
if (_PyErr_ExceptionMatches(tstate, PyExc_TypeError) &&
(Py_TYPE(iterable)->tp_iter == NULL && !PySequence_Check(iterable)))
{
_PyErr_Clear(tstate);
_PyErr_Format(tstate, PyExc_TypeError,
"Value after * must be an iterable, not %.200s",
Py_TYPE(iterable)->tp_name);
}
DECREF_INPUTS();
ERROR_IF(true, error);
}
Py_DECREF(none_val);
DECREF_INPUTS();
}
inst(SET_UPDATE, (set, unused[oparg-1], iterable -- set, unused[oparg-1])) {
int err = _PySet_Update(set, iterable);
DECREF_INPUTS();
ERROR_IF(err < 0, error);
}
inst(BUILD_SET, (values[oparg] -- set)) {
set = PySet_New(NULL);
if (set == NULL)
goto error;
int err = 0;
for (int i = 0; i < oparg; i++) {
PyObject *item = values[i];
if (err == 0)
err = PySet_Add(set, item);
Py_DECREF(item);
}
if (err != 0) {
Py_DECREF(set);
ERROR_IF(true, error);
}
}
inst(BUILD_MAP, (values[oparg*2] -- map)) {
map = _PyDict_FromItems(
values, 2,
values+1, 2,
oparg);
if (map == NULL)
goto error;
DECREF_INPUTS();
ERROR_IF(map == NULL, error);
}
inst(SETUP_ANNOTATIONS, (--)) {
int err;
PyObject *ann_dict;
if (LOCALS() == NULL) {
_PyErr_Format(tstate, PyExc_SystemError,
"no locals found when setting up annotations");
ERROR_IF(true, error);
}
/* check if __annotations__ in locals()... */
if (PyDict_CheckExact(LOCALS())) {
ann_dict = _PyDict_GetItemWithError(LOCALS(),
&_Py_ID(__annotations__));
if (ann_dict == NULL) {
ERROR_IF(_PyErr_Occurred(tstate), error);
/* ...if not, create a new one */
ann_dict = PyDict_New();
ERROR_IF(ann_dict == NULL, error);
err = PyDict_SetItem(LOCALS(), &_Py_ID(__annotations__),
ann_dict);
Py_DECREF(ann_dict);
ERROR_IF(err, error);
}
}
else {
/* do the same if locals() is not a dict */
ann_dict = PyObject_GetItem(LOCALS(), &_Py_ID(__annotations__));
if (ann_dict == NULL) {
ERROR_IF(!_PyErr_ExceptionMatches(tstate, PyExc_KeyError), error);
_PyErr_Clear(tstate);
ann_dict = PyDict_New();
ERROR_IF(ann_dict == NULL, error);
err = PyObject_SetItem(LOCALS(), &_Py_ID(__annotations__),
ann_dict);
Py_DECREF(ann_dict);
ERROR_IF(err, error);
}
else {
Py_DECREF(ann_dict);
}
}
}
inst(BUILD_CONST_KEY_MAP, (values[oparg], keys -- map)) {
if (!PyTuple_CheckExact(keys) ||
PyTuple_GET_SIZE(keys) != (Py_ssize_t)oparg) {
_PyErr_SetString(tstate, PyExc_SystemError,
"bad BUILD_CONST_KEY_MAP keys argument");
goto error; // Pop the keys and values.
}
map = _PyDict_FromItems(
&PyTuple_GET_ITEM(keys, 0), 1,
values, 1, oparg);
DECREF_INPUTS();
ERROR_IF(map == NULL, error);
}
inst(DICT_UPDATE, (update --)) {
PyObject *dict = PEEK(oparg + 1); // update is still on the stack
if (PyDict_Update(dict, update) < 0) {
if (_PyErr_ExceptionMatches(tstate, PyExc_AttributeError)) {
_PyErr_Format(tstate, PyExc_TypeError,
"'%.200s' object is not a mapping",
Py_TYPE(update)->tp_name);
}
DECREF_INPUTS();
ERROR_IF(true, error);
}
DECREF_INPUTS();
}
inst(DICT_MERGE, (update --)) {
PyObject *dict = PEEK(oparg + 1); // update is still on the stack
if (_PyDict_MergeEx(dict, update, 2) < 0) {
format_kwargs_error(tstate, PEEK(3 + oparg), update);
DECREF_INPUTS();
ERROR_IF(true, error);
}
DECREF_INPUTS();
PREDICT(CALL_FUNCTION_EX);
}
inst(MAP_ADD, (key, value --)) {
PyObject *dict = PEEK(oparg + 2); // key, value are still on the stack
assert(PyDict_CheckExact(dict));
/* dict[key] = value */
// Do not DECREF INPUTS because the function steals the references
ERROR_IF(_PyDict_SetItem_Take2((PyDictObject *)dict, key, value) != 0, error);
PREDICT(JUMP_BACKWARD);
}
family(load_attr, INLINE_CACHE_ENTRIES_LOAD_ATTR) = {
LOAD_ATTR,
LOAD_ATTR_INSTANCE_VALUE,
LOAD_ATTR_MODULE,
LOAD_ATTR_WITH_HINT,
LOAD_ATTR_SLOT,
LOAD_ATTR_CLASS,
LOAD_ATTR_PROPERTY,
LOAD_ATTR_GETATTRIBUTE_OVERRIDDEN,
LOAD_ATTR_METHOD_WITH_VALUES,
LOAD_ATTR_METHOD_NO_DICT,
LOAD_ATTR_METHOD_LAZY_DICT,
};
inst(LOAD_ATTR, (unused/9, owner -- res2 if (oparg & 1), res)) {
#if ENABLE_SPECIALIZATION
_PyAttrCache *cache = (_PyAttrCache *)next_instr;
if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) {
assert(cframe.use_tracing == 0);
PyObject *name = GETITEM(frame->f_code->co_names, oparg>>1);
next_instr--;
_Py_Specialize_LoadAttr(owner, next_instr, name);
DISPATCH_SAME_OPARG();
}
STAT_INC(LOAD_ATTR, deferred);
DECREMENT_ADAPTIVE_COUNTER(cache->counter);
#endif /* ENABLE_SPECIALIZATION */
PyObject *name = GETITEM(frame->f_code->co_names, oparg >> 1);
if (oparg & 1) {
/* Designed to work in tandem with CALL, pushes two values. */
PyObject* meth = NULL;
if (_PyObject_GetMethod(owner, name, &meth)) {
/* We can bypass temporary bound method object.
meth is unbound method and obj is self.
meth | self | arg1 | ... | argN
*/
assert(meth != NULL); // No errors on this branch
res2 = meth;
res = owner; // Transfer ownership
}
else {
/* meth is not an unbound method (but a regular attr, or
something was returned by a descriptor protocol). Set
the second element of the stack to NULL, to signal
CALL that it's not a method call.
NULL | meth | arg1 | ... | argN
*/
DECREF_INPUTS();
ERROR_IF(meth == NULL, error);
res2 = NULL;
res = meth;
}
}
else {
/* Classic, pushes one value. */
res = PyObject_GetAttr(owner, name);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
}
inst(LOAD_ATTR_INSTANCE_VALUE, (unused/1, type_version/2, index/1, unused/5, owner -- res2 if (oparg & 1), res)) {
assert(cframe.use_tracing == 0);
PyTypeObject *tp = Py_TYPE(owner);
assert(type_version != 0);
DEOPT_IF(tp->tp_version_tag != type_version, LOAD_ATTR);
assert(tp->tp_dictoffset < 0);
assert(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT);
PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner);
DEOPT_IF(!_PyDictOrValues_IsValues(dorv), LOAD_ATTR);
res = _PyDictOrValues_GetValues(dorv)->values[index];
DEOPT_IF(res == NULL, LOAD_ATTR);
STAT_INC(LOAD_ATTR, hit);
Py_INCREF(res);
res2 = NULL;
DECREF_INPUTS();
}
inst(LOAD_ATTR_MODULE, (unused/1, type_version/2, index/1, unused/5, owner -- res2 if (oparg & 1), res)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyModule_CheckExact(owner), LOAD_ATTR);
PyDictObject *dict = (PyDictObject *)((PyModuleObject *)owner)->md_dict;
assert(dict != NULL);
DEOPT_IF(dict->ma_keys->dk_version != type_version, LOAD_ATTR);
assert(dict->ma_keys->dk_kind == DICT_KEYS_UNICODE);
assert(index < dict->ma_keys->dk_nentries);
PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + index;
res = ep->me_value;
DEOPT_IF(res == NULL, LOAD_ATTR);
STAT_INC(LOAD_ATTR, hit);
Py_INCREF(res);
res2 = NULL;
DECREF_INPUTS();
}
inst(LOAD_ATTR_WITH_HINT, (unused/1, type_version/2, index/1, unused/5, owner -- res2 if (oparg & 1), res)) {
assert(cframe.use_tracing == 0);
PyTypeObject *tp = Py_TYPE(owner);
assert(type_version != 0);
DEOPT_IF(tp->tp_version_tag != type_version, LOAD_ATTR);
assert(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT);
PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner);
DEOPT_IF(_PyDictOrValues_IsValues(dorv), LOAD_ATTR);
PyDictObject *dict = (PyDictObject *)_PyDictOrValues_GetDict(dorv);
DEOPT_IF(dict == NULL, LOAD_ATTR);
assert(PyDict_CheckExact((PyObject *)dict));
PyObject *name = GETITEM(frame->f_code->co_names, oparg>>1);
uint16_t hint = index;
DEOPT_IF(hint >= (size_t)dict->ma_keys->dk_nentries, LOAD_ATTR);
if (DK_IS_UNICODE(dict->ma_keys)) {
PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + hint;
DEOPT_IF(ep->me_key != name, LOAD_ATTR);
res = ep->me_value;
}
else {
PyDictKeyEntry *ep = DK_ENTRIES(dict->ma_keys) + hint;
DEOPT_IF(ep->me_key != name, LOAD_ATTR);
res = ep->me_value;
}
DEOPT_IF(res == NULL, LOAD_ATTR);
STAT_INC(LOAD_ATTR, hit);
Py_INCREF(res);
res2 = NULL;
DECREF_INPUTS();
}
inst(LOAD_ATTR_SLOT, (unused/1, type_version/2, index/1, unused/5, owner -- res2 if (oparg & 1), res)) {
assert(cframe.use_tracing == 0);
PyTypeObject *tp = Py_TYPE(owner);
assert(type_version != 0);
DEOPT_IF(tp->tp_version_tag != type_version, LOAD_ATTR);
char *addr = (char *)owner + index;
res = *(PyObject **)addr;
DEOPT_IF(res == NULL, LOAD_ATTR);
STAT_INC(LOAD_ATTR, hit);
Py_INCREF(res);
res2 = NULL;
DECREF_INPUTS();
}
inst(LOAD_ATTR_CLASS, (unused/1, type_version/2, unused/2, descr/4, cls -- res2 if (oparg & 1), res)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyType_Check(cls), LOAD_ATTR);
DEOPT_IF(((PyTypeObject *)cls)->tp_version_tag != type_version,
LOAD_ATTR);
assert(type_version != 0);
STAT_INC(LOAD_ATTR, hit);
res2 = NULL;
res = descr;
assert(res != NULL);
Py_INCREF(res);
DECREF_INPUTS();
}
inst(LOAD_ATTR_PROPERTY, (unused/1, type_version/2, func_version/2, fget/4, owner -- unused if (oparg & 1), unused)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(tstate->interp->eval_frame, LOAD_ATTR);
PyTypeObject *cls = Py_TYPE(owner);
DEOPT_IF(cls->tp_version_tag != type_version, LOAD_ATTR);
assert(type_version != 0);
assert(Py_IS_TYPE(fget, &PyFunction_Type));
PyFunctionObject *f = (PyFunctionObject *)fget;
assert(func_version != 0);
DEOPT_IF(f->func_version != func_version, LOAD_ATTR);
PyCodeObject *code = (PyCodeObject *)f->func_code;
assert(code->co_argcount == 1);
DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize), LOAD_ATTR);
STAT_INC(LOAD_ATTR, hit);
Py_INCREF(fget);
_PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, f, 1);
// Manipulate stack directly because we exit with DISPATCH_INLINED().
SET_TOP(NULL);
int shrink_stack = !(oparg & 1);
STACK_SHRINK(shrink_stack);
new_frame->localsplus[0] = owner;
JUMPBY(INLINE_CACHE_ENTRIES_LOAD_ATTR);
DISPATCH_INLINED(new_frame);
}
inst(LOAD_ATTR_GETATTRIBUTE_OVERRIDDEN, (unused/1, type_version/2, func_version/2, getattribute/4, owner -- unused if (oparg & 1), unused)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(tstate->interp->eval_frame, LOAD_ATTR);
PyTypeObject *cls = Py_TYPE(owner);
DEOPT_IF(cls->tp_version_tag != type_version, LOAD_ATTR);
assert(type_version != 0);
assert(Py_IS_TYPE(getattribute, &PyFunction_Type));
PyFunctionObject *f = (PyFunctionObject *)getattribute;
assert(func_version != 0);
DEOPT_IF(f->func_version != func_version, LOAD_ATTR);
PyCodeObject *code = (PyCodeObject *)f->func_code;
assert(code->co_argcount == 2);
DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize), LOAD_ATTR);
STAT_INC(LOAD_ATTR, hit);
PyObject *name = GETITEM(frame->f_code->co_names, oparg >> 1);
Py_INCREF(f);
_PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, f, 2);
// Manipulate stack directly because we exit with DISPATCH_INLINED().
SET_TOP(NULL);
int shrink_stack = !(oparg & 1);
STACK_SHRINK(shrink_stack);
new_frame->localsplus[0] = owner;
new_frame->localsplus[1] = Py_NewRef(name);
JUMPBY(INLINE_CACHE_ENTRIES_LOAD_ATTR);
DISPATCH_INLINED(new_frame);
}
inst(STORE_ATTR_INSTANCE_VALUE, (unused/1, type_version/2, index/1, value, owner --)) {
assert(cframe.use_tracing == 0);
PyTypeObject *tp = Py_TYPE(owner);
assert(type_version != 0);
DEOPT_IF(tp->tp_version_tag != type_version, STORE_ATTR);
assert(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT);
PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner);
DEOPT_IF(!_PyDictOrValues_IsValues(dorv), STORE_ATTR);
STAT_INC(STORE_ATTR, hit);
PyDictValues *values = _PyDictOrValues_GetValues(dorv);
PyObject *old_value = values->values[index];
values->values[index] = value;
if (old_value == NULL) {
_PyDictValues_AddToInsertionOrder(values, index);
}
else {
Py_DECREF(old_value);
}
Py_DECREF(owner);
}
inst(STORE_ATTR_WITH_HINT, (unused/1, type_version/2, hint/1, value, owner --)) {
assert(cframe.use_tracing == 0);
PyTypeObject *tp = Py_TYPE(owner);
assert(type_version != 0);
DEOPT_IF(tp->tp_version_tag != type_version, STORE_ATTR);
assert(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT);
PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner);
DEOPT_IF(_PyDictOrValues_IsValues(dorv), STORE_ATTR);
PyDictObject *dict = (PyDictObject *)_PyDictOrValues_GetDict(dorv);
DEOPT_IF(dict == NULL, STORE_ATTR);
assert(PyDict_CheckExact((PyObject *)dict));
PyObject *name = GETITEM(frame->f_code->co_names, oparg);
DEOPT_IF(hint >= (size_t)dict->ma_keys->dk_nentries, STORE_ATTR);
PyObject *old_value;
uint64_t new_version;
if (DK_IS_UNICODE(dict->ma_keys)) {
PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + hint;
DEOPT_IF(ep->me_key != name, STORE_ATTR);
old_value = ep->me_value;
DEOPT_IF(old_value == NULL, STORE_ATTR);
new_version = _PyDict_NotifyEvent(tstate->interp, PyDict_EVENT_MODIFIED, dict, name, value);
ep->me_value = value;
}
else {
PyDictKeyEntry *ep = DK_ENTRIES(dict->ma_keys) + hint;
DEOPT_IF(ep->me_key != name, STORE_ATTR);
old_value = ep->me_value;
DEOPT_IF(old_value == NULL, STORE_ATTR);
new_version = _PyDict_NotifyEvent(tstate->interp, PyDict_EVENT_MODIFIED, dict, name, value);
ep->me_value = value;
}
Py_DECREF(old_value);
STAT_INC(STORE_ATTR, hit);
/* Ensure dict is GC tracked if it needs to be */
if (!_PyObject_GC_IS_TRACKED(dict) && _PyObject_GC_MAY_BE_TRACKED(value)) {
_PyObject_GC_TRACK(dict);
}
/* PEP 509 */
dict->ma_version_tag = new_version;
Py_DECREF(owner);
}
inst(STORE_ATTR_SLOT, (unused/1, type_version/2, index/1, value, owner --)) {
assert(cframe.use_tracing == 0);
PyTypeObject *tp = Py_TYPE(owner);
assert(type_version != 0);
DEOPT_IF(tp->tp_version_tag != type_version, STORE_ATTR);
char *addr = (char *)owner + index;
STAT_INC(STORE_ATTR, hit);
PyObject *old_value = *(PyObject **)addr;
*(PyObject **)addr = value;
Py_XDECREF(old_value);
Py_DECREF(owner);
}
family(compare_op, INLINE_CACHE_ENTRIES_COMPARE_OP) = {
COMPARE_OP,
COMPARE_OP_FLOAT,
COMPARE_OP_INT,
COMPARE_OP_STR,
};
inst(COMPARE_OP, (unused/1, left, right -- res)) {
#if ENABLE_SPECIALIZATION
_PyCompareOpCache *cache = (_PyCompareOpCache *)next_instr;
if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) {
assert(cframe.use_tracing == 0);
next_instr--;
_Py_Specialize_CompareOp(left, right, next_instr, oparg);
DISPATCH_SAME_OPARG();
}
STAT_INC(COMPARE_OP, deferred);
DECREMENT_ADAPTIVE_COUNTER(cache->counter);
#endif /* ENABLE_SPECIALIZATION */
assert((oparg >> 4) <= Py_GE);
res = PyObject_RichCompare(left, right, oparg>>4);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
inst(COMPARE_OP_FLOAT, (unused/1, left, right -- res)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyFloat_CheckExact(left), COMPARE_OP);
DEOPT_IF(!PyFloat_CheckExact(right), COMPARE_OP);
STAT_INC(COMPARE_OP, hit);
double dleft = PyFloat_AS_DOUBLE(left);
double dright = PyFloat_AS_DOUBLE(right);
// 1 if NaN, 2 if <, 4 if >, 8 if ==; this matches low four bits of the oparg
int sign_ish = COMPARISON_BIT(dleft, dright);
_Py_DECREF_SPECIALIZED(left, _PyFloat_ExactDealloc);
_Py_DECREF_SPECIALIZED(right, _PyFloat_ExactDealloc);
res = (sign_ish & oparg) ? Py_True : Py_False;
Py_INCREF(res);
}
// Similar to COMPARE_OP_FLOAT
inst(COMPARE_OP_INT, (unused/1, left, right -- res)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyLong_CheckExact(left), COMPARE_OP);
DEOPT_IF(!PyLong_CheckExact(right), COMPARE_OP);
DEOPT_IF(!_PyLong_IsCompact((PyLongObject *)left), COMPARE_OP);
DEOPT_IF(!_PyLong_IsCompact((PyLongObject *)right), COMPARE_OP);
STAT_INC(COMPARE_OP, hit);
assert(_PyLong_DigitCount((PyLongObject *)left) <= 1 &&
_PyLong_DigitCount((PyLongObject *)right) <= 1);
Py_ssize_t ileft = _PyLong_CompactValue((PyLongObject *)left);
Py_ssize_t iright = _PyLong_CompactValue((PyLongObject *)right);
// 2 if <, 4 if >, 8 if ==; this matches the low 4 bits of the oparg
int sign_ish = COMPARISON_BIT(ileft, iright);
_Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free);
_Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free);
res = (sign_ish & oparg) ? Py_True : Py_False;
Py_INCREF(res);
}
// Similar to COMPARE_OP_FLOAT, but for ==, != only
inst(COMPARE_OP_STR, (unused/1, left, right -- res)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(!PyUnicode_CheckExact(left), COMPARE_OP);
DEOPT_IF(!PyUnicode_CheckExact(right), COMPARE_OP);
STAT_INC(COMPARE_OP, hit);
int eq = _PyUnicode_Equal(left, right);
assert((oparg >>4) == Py_EQ || (oparg >>4) == Py_NE);
_Py_DECREF_SPECIALIZED(left, _PyUnicode_ExactDealloc);
_Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc);
assert(eq == 0 || eq == 1);
assert((oparg & 0xf) == COMPARISON_NOT_EQUALS || (oparg & 0xf) == COMPARISON_EQUALS);
assert(COMPARISON_NOT_EQUALS + 1 == COMPARISON_EQUALS);
res = ((COMPARISON_NOT_EQUALS + eq) & oparg) ? Py_True : Py_False;
Py_INCREF(res);
}
inst(IS_OP, (left, right -- b)) {
int res = Py_Is(left, right) ^ oparg;
DECREF_INPUTS();
b = Py_NewRef(res ? Py_True : Py_False);
}
inst(CONTAINS_OP, (left, right -- b)) {
int res = PySequence_Contains(right, left);
DECREF_INPUTS();
ERROR_IF(res < 0, error);
b = Py_NewRef((res^oparg) ? Py_True : Py_False);
}
inst(CHECK_EG_MATCH, (exc_value, match_type -- rest, match)) {
if (check_except_star_type_valid(tstate, match_type) < 0) {
DECREF_INPUTS();
ERROR_IF(true, error);
}
match = NULL;
rest = NULL;
int res = exception_group_match(exc_value, match_type,
&match, &rest);
DECREF_INPUTS();
ERROR_IF(res < 0, error);
assert((match == NULL) == (rest == NULL));
ERROR_IF(match == NULL, error);
if (!Py_IsNone(match)) {
PyErr_SetHandledException(match);
}
}
inst(CHECK_EXC_MATCH, (left, right -- left, b)) {
assert(PyExceptionInstance_Check(left));
if (check_except_type_valid(tstate, right) < 0) {
DECREF_INPUTS();
ERROR_IF(true, error);
}
int res = PyErr_GivenExceptionMatches(left, right);
DECREF_INPUTS();
b = Py_NewRef(res ? Py_True : Py_False);
}
inst(IMPORT_NAME, (level, fromlist -- res)) {
PyObject *name = GETITEM(frame->f_code->co_names, oparg);
res = import_name(tstate, frame, name, fromlist, level);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
inst(IMPORT_FROM, (from -- from, res)) {
PyObject *name = GETITEM(frame->f_code->co_names, oparg);
res = import_from(tstate, from, name);
ERROR_IF(res == NULL, error);
}
inst(JUMP_FORWARD, (--)) {
JUMPBY(oparg);
}
inst(JUMP_BACKWARD, (--)) {
assert(oparg < INSTR_OFFSET());
JUMPBY(-oparg);
CHECK_EVAL_BREAKER();
}
inst(POP_JUMP_IF_FALSE, (cond -- )) {
if (Py_IsTrue(cond)) {
_Py_DECREF_NO_DEALLOC(cond);
}
else if (Py_IsFalse(cond)) {
_Py_DECREF_NO_DEALLOC(cond);
JUMPBY(oparg);
}
else {
int err = PyObject_IsTrue(cond);
DECREF_INPUTS();
if (err == 0) {
JUMPBY(oparg);
}
else {
ERROR_IF(err < 0, error);
}
}
}
inst(POP_JUMP_IF_TRUE, (cond -- )) {
if (Py_IsFalse(cond)) {
_Py_DECREF_NO_DEALLOC(cond);
}
else if (Py_IsTrue(cond)) {
_Py_DECREF_NO_DEALLOC(cond);
JUMPBY(oparg);
}
else {
int err = PyObject_IsTrue(cond);
DECREF_INPUTS();
if (err > 0) {
JUMPBY(oparg);
}
else {
ERROR_IF(err < 0, error);
}
}
}
inst(POP_JUMP_IF_NOT_NONE, (value -- )) {
if (!Py_IsNone(value)) {
DECREF_INPUTS();
JUMPBY(oparg);
}
else {
_Py_DECREF_NO_DEALLOC(value);
}
}
inst(POP_JUMP_IF_NONE, (value -- )) {
if (Py_IsNone(value)) {
_Py_DECREF_NO_DEALLOC(value);
JUMPBY(oparg);
}
else {
DECREF_INPUTS();
}
}
inst(JUMP_BACKWARD_NO_INTERRUPT, (--)) {
/* This bytecode is used in the `yield from` or `await` loop.
* If there is an interrupt, we want it handled in the innermost
* generator or coroutine, so we deliberately do not check it here.
* (see bpo-30039).
*/
JUMPBY(-oparg);
}
inst(GET_LEN, (obj -- obj, len_o)) {
// PUSH(len(TOS))
Py_ssize_t len_i = PyObject_Length(obj);
ERROR_IF(len_i < 0, error);
len_o = PyLong_FromSsize_t(len_i);
ERROR_IF(len_o == NULL, error);
}
inst(MATCH_CLASS, (subject, type, names -- attrs)) {
// Pop TOS and TOS1. Set TOS to a tuple of attributes on success, or
// None on failure.
assert(PyTuple_CheckExact(names));
attrs = match_class(tstate, subject, type, oparg, names);
DECREF_INPUTS();
if (attrs) {
assert(PyTuple_CheckExact(attrs)); // Success!
}
else {
ERROR_IF(_PyErr_Occurred(tstate), error); // Error!
attrs = Py_NewRef(Py_None); // Failure!
}
}
inst(MATCH_MAPPING, (subject -- subject, res)) {
int match = Py_TYPE(subject)->tp_flags & Py_TPFLAGS_MAPPING;
res = Py_NewRef(match ? Py_True : Py_False);
PREDICT(POP_JUMP_IF_FALSE);
}
inst(MATCH_SEQUENCE, (subject -- subject, res)) {
int match = Py_TYPE(subject)->tp_flags & Py_TPFLAGS_SEQUENCE;
res = Py_NewRef(match ? Py_True : Py_False);
PREDICT(POP_JUMP_IF_FALSE);
}
inst(MATCH_KEYS, (subject, keys -- subject, keys, values_or_none)) {
// On successful match, PUSH(values). Otherwise, PUSH(None).
values_or_none = match_keys(tstate, subject, keys);
ERROR_IF(values_or_none == NULL, error);
}
inst(GET_ITER, (iterable -- iter)) {
/* before: [obj]; after [getiter(obj)] */
iter = PyObject_GetIter(iterable);
DECREF_INPUTS();
ERROR_IF(iter == NULL, error);
}
inst(GET_YIELD_FROM_ITER, (iterable -- iter)) {
/* before: [obj]; after [getiter(obj)] */
if (PyCoro_CheckExact(iterable)) {
/* `iterable` is a coroutine */
if (!(frame->f_code->co_flags & (CO_COROUTINE | CO_ITERABLE_COROUTINE))) {
/* and it is used in a 'yield from' expression of a
regular generator. */
_PyErr_SetString(tstate, PyExc_TypeError,
"cannot 'yield from' a coroutine object "
"in a non-coroutine generator");
goto error;
}
iter = iterable;
}
else if (PyGen_CheckExact(iterable)) {
iter = iterable;
}
else {
/* `iterable` is not a generator. */
iter = PyObject_GetIter(iterable);
if (iter == NULL) {
goto error;
}
DECREF_INPUTS();
}
PREDICT(LOAD_CONST);
}
// Most members of this family are "secretly" super-instructions.
// When the loop is exhausted, they jump, and the jump target is
// always END_FOR, which pops two values off the stack.
// This is optimized by skipping that instruction and combining
// its effect (popping 'iter' instead of pushing 'next'.)
family(for_iter, INLINE_CACHE_ENTRIES_FOR_ITER) = {
FOR_ITER,
FOR_ITER_LIST,
FOR_ITER_TUPLE,
FOR_ITER_RANGE,
FOR_ITER_GEN,
};
inst(FOR_ITER, (unused/1, iter -- iter, next)) {
#if ENABLE_SPECIALIZATION
_PyForIterCache *cache = (_PyForIterCache *)next_instr;
if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) {
assert(cframe.use_tracing == 0);
next_instr--;
_Py_Specialize_ForIter(iter, next_instr, oparg);
DISPATCH_SAME_OPARG();
}
STAT_INC(FOR_ITER, deferred);
DECREMENT_ADAPTIVE_COUNTER(cache->counter);
#endif /* ENABLE_SPECIALIZATION */
/* before: [iter]; after: [iter, iter()] *or* [] (and jump over END_FOR.) */
next = (*Py_TYPE(iter)->tp_iternext)(iter);
if (next == NULL) {
if (_PyErr_Occurred(tstate)) {
if (!_PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) {
goto error;
}
else if (tstate->c_tracefunc != NULL) {
call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, tstate, frame);
}
_PyErr_Clear(tstate);
}
/* iterator ended normally */
assert(next_instr[INLINE_CACHE_ENTRIES_FOR_ITER + oparg].op.code == END_FOR);
Py_DECREF(iter);
STACK_SHRINK(1);
/* Jump forward oparg, then skip following END_FOR instruction */
JUMPBY(INLINE_CACHE_ENTRIES_FOR_ITER + oparg + 1);
DISPATCH();
}
// Common case: no jump, leave it to the code generator
}
inst(FOR_ITER_LIST, (unused/1, iter -- iter, next)) {
assert(cframe.use_tracing == 0);
DEOPT_IF(Py_TYPE(iter) != &PyListIter_Type, FOR_ITER);
_PyListIterObject *it = (_PyListIterObject *)iter;
STAT_INC(FOR_ITER, hit);
PyListObject *seq = it->it_seq;
if (seq) {
if (it->it_index < PyList_GET_SIZE(seq)) {
next = Py_NewRef(PyList_GET_ITEM(seq, it->it_index++));
goto end_for_iter_list; // End of this instruction
}
it->it_seq = NULL;
Py_DECREF(seq);
}
Py_DECREF(iter);
STACK_SHRINK(1);
/* Jump forward oparg, then skip following END_FOR instruction */
JUMPBY(INLINE_CACHE_ENTRIES_FOR_ITER + oparg + 1);
DISPATCH();
end_for_iter_list:
// Common case: no jump, leave it to the code generator
}
inst(FOR_ITER_TUPLE, (unused/1, iter -- iter, next)) {
assert(cframe.use_tracing == 0);
_PyTupleIterObject *it = (_PyTupleIterObject *)iter;
DEOPT_IF(Py_TYPE(it) != &PyTupleIter_Type, FOR_ITER);
STAT_INC(FOR_ITER, hit);
PyTupleObject *seq = it->it_seq;
if (seq) {
if (it->it_index < PyTuple_GET_SIZE(seq)) {
next = Py_NewRef(PyTuple_GET_ITEM(seq, it->it_index++));
goto end_for_iter_tuple; // End of this instruction
}
it->it_seq = NULL;
Py_DECREF(seq);
}
Py_DECREF(iter);
STACK_SHRINK(1);
/* Jump forward oparg, then skip following END_FOR instruction */
JUMPBY(INLINE_CACHE_ENTRIES_FOR_ITER + oparg + 1);
DISPATCH();
end_for_iter_tuple:
// Common case: no jump, leave it to the code generator
}
inst(FOR_ITER_RANGE, (unused/1, iter -- iter, next)) {
assert(cframe.use_tracing == 0);
_PyRangeIterObject *r = (_PyRangeIterObject *)iter;
DEOPT_IF(Py_TYPE(r) != &PyRangeIter_Type, FOR_ITER);
STAT_INC(FOR_ITER, hit);
if (r->len <= 0) {
STACK_SHRINK(1);
Py_DECREF(r);
// Jump over END_FOR instruction.
JUMPBY(INLINE_CACHE_ENTRIES_FOR_ITER + oparg + 1);
DISPATCH();
}
long value = r->start;
r->start = value + r->step;
r->len--;
next = PyLong_FromLong(value);
if (next == NULL) {
goto error;
}
}
inst(FOR_ITER_GEN, (unused/1, iter -- iter, unused)) {
assert(cframe.use_tracing == 0);
PyGenObject *gen = (PyGenObject *)iter;
DEOPT_IF(Py_TYPE(gen) != &PyGen_Type, FOR_ITER);
DEOPT_IF(gen->gi_frame_state >= FRAME_EXECUTING, FOR_ITER);
STAT_INC(FOR_ITER, hit);
_PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe;
frame->yield_offset = oparg;
_PyFrame_StackPush(gen_frame, Py_NewRef(Py_None));
gen->gi_frame_state = FRAME_EXECUTING;
gen->gi_exc_state.previous_item = tstate->exc_info;
tstate->exc_info = &gen->gi_exc_state;
JUMPBY(INLINE_CACHE_ENTRIES_FOR_ITER + oparg);
assert(next_instr->op.code == END_FOR);
DISPATCH_INLINED(gen_frame);
}
inst(BEFORE_ASYNC_WITH, (mgr -- exit, res)) {
PyObject *enter = _PyObject_LookupSpecial(mgr, &_Py_ID(__aenter__));
if (enter == NULL) {
if (!_PyErr_Occurred(tstate)) {
_PyErr_Format(tstate, PyExc_TypeError,
"'%.200s' object does not support the "
"asynchronous context manager protocol",
Py_TYPE(mgr)->tp_name);
}
goto error;
}
exit = _PyObject_LookupSpecial(mgr, &_Py_ID(__aexit__));
if (exit == NULL) {
if (!_PyErr_Occurred(tstate)) {
_PyErr_Format(tstate, PyExc_TypeError,
"'%.200s' object does not support the "
"asynchronous context manager protocol "
"(missed __aexit__ method)",
Py_TYPE(mgr)->tp_name);
}
Py_DECREF(enter);
goto error;
}
DECREF_INPUTS();
res = _PyObject_CallNoArgs(enter);
Py_DECREF(enter);
if (res == NULL) {
Py_DECREF(exit);
ERROR_IF(true, error);
}
PREDICT(GET_AWAITABLE);
}
inst(BEFORE_WITH, (mgr -- exit, res)) {
/* pop the context manager, push its __exit__ and the
* value returned from calling its __enter__
*/
PyObject *enter = _PyObject_LookupSpecial(mgr, &_Py_ID(__enter__));
if (enter == NULL) {
if (!_PyErr_Occurred(tstate)) {
_PyErr_Format(tstate, PyExc_TypeError,
"'%.200s' object does not support the "
"context manager protocol",
Py_TYPE(mgr)->tp_name);
}
goto error;
}
exit = _PyObject_LookupSpecial(mgr, &_Py_ID(__exit__));
if (exit == NULL) {
if (!_PyErr_Occurred(tstate)) {
_PyErr_Format(tstate, PyExc_TypeError,
"'%.200s' object does not support the "
"context manager protocol "
"(missed __exit__ method)",
Py_TYPE(mgr)->tp_name);
}
Py_DECREF(enter);
goto error;
}
DECREF_INPUTS();
res = _PyObject_CallNoArgs(enter);
Py_DECREF(enter);
if (res == NULL) {
Py_DECREF(exit);
ERROR_IF(true, error);
}
}
inst(WITH_EXCEPT_START, (exit_func, lasti, unused, val -- exit_func, lasti, unused, val, res)) {
/* At the top of the stack are 4 values:
- val: TOP = exc_info()
- unused: SECOND = previous exception
- lasti: THIRD = lasti of exception in exc_info()
- exit_func: FOURTH = the context.__exit__ bound method
We call FOURTH(type(TOP), TOP, GetTraceback(TOP)).
Then we push the __exit__ return value.
*/
PyObject *exc, *tb;
assert(val && PyExceptionInstance_Check(val));
exc = PyExceptionInstance_Class(val);
tb = PyException_GetTraceback(val);
Py_XDECREF(tb);
assert(PyLong_Check(lasti));
(void)lasti; // Shut up compiler warning if asserts are off
PyObject *stack[4] = {NULL, exc, val, tb};
res = PyObject_Vectorcall(exit_func, stack + 1,
3 | PY_VECTORCALL_ARGUMENTS_OFFSET, NULL);
ERROR_IF(res == NULL, error);
}
inst(PUSH_EXC_INFO, (new_exc -- prev_exc, new_exc)) {
_PyErr_StackItem *exc_info = tstate->exc_info;
if (exc_info->exc_value != NULL) {
prev_exc = exc_info->exc_value;
}
else {
prev_exc = Py_NewRef(Py_None);
}
assert(PyExceptionInstance_Check(new_exc));
exc_info->exc_value = Py_NewRef(new_exc);
}
inst(LOAD_ATTR_METHOD_WITH_VALUES, (unused/1, type_version/2, keys_version/2, descr/4, self -- res2 if (oparg & 1), res)) {
/* Cached method object */
assert(cframe.use_tracing == 0);
PyTypeObject *self_cls = Py_TYPE(self);
assert(type_version != 0);
DEOPT_IF(self_cls->tp_version_tag != type_version, LOAD_ATTR);
assert(self_cls->tp_flags & Py_TPFLAGS_MANAGED_DICT);
PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(self);
DEOPT_IF(!_PyDictOrValues_IsValues(dorv), LOAD_ATTR);
PyHeapTypeObject *self_heap_type = (PyHeapTypeObject *)self_cls;
DEOPT_IF(self_heap_type->ht_cached_keys->dk_version !=
keys_version, LOAD_ATTR);
STAT_INC(LOAD_ATTR, hit);
assert(descr != NULL);
res2 = Py_NewRef(descr);
assert(_PyType_HasFeature(Py_TYPE(res2), Py_TPFLAGS_METHOD_DESCRIPTOR));
res = self;
assert(oparg & 1);
}
inst(LOAD_ATTR_METHOD_NO_DICT, (unused/1, type_version/2, unused/2, descr/4, self -- res2 if (oparg & 1), res)) {
assert(cframe.use_tracing == 0);
PyTypeObject *self_cls = Py_TYPE(self);
DEOPT_IF(self_cls->tp_version_tag != type_version, LOAD_ATTR);
assert(self_cls->tp_dictoffset == 0);
STAT_INC(LOAD_ATTR, hit);
assert(descr != NULL);
assert(_PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_METHOD_DESCRIPTOR));
res2 = Py_NewRef(descr);
res = self;
assert(oparg & 1);
}
inst(LOAD_ATTR_METHOD_LAZY_DICT, (unused/1, type_version/2, unused/2, descr/4, self -- res2 if (oparg & 1), res)) {
assert(cframe.use_tracing == 0);
PyTypeObject *self_cls = Py_TYPE(self);
DEOPT_IF(self_cls->tp_version_tag != type_version, LOAD_ATTR);
Py_ssize_t dictoffset = self_cls->tp_dictoffset;
assert(dictoffset > 0);
PyObject *dict = *(PyObject **)((char *)self + dictoffset);
/* This object has a __dict__, just not yet created */
DEOPT_IF(dict != NULL, LOAD_ATTR);
STAT_INC(LOAD_ATTR, hit);
assert(descr != NULL);
assert(_PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_METHOD_DESCRIPTOR));
res2 = Py_NewRef(descr);
res = self;
assert(oparg & 1);
}
inst(KW_NAMES, (--)) {
assert(kwnames == NULL);
assert(oparg < PyTuple_GET_SIZE(frame->f_code->co_consts));
kwnames = GETITEM(frame->f_code->co_consts, oparg);
}
// Cache layout: counter/1, func_version/2
// Neither CALL_INTRINSIC_1/2 nor CALL_FUNCTION_EX are members!
family(call, INLINE_CACHE_ENTRIES_CALL) = {
CALL,
CALL_BOUND_METHOD_EXACT_ARGS,
CALL_PY_EXACT_ARGS,
CALL_PY_WITH_DEFAULTS,
CALL_NO_KW_TYPE_1,
CALL_NO_KW_STR_1,
CALL_NO_KW_TUPLE_1,
CALL_BUILTIN_CLASS,
CALL_NO_KW_BUILTIN_O,
CALL_NO_KW_BUILTIN_FAST,
CALL_BUILTIN_FAST_WITH_KEYWORDS,
CALL_NO_KW_LEN,
CALL_NO_KW_ISINSTANCE,
CALL_NO_KW_LIST_APPEND,
CALL_NO_KW_METHOD_DESCRIPTOR_O,
CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS,
CALL_NO_KW_METHOD_DESCRIPTOR_NOARGS,
CALL_NO_KW_METHOD_DESCRIPTOR_FAST,
};
// On entry, the stack is either
// [NULL, callable, arg1, arg2, ...]
// or
// [method, self, arg1, arg2, ...]
// (Some args may be keywords, see KW_NAMES, which sets 'kwnames'.)
// On exit, the stack is [result].
// When calling Python, inline the call using DISPATCH_INLINED().
inst(CALL, (unused/1, unused/2, method, callable, args[oparg] -- res)) {
int is_meth = method != NULL;
int total_args = oparg;
if (is_meth) {
callable = method;
args--;
total_args++;
}
#if ENABLE_SPECIALIZATION
_PyCallCache *cache = (_PyCallCache *)next_instr;
if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) {
assert(cframe.use_tracing == 0);
next_instr--;
_Py_Specialize_Call(callable, next_instr, total_args, kwnames);
DISPATCH_SAME_OPARG();
}
STAT_INC(CALL, deferred);
DECREMENT_ADAPTIVE_COUNTER(cache->counter);
#endif /* ENABLE_SPECIALIZATION */
if (!is_meth && Py_TYPE(callable) == &PyMethod_Type) {
is_meth = 1; // For consistenct; it's dead, though
args--;
total_args++;
PyObject *self = ((PyMethodObject *)callable)->im_self;
args[0] = Py_NewRef(self);
method = ((PyMethodObject *)callable)->im_func;
args[-1] = Py_NewRef(method);
Py_DECREF(callable);
callable = method;
}
int positional_args = total_args - KWNAMES_LEN();
// Check if the call can be inlined or not
if (Py_TYPE(callable) == &PyFunction_Type &&
tstate->interp->eval_frame == NULL &&
((PyFunctionObject *)callable)->vectorcall == _PyFunction_Vectorcall)
{
int code_flags = ((PyCodeObject*)PyFunction_GET_CODE(callable))->co_flags;
PyObject *locals = code_flags & CO_OPTIMIZED ? NULL : Py_NewRef(PyFunction_GET_GLOBALS(callable));
_PyInterpreterFrame *new_frame = _PyEvalFramePushAndInit(
tstate, (PyFunctionObject *)callable, locals,
args, positional_args, kwnames
);
kwnames = NULL;
// Manipulate stack directly since we leave using DISPATCH_INLINED().
STACK_SHRINK(oparg + 2);
// The frame has stolen all the arguments from the stack,
// so there is no need to clean them up.
if (new_frame == NULL) {
goto error;
}
JUMPBY(INLINE_CACHE_ENTRIES_CALL);
DISPATCH_INLINED(new_frame);
}
/* Callable is not a normal Python function */
if (cframe.use_tracing) {
res = trace_call_function(
tstate, callable, args,
positional_args, kwnames);
}
else {
res = PyObject_Vectorcall(
callable, args,
positional_args | PY_VECTORCALL_ARGUMENTS_OFFSET,
kwnames);
}
kwnames = NULL;
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(callable);
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
// Start out with [NULL, bound_method, arg1, arg2, ...]
// Transform to [callable, self, arg1, arg2, ...]
// Then fall through to CALL_PY_EXACT_ARGS
inst(CALL_BOUND_METHOD_EXACT_ARGS, (unused/1, unused/2, method, callable, unused[oparg] -- unused)) {
DEOPT_IF(method != NULL, CALL);
DEOPT_IF(Py_TYPE(callable) != &PyMethod_Type, CALL);
STAT_INC(CALL, hit);
PyObject *self = ((PyMethodObject *)callable)->im_self;
PEEK(oparg + 1) = Py_NewRef(self); // callable
PyObject *meth = ((PyMethodObject *)callable)->im_func;
PEEK(oparg + 2) = Py_NewRef(meth); // method
Py_DECREF(callable);
GO_TO_INSTRUCTION(CALL_PY_EXACT_ARGS);
}
inst(CALL_PY_EXACT_ARGS, (unused/1, func_version/2, method, callable, args[oparg] -- unused)) {
assert(kwnames == NULL);
DEOPT_IF(tstate->interp->eval_frame, CALL);
int is_meth = method != NULL;
int argcount = oparg;
if (is_meth) {
callable = method;
args--;
argcount++;
}
DEOPT_IF(!PyFunction_Check(callable), CALL);
PyFunctionObject *func = (PyFunctionObject *)callable;
DEOPT_IF(func->func_version != func_version, CALL);
PyCodeObject *code = (PyCodeObject *)func->func_code;
DEOPT_IF(code->co_argcount != argcount, CALL);
DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize), CALL);
STAT_INC(CALL, hit);
_PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, func, argcount);
for (int i = 0; i < argcount; i++) {
new_frame->localsplus[i] = args[i];
}
// Manipulate stack directly since we leave using DISPATCH_INLINED().
STACK_SHRINK(oparg + 2);
JUMPBY(INLINE_CACHE_ENTRIES_CALL);
DISPATCH_INLINED(new_frame);
}
inst(CALL_PY_WITH_DEFAULTS, (unused/1, func_version/2, method, callable, args[oparg] -- unused)) {
assert(kwnames == NULL);
DEOPT_IF(tstate->interp->eval_frame, CALL);
int is_meth = method != NULL;
int argcount = oparg;
if (is_meth) {
callable = method;
args--;
argcount++;
}
DEOPT_IF(!PyFunction_Check(callable), CALL);
PyFunctionObject *func = (PyFunctionObject *)callable;
DEOPT_IF(func->func_version != func_version, CALL);
PyCodeObject *code = (PyCodeObject *)func->func_code;
assert(func->func_defaults);
assert(PyTuple_CheckExact(func->func_defaults));
int defcount = (int)PyTuple_GET_SIZE(func->func_defaults);
assert(defcount <= code->co_argcount);
int min_args = code->co_argcount - defcount;
DEOPT_IF(argcount > code->co_argcount, CALL);
DEOPT_IF(argcount < min_args, CALL);
DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize), CALL);
STAT_INC(CALL, hit);
_PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, func, code->co_argcount);
for (int i = 0; i < argcount; i++) {
new_frame->localsplus[i] = args[i];
}
for (int i = argcount; i < code->co_argcount; i++) {
PyObject *def = PyTuple_GET_ITEM(func->func_defaults, i - min_args);
new_frame->localsplus[i] = Py_NewRef(def);
}
// Manipulate stack and cache directly since we leave using DISPATCH_INLINED().
STACK_SHRINK(oparg + 2);
JUMPBY(INLINE_CACHE_ENTRIES_CALL);
DISPATCH_INLINED(new_frame);
}
inst(CALL_NO_KW_TYPE_1, (unused/1, unused/2, null, callable, args[oparg] -- res)) {
assert(kwnames == NULL);
assert(cframe.use_tracing == 0);
assert(oparg == 1);
DEOPT_IF(null != NULL, CALL);
PyObject *obj = args[0];
DEOPT_IF(callable != (PyObject *)&PyType_Type, CALL);
STAT_INC(CALL, hit);
res = Py_NewRef(Py_TYPE(obj));
Py_DECREF(obj);
Py_DECREF(&PyType_Type); // I.e., callable
}
inst(CALL_NO_KW_STR_1, (unused/1, unused/2, null, callable, args[oparg] -- res)) {
assert(kwnames == NULL);
assert(cframe.use_tracing == 0);
assert(oparg == 1);
DEOPT_IF(null != NULL, CALL);
DEOPT_IF(callable != (PyObject *)&PyUnicode_Type, CALL);
STAT_INC(CALL, hit);
PyObject *arg = args[0];
res = PyObject_Str(arg);
Py_DECREF(arg);
Py_DECREF(&PyUnicode_Type); // I.e., callable
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_NO_KW_TUPLE_1, (unused/1, unused/2, null, callable, args[oparg] -- res)) {
assert(kwnames == NULL);
assert(oparg == 1);
DEOPT_IF(null != NULL, CALL);
DEOPT_IF(callable != (PyObject *)&PyTuple_Type, CALL);
STAT_INC(CALL, hit);
PyObject *arg = args[0];
res = PySequence_Tuple(arg);
Py_DECREF(arg);
Py_DECREF(&PyTuple_Type); // I.e., tuple
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_BUILTIN_CLASS, (unused/1, unused/2, method, callable, args[oparg] -- res)) {
int is_meth = method != NULL;
int total_args = oparg;
if (is_meth) {
callable = method;
args--;
total_args++;
}
int kwnames_len = KWNAMES_LEN();
DEOPT_IF(!PyType_Check(callable), CALL);
PyTypeObject *tp = (PyTypeObject *)callable;
DEOPT_IF(tp->tp_vectorcall == NULL, CALL);
STAT_INC(CALL, hit);
res = tp->tp_vectorcall((PyObject *)tp, args,
total_args - kwnames_len, kwnames);
kwnames = NULL;
/* Free the arguments. */
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
Py_DECREF(tp);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_NO_KW_BUILTIN_O, (unused/1, unused/2, method, callable, args[oparg] -- res)) {
assert(cframe.use_tracing == 0);
/* Builtin METH_O functions */
assert(kwnames == NULL);
int is_meth = method != NULL;
int total_args = oparg;
if (is_meth) {
callable = method;
args--;
total_args++;
}
DEOPT_IF(total_args != 1, CALL);
DEOPT_IF(!PyCFunction_CheckExact(callable), CALL);
DEOPT_IF(PyCFunction_GET_FLAGS(callable) != METH_O, CALL);
STAT_INC(CALL, hit);
PyCFunction cfunc = PyCFunction_GET_FUNCTION(callable);
// This is slower but CPython promises to check all non-vectorcall
// function calls.
if (_Py_EnterRecursiveCallTstate(tstate, " while calling a Python object")) {
goto error;
}
PyObject *arg = args[0];
res = _PyCFunction_TrampolineCall(cfunc, PyCFunction_GET_SELF(callable), arg);
_Py_LeaveRecursiveCallTstate(tstate);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(arg);
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_NO_KW_BUILTIN_FAST, (unused/1, unused/2, method, callable, args[oparg] -- res)) {
assert(cframe.use_tracing == 0);
/* Builtin METH_FASTCALL functions, without keywords */
assert(kwnames == NULL);
int is_meth = method != NULL;
int total_args = oparg;
if (is_meth) {
callable = method;
args--;
total_args++;
}
DEOPT_IF(!PyCFunction_CheckExact(callable), CALL);
DEOPT_IF(PyCFunction_GET_FLAGS(callable) != METH_FASTCALL, CALL);
STAT_INC(CALL, hit);
PyCFunction cfunc = PyCFunction_GET_FUNCTION(callable);
/* res = func(self, args, nargs) */
res = ((_PyCFunctionFast)(void(*)(void))cfunc)(
PyCFunction_GET_SELF(callable),
args,
total_args);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
/* Free the arguments. */
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
/* Not deopting because this doesn't mean our optimization was
wrong. `res` can be NULL for valid reasons. Eg. getattr(x,
'invalid'). In those cases an exception is set, so we must
handle it.
*/
CHECK_EVAL_BREAKER();
}
inst(CALL_BUILTIN_FAST_WITH_KEYWORDS, (unused/1, unused/2, method, callable, args[oparg] -- res)) {
assert(cframe.use_tracing == 0);
/* Builtin METH_FASTCALL | METH_KEYWORDS functions */
int is_meth = method != NULL;
int total_args = oparg;
if (is_meth) {
callable = method;
args--;
total_args++;
}
DEOPT_IF(!PyCFunction_CheckExact(callable), CALL);
DEOPT_IF(PyCFunction_GET_FLAGS(callable) !=
(METH_FASTCALL | METH_KEYWORDS), CALL);
STAT_INC(CALL, hit);
/* res = func(self, args, nargs, kwnames) */
_PyCFunctionFastWithKeywords cfunc =
(_PyCFunctionFastWithKeywords)(void(*)(void))
PyCFunction_GET_FUNCTION(callable);
res = cfunc(
PyCFunction_GET_SELF(callable),
args,
total_args - KWNAMES_LEN(),
kwnames
);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
kwnames = NULL;
/* Free the arguments. */
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_NO_KW_LEN, (unused/1, unused/2, method, callable, args[oparg] -- res)) {
assert(cframe.use_tracing == 0);
assert(kwnames == NULL);
/* len(o) */
int is_meth = method != NULL;
int total_args = oparg;
if (is_meth) {
callable = method;
args--;
total_args++;
}
DEOPT_IF(total_args != 1, CALL);
PyInterpreterState *interp = _PyInterpreterState_GET();
DEOPT_IF(callable != interp->callable_cache.len, CALL);
STAT_INC(CALL, hit);
PyObject *arg = args[0];
Py_ssize_t len_i = PyObject_Length(arg);
if (len_i < 0) {
goto error;
}
res = PyLong_FromSsize_t(len_i);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(callable);
Py_DECREF(arg);
ERROR_IF(res == NULL, error);
}
inst(CALL_NO_KW_ISINSTANCE, (unused/1, unused/2, method, callable, args[oparg] -- res)) {
assert(cframe.use_tracing == 0);
assert(kwnames == NULL);
/* isinstance(o, o2) */
int is_meth = method != NULL;
int total_args = oparg;
if (is_meth) {
callable = method;
args--;
total_args++;
}
DEOPT_IF(total_args != 2, CALL);
PyInterpreterState *interp = _PyInterpreterState_GET();
DEOPT_IF(callable != interp->callable_cache.isinstance, CALL);
STAT_INC(CALL, hit);
PyObject *cls = args[1];
PyObject *inst = args[0];
int retval = PyObject_IsInstance(inst, cls);
if (retval < 0) {
goto error;
}
res = PyBool_FromLong(retval);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(inst);
Py_DECREF(cls);
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
}
// This is secretly a super-instruction
inst(CALL_NO_KW_LIST_APPEND, (unused/1, unused/2, method, self, args[oparg] -- unused)) {
assert(cframe.use_tracing == 0);
assert(kwnames == NULL);
assert(oparg == 1);
assert(method != NULL);
PyInterpreterState *interp = _PyInterpreterState_GET();
DEOPT_IF(method != interp->callable_cache.list_append, CALL);
DEOPT_IF(!PyList_Check(self), CALL);
STAT_INC(CALL, hit);
if (_PyList_AppendTakeRef((PyListObject *)self, args[0]) < 0) {
goto pop_1_error; // Since arg is DECREF'ed already
}
Py_DECREF(self);
Py_DECREF(method);
STACK_SHRINK(3);
// CALL + POP_TOP
JUMPBY(INLINE_CACHE_ENTRIES_CALL + 1);
assert(next_instr[-1].op.code == POP_TOP);
DISPATCH();
}
inst(CALL_NO_KW_METHOD_DESCRIPTOR_O, (unused/1, unused/2, method, unused, args[oparg] -- res)) {
assert(kwnames == NULL);
int is_meth = method != NULL;
int total_args = oparg;
if (is_meth) {
args--;
total_args++;
}
PyMethodDescrObject *callable =
(PyMethodDescrObject *)PEEK(total_args + 1);
DEOPT_IF(total_args != 2, CALL);
DEOPT_IF(!Py_IS_TYPE(callable, &PyMethodDescr_Type), CALL);
PyMethodDef *meth = callable->d_method;
DEOPT_IF(meth->ml_flags != METH_O, CALL);
PyObject *arg = args[1];
PyObject *self = args[0];
DEOPT_IF(!Py_IS_TYPE(self, callable->d_common.d_type), CALL);
STAT_INC(CALL, hit);
PyCFunction cfunc = meth->ml_meth;
// This is slower but CPython promises to check all non-vectorcall
// function calls.
if (_Py_EnterRecursiveCallTstate(tstate, " while calling a Python object")) {
goto error;
}
res = _PyCFunction_TrampolineCall(cfunc, self, arg);
_Py_LeaveRecursiveCallTstate(tstate);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(self);
Py_DECREF(arg);
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS, (unused/1, unused/2, method, unused, args[oparg] -- res)) {
int is_meth = method != NULL;
int total_args = oparg;
if (is_meth) {
args--;
total_args++;
}
PyMethodDescrObject *callable =
(PyMethodDescrObject *)PEEK(total_args + 1);
DEOPT_IF(!Py_IS_TYPE(callable, &PyMethodDescr_Type), CALL);
PyMethodDef *meth = callable->d_method;
DEOPT_IF(meth->ml_flags != (METH_FASTCALL|METH_KEYWORDS), CALL);
PyTypeObject *d_type = callable->d_common.d_type;
PyObject *self = args[0];
DEOPT_IF(!Py_IS_TYPE(self, d_type), CALL);
STAT_INC(CALL, hit);
int nargs = total_args - 1;
_PyCFunctionFastWithKeywords cfunc =
(_PyCFunctionFastWithKeywords)(void(*)(void))meth->ml_meth;
res = cfunc(self, args + 1, nargs - KWNAMES_LEN(), kwnames);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
kwnames = NULL;
/* Free the arguments. */
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_NO_KW_METHOD_DESCRIPTOR_NOARGS, (unused/1, unused/2, method, unused, args[oparg] -- res)) {
assert(kwnames == NULL);
assert(oparg == 0 || oparg == 1);
int is_meth = method != NULL;
int total_args = oparg;
if (is_meth) {
args--;
total_args++;
}
DEOPT_IF(total_args != 1, CALL);
PyMethodDescrObject *callable = (PyMethodDescrObject *)SECOND();
DEOPT_IF(!Py_IS_TYPE(callable, &PyMethodDescr_Type), CALL);
PyMethodDef *meth = callable->d_method;
PyObject *self = args[0];
DEOPT_IF(!Py_IS_TYPE(self, callable->d_common.d_type), CALL);
DEOPT_IF(meth->ml_flags != METH_NOARGS, CALL);
STAT_INC(CALL, hit);
PyCFunction cfunc = meth->ml_meth;
// This is slower but CPython promises to check all non-vectorcall
// function calls.
if (_Py_EnterRecursiveCallTstate(tstate, " while calling a Python object")) {
goto error;
}
res = _PyCFunction_TrampolineCall(cfunc, self, NULL);
_Py_LeaveRecursiveCallTstate(tstate);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(self);
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_NO_KW_METHOD_DESCRIPTOR_FAST, (unused/1, unused/2, method, unused, args[oparg] -- res)) {
assert(kwnames == NULL);
int is_meth = method != NULL;
int total_args = oparg;
if (is_meth) {
args--;
total_args++;
}
PyMethodDescrObject *callable =
(PyMethodDescrObject *)PEEK(total_args + 1);
/* Builtin METH_FASTCALL methods, without keywords */
DEOPT_IF(!Py_IS_TYPE(callable, &PyMethodDescr_Type), CALL);
PyMethodDef *meth = callable->d_method;
DEOPT_IF(meth->ml_flags != METH_FASTCALL, CALL);
PyObject *self = args[0];
DEOPT_IF(!Py_IS_TYPE(self, callable->d_common.d_type), CALL);
STAT_INC(CALL, hit);
_PyCFunctionFast cfunc =
(_PyCFunctionFast)(void(*)(void))meth->ml_meth;
int nargs = total_args - 1;
res = cfunc(self, args + 1, nargs);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
/* Clear the stack of the arguments. */
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_FUNCTION_EX, (unused, func, callargs, kwargs if (oparg & 1) -- result)) {
if (oparg & 1) {
// DICT_MERGE is called before this opcode if there are kwargs.
// It converts all dict subtypes in kwargs into regular dicts.
assert(PyDict_CheckExact(kwargs));
}
if (!PyTuple_CheckExact(callargs)) {
if (check_args_iterable(tstate, func, callargs) < 0) {
goto error;
}
PyObject *tuple = PySequence_Tuple(callargs);
if (tuple == NULL) {
goto error;
}
Py_SETREF(callargs, tuple);
}
assert(PyTuple_CheckExact(callargs));
result = do_call_core(tstate, func, callargs, kwargs, cframe.use_tracing);
DECREF_INPUTS();
assert(PEEK(3 + (oparg & 1)) == NULL);
ERROR_IF(result == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(MAKE_FUNCTION, (defaults if (oparg & 0x01),
kwdefaults if (oparg & 0x02),
annotations if (oparg & 0x04),
closure if (oparg & 0x08),
codeobj -- func)) {
PyFunctionObject *func_obj = (PyFunctionObject *)
PyFunction_New(codeobj, GLOBALS());
Py_DECREF(codeobj);
if (func_obj == NULL) {
goto error;
}
if (oparg & 0x08) {
assert(PyTuple_CheckExact(closure));
func_obj->func_closure = closure;
}
if (oparg & 0x04) {
assert(PyTuple_CheckExact(annotations));
func_obj->func_annotations = annotations;
}
if (oparg & 0x02) {
assert(PyDict_CheckExact(kwdefaults));
func_obj->func_kwdefaults = kwdefaults;
}
if (oparg & 0x01) {
assert(PyTuple_CheckExact(defaults));
func_obj->func_defaults = defaults;
}
func_obj->func_version = ((PyCodeObject *)codeobj)->co_version;
func = (PyObject *)func_obj;
}
inst(RETURN_GENERATOR, (--)) {
assert(PyFunction_Check(frame->f_funcobj));
PyFunctionObject *func = (PyFunctionObject *)frame->f_funcobj;
PyGenObject *gen = (PyGenObject *)_Py_MakeCoro(func);
if (gen == NULL) {
goto error;
}
assert(EMPTY());
_PyFrame_SetStackPointer(frame, stack_pointer);
_PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe;
_PyFrame_Copy(frame, gen_frame);
assert(frame->frame_obj == NULL);
gen->gi_frame_state = FRAME_CREATED;
gen_frame->owner = FRAME_OWNED_BY_GENERATOR;
_Py_LeaveRecursiveCallPy(tstate);
assert(frame != &entry_frame);
_PyInterpreterFrame *prev = frame->previous;
_PyThreadState_PopFrame(tstate, frame);
frame = cframe.current_frame = prev;
_PyFrame_StackPush(frame, (PyObject *)gen);
goto resume_frame;
}
inst(BUILD_SLICE, (start, stop, step if (oparg == 3) -- slice)) {
slice = PySlice_New(start, stop, step);
DECREF_INPUTS();
ERROR_IF(slice == NULL, error);
}
inst(FORMAT_VALUE, (value, fmt_spec if ((oparg & FVS_MASK) == FVS_HAVE_SPEC) -- result)) {
/* Handles f-string value formatting. */
PyObject *(*conv_fn)(PyObject *);
int which_conversion = oparg & FVC_MASK;
/* See if any conversion is specified. */
switch (which_conversion) {
case FVC_NONE: conv_fn = NULL; break;
case FVC_STR: conv_fn = PyObject_Str; break;
case FVC_REPR: conv_fn = PyObject_Repr; break;
case FVC_ASCII: conv_fn = PyObject_ASCII; break;
default:
_PyErr_Format(tstate, PyExc_SystemError,
"unexpected conversion flag %d",
which_conversion);
goto error;
}
/* If there's a conversion function, call it and replace
value with that result. Otherwise, just use value,
without conversion. */
if (conv_fn != NULL) {
result = conv_fn(value);
Py_DECREF(value);
if (result == NULL) {
Py_XDECREF(fmt_spec);
ERROR_IF(true, error);
}
value = result;
}
result = PyObject_Format(value, fmt_spec);
Py_DECREF(value);
Py_XDECREF(fmt_spec);
ERROR_IF(result == NULL, error);
}
inst(COPY, (bottom, unused[oparg-1] -- bottom, unused[oparg-1], top)) {
assert(oparg > 0);
top = Py_NewRef(bottom);
}
inst(BINARY_OP, (unused/1, lhs, rhs -- res)) {
#if ENABLE_SPECIALIZATION
_PyBinaryOpCache *cache = (_PyBinaryOpCache *)next_instr;
if (ADAPTIVE_COUNTER_IS_ZERO(cache->counter)) {
assert(cframe.use_tracing == 0);
next_instr--;
_Py_Specialize_BinaryOp(lhs, rhs, next_instr, oparg, &GETLOCAL(0));
DISPATCH_SAME_OPARG();
}
STAT_INC(BINARY_OP, deferred);
DECREMENT_ADAPTIVE_COUNTER(cache->counter);
#endif /* ENABLE_SPECIALIZATION */
assert(0 <= oparg);
assert((unsigned)oparg < Py_ARRAY_LENGTH(binary_ops));
assert(binary_ops[oparg]);
res = binary_ops[oparg](lhs, rhs);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
inst(SWAP, (bottom, unused[oparg-2], top --
top, unused[oparg-2], bottom)) {
assert(oparg >= 2);
}
inst(EXTENDED_ARG, (--)) {
assert(oparg);
assert(cframe.use_tracing == 0);
opcode = next_instr->op.code;
oparg = oparg << 8 | next_instr->op.arg;
PRE_DISPATCH_GOTO();
DISPATCH_GOTO();
}
inst(CACHE, (--)) {
Py_UNREACHABLE();
}
// END BYTECODES //
}
dispatch_opcode:
error:
exception_unwind:
exit_unwind:
handle_eval_breaker:
resume_frame:
resume_with_error:
start_frame:
unbound_local_error:
;
}
// Future families go below this point //
family(store_fast) = { STORE_FAST, STORE_FAST__LOAD_FAST, STORE_FAST__STORE_FAST };